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Abstract

The skip-connection and the batch-normalization (BN) in ResNet enable an extreme deep
neural network to be trained with high performance. However, the reasons for its high
performance are still unclear. To clear that, we study the effects of the skip-connection and
the BN on the class-related signal propagation through hidden layers because a large ratio of
the between-class distance to the within-class distance of feature vectors at the last hidden
layer induces high performance. Our result shows that the between-class distance and
the within-class distance change differently through layers: the deep multilayer perceptron
with randomly initialized weights degrades the ratio of the between-class distance to the
within-class distance and the skip-connection and the BN relax this degradation. Moreover,
our analysis implies that the skip-connection and the BN encourage training to improve
this distance ratio. These results imply that the skip-connection and the BN induce high
performance.
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1. Introduction

Deep neural networks have a high expressive power that grows exponentially with respect
to the depth of the neural network (Montufar et al., 2014; Telgarsky, 2016; Raghu et al.,
2017). However, the classic multilayer perceptron (MLP) cannot reduce its empirical risk
by training even though it stacks more layers (He et al., 2016a). To overcome this prob-
lem, the ResNet incorporates skip-connections between layers (He et al., 2016a,b) and the
batch-normalization (BN) normalizes the input of activation functions (Ioffe and Szegedy,
2015). These architectures enable an extreme deep neural network to be trained with high
performance.

The property of the skip-connection is discussed from the point of view of the signal
propagation, that is, the change of feature vectors through layers (Poole et al., 2016; Yang
and Schoenholz, 2017). In an MLP with randomly initialized weights, the cosine distance
between two feature vectors converges to a fixed point in [0, 1] in an exponential order of
the depth (Poole et al., 2016). The skip-connection relaxes this exponential order into a
polynomial order and thus preserves the structure of the input space (Yang and Schoenholz,
2017). Their analysis used the mean-field theory, that is, they considered the neural network
with infinite hidden units and approximated the sum of the activations by the Gaussian
random variable. This approximation can deal with broad classes of the activation func-
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tion. However, their analysis is limited to the randomly initialized neural networks and the
theoretical relationship between their results and the classification performance is unclear.

In this work, we focused on the most popular activation function, the ReLU function,
and analyzed the class-related signal propagation through hidden layers of the randomly
initialized MLP, the ResNet, and the ResNet with BN and the effect of training because a
large ratio of the between-class distance to the within-class distance of feature vectors at
the last hidden layer induces high classification performance (Devroye et al., 2013). Our
results show that, in randomly initialized weights, the MLP strongly decreases the between-
class distance compared with the within-class distance. The skip-connection and the BN
relax this decrease of the between-class distance thanks to the preservation of the angle
between input vectors. Our analysis also implies that this preservation of the angle at
initialization encourages training to improve the distance ratio. These results imply that
the skip-connection and the BN induce high performance.

2. Preliminaries

2.1. Problem settings

We have a training set S = {(x(n), y(n))}Nn=1. Each example is a pair of input x(n) ∈ RD
and a class label y(n) ∈ {−1,+1} which are independently identically distributed from a
probability distribution D. Indices of the examples are omitted if they are clear from the
context.

2.2. Neural networks

We consider DNNs, which transform an input vector x ∈ RD into a new feature vector
hL ∈ RD through the following L blocks. Let h0 = x and φ(·) = max{0, ·} be the ReLU
activation function.
Multilayer perceptron (MLP):

hl+1
i = φ

(
ul+1
i

)
, ul+1

i =
D∑
j=1

W l
i,jh

l
j . (1)

ResNet (Yang and Schoenholz, 2017; Hardt and Ma, 2017) :
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i,j φ(ul+1

j ) + hli, ul+1
i =

D∑
j=1

W l,1
i,j h

l
j . (2)

ResNet with batch-normalization (BN):

hl+1
i =

D∑
j=1

W l,2
i,j φ

(
BN(ul+1

j )
)

+ hli,

BN(ul+1
i ) =

ul+1
i − E

[
ul+1
i

]
√

Var
(
ul+1
i

) , ul+1
i =

D∑
j=1

W l,1
i,j h

l
j ,

(3)

95



Furusho Ikeda

Figure 1: The blocks of the MLP, the ResNet, and the ResNet with BN.

where the expectation is taken under the distribution of input vectors in the mini-batch
of the stochastic gradient descent (SGD). Without loss of generality, we assume that the
variance of input vectors in the mini-batch is one, Var (xd) = 1 for all d ∈ [D].

The above DNNs predict the corresponding output for an input based on the feature
vector at the last block.

ŷ = vThL + b. (4)

We analyzed the average behaviors of these neural networks when the weights were
randomly initialized as follows. In the MLP, the weights were initialized by the He initial-
ization (He et al., 2015) because the activation function is the ReLU function.

W l
i,j ∼ N

(
0,

2

D

)
. (5)

In the ResNet and the ResNet with BN, the first internal weights were initialized by the
He initialization, but the second internal weights were initialized by the Xavier initial-
ization (Glorot and Bengio, 2010) because the second internal activation function is the
identity.

W l,1
i,j ∼ N

(
0,

2

D

)
, W l,2

i,j ∼ N
(

0,
1

D

)
. (6)

2.3. Classification error and the feature vectors

A large ratio of the between-class distance to the within-class distance of feature vectors hL

at the last block induces a small classification error.

Theorem 1 Theorem 4.4 of (Devroye et al., 2013). Let m+1 and S+1 be the population
mean and the population covariance matrix of the feature vector hL for class +1. We also
define m−1 and S−1 for class −1 in the same way. Then, for any v ∈ RD,

inf
b∈R

Pr(x,y)∼D[y · (vThL + b) ≤ 0] ≤

1 +

(
vT (m+1 −m−1)√
vTS+1v +

√
vTS−1v

)2
−1 . (7)

We can apply this result into the classification error in the training set by replacing the
population mean and the population covariance matrix with the sample mean and the
sample covariance matrix.
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2.4. Signal propagation

To clear the effect of the architecture on the distance between feature vectors hl(n), hl(m),

‖hl(n)− hl(m)‖2 = ‖hl(n)‖2 + ‖hl(m)‖2 − 2‖hl(n)‖‖hl(m)‖ cos∠
(
hl(n), hl(m)

)
, (8)

we calculated the length ql(n) and the angle ∠l(n,m),

ql(n) = E
[
‖hl(n)‖2

]
, ∠l(n,m) = arccos cl(n,m),

ql(n,m) = E
[
hl(n)

T
hl(m)

]
, cl(n,m) =

ql(n,m)√
ql(n)ql(m)

,
(9)

where ql(n,m) is the inner product and cl(n.m) is the cosine similarity. Note that the
expectation is taken under the probability distribution of randomly initialized weights.

3. Main results

3.1. Signal propagation

The distance between feature vectors, which can be written as the length and the angle, is
related to the classification error. To clear the effect of the skip-connection and the BN on
the classification error, we derive the recurrence relations of the length and the angle in the
MLP, the ResNet, and the ResNet with BN. The proofs of theorems are in the appendix.

Theorem 2 The transformation by the randomly initialized MLP remains the length for
any feature vector and strongly decreases a large angle compared with a small angle (Fig. 3).

ql+1(n) = ‖hl(n)‖2, ∠l+1(n,m) = arccosψ(∠(hl(n), hl(m))) (10)

where ψ(θ) = 1
π{sin θ + (π − θ) cos θ}.

Remark 3 The angle between input vectors which belong to different classes has a larger
angle than the angle between feature vectors which belong to the same class in real-life
applications (Yamaguchi et al., 1998; Wolf and Shashua, 2003). Therefore, ψ(θ) strongly
decreases the between-class angle compared with the within-class angle (Fig. 2).
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Figure 2: Strong decrease of the between-
class angle by ψ(θ).
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Figure 3: Recurrence relation of the angle
by the lth block of the DNN.
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Remark 4 Because of the strong decrease of the between-class angle (Theorem 2 and
Fig. 3), the MLP degrades the ratio of the between-class distance to the within-class distance,
which is undesirable property for the classification.

Next theorems show that the skip-connection and the BN relax this degradation.

Theorem 5 The transformation by the randomly initialized ResNet increases the length
in the same scale for any feature vector and relaxes the strong decrease of the large angle
compared with the MLP (Fig. 3).

ql+1(n) = 2‖hl(n)‖2,

∠l+1(n,m) = arccos

{
1

2
ψ(∠(hl(n), hl(m))) +

1

2
cos∠(hl(n), hl(m))

}
.

(11)

Theorem 6 The transformation by the randomly initialized ResNet with BN increases the
length in the same scale for any feature vector and relaxes the strong decrease of the large
angle compared with the MLP and the ResNet (Fig. 3).

ql+1(n) =
l + 3

l + 2
‖hl(n)‖2,

∠l+1(n,m) = arccos

{
1

l + 3
ψ(∠(hl(n), hl(m))) +

l + 2

l + 3
cos∠(hl(n), hl(m))

}
.

(12)

Remark 7 The skip-connection and the BN relax the degradation of the distance ratio
compared with the MLP thanks to the preservation of the angle (Theorem 5, 6, and Fig. 3).

The above theorems also provide us with a clear interpretation of how the skip-connection
and the BN preserve the angle. The ReLU activation function contracts the angle because
the ReLU activation function truncates the negative value of its input. The skip-connection
bypasses the ReLU activation function and thus reduces the effect of the ReLU activation
function to the half. Moreover, the BN reduces the effect of the ReLU activation function
to the reciprocal of the depth.

Corollary 8 Suppose that the change of the angle by each block follows the Theorem 3, 5,
and 6. When the angle between input vectors is sufficiently small such that arccosψ(∠(x(n), x(m))
can be approximated by the linear function a ·∠(x(n), x(m)) where 0 < a < 1 is a constant,
we can obtain the angle dynamics (Table 1).

Table 1: Angle dynamics when the input
angle is sufficiently small.

Model Angle ∠L(n,m)

MLP ' aL · ∠(x(n), x(m))

ResNet '
(
1+a
2

)L · ∠(x(n), x(m))

BN ' 2
L+2 · ∠(x(n), x(m))

0 2 4 6 8 10
# blocks L

4 × 10 1

5 × 10 1

L (n
,m

)

MLP
ResNet
BN

Figure 4: Angle dynamics when the input
angle is ∠(x(n), x(m)) = 0.5.
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3.2. Role of training and its relation to the initialization

Feature vectors should have a large between-class angle and a small within-class angle
for small classification error. However, the randomly initialized neural networks decrease
the between-class angle. Wang et al. (2018) showed that minimizing the softmax loss
corresponds to increasing the between-class angle and decreasing the within-class angle
under some assumptions. Besides the above property of the softmax loss, our analysis
provides us with an insight into how training tackles this problem from the point of view
of the network architecture.

Theorem 9 In the MLP, the cosine similarity cos∠(hl+1(n), hl+1(m)) is proportional to

D∑
i=1

δli(n,m) · ‖W l
i,•‖2 · cos∠(W l

i,•, h
l(n)) cos

(
∠(W l

i,•, h
l(n))− ∠(hl(n), hl(m))

)
(13)

where W l
i,• =

(
W l
i,1, ...,W

l
i,D

)T
is a weight vector, which can be controlled by training, and

δli(n,m) = 1[W l
i,•h

l(n) > 0] · 1[W l
i,•h

l(m) > 0] is the co-activation state.

Similar theorems hold in the cases of the ResNet and the ResNet with BN.
Theorem 9 implies that training can find a good weight W l making the within-class

angle smaller and making the between-class angle larger as follows.

Remark 10 cos∠(W l
i,•, h

l(n)) cos
(
∠(W l

i,•, h
l(n)) − ∠(hl(n), hl(m))

)
in Eq.13 and its plot

(Fig. 5) imply training can find a weight vector W l
i,• making the angle smaller or larger.

However, it seems difficult to make the within-class angle smaller and the between-class
angle larger at the same time. The co-activation states {δli(n,m)}Di=1 overcome this problem
by being activated class-wisely such that part of it becomes active if x(n), x(m) belong to the
same class and the other part becomes active if x(n), x(m) belong to difference classes.

The above discussion and the following theorem show the relationship between training
and the preservation of the angle at initialization.

Theorem 11 A small angle ∠(hl(n), hl(m)) encourages the co-activation at initialization.

P
(
δli(n,m) = 1

)
=

1

2

(
1− ∠(hl(n), hl(m))

π

)
. (14)
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Remark 12 At the high block of the initialized MLP, the between-class angle is small and
thus large part of the co-activation states {δli(n,m)}Di=1 are independent of the class infor-
mation (left in Fig. 6). Therefore, training changes all the angles in a similar way and
the improvement of the distance ratio is small. On the other hand, the skip-connection and
the BN preserve the between-class angles at high blocks and thus the co-activation states
{δli(n,m)}Di=1 still depend on the class information (right in Fig. 6). Therefore, training
can change angles class-wisely and improves the distance ratio well.

4. Numerical simulations

4.1. Dataset

We made a training set and a test set {x(n), y(n)}1000n=1 by subsampling data which belong to
the class label 0 or 1 from the MNIST dataset or CIFAR10 dataset. Moreover, we applied
PCA-whitening to these datasets to make the variance of each element of input vectors
become one. The class label 0 was relabeled to −1.
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Figure 7: Recurrent relation of the angle by one block or three blocks of neural networks.
We plotted the mean and the standard deviation of the angle over ten randomly
initialized weights. The black lines show the identity.
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Figure 8: Dynamics of the angle through blocks of neural networks. We plotted the mean
and the standard deviation of the angle over ten randomly initialized weights.
The black lines show the identity.
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4.2. Signal propagation through blocks

We calculated angles between feature vectors transformed by one block or three blocks of
the neural networks (Fig. 7). The MLP strongly decreased the between-class (large) angle
compared with the within-class (small) angle, the skip-connection and the BN relaxed this
decrease, and these numerical values matched our theoretical values.

We chose two input vectors and calculated its angle at each block (Fig. 8). The MLP
made this angle decrease quickly and the skip-connections and the BN relaxed this decrease,
which agreed with our analysis.

4.3. Co-activation rate through blocks

We calculated the co-activation rates between feature vectors transformed by three blocks
of the neural networks (Fig. 9). A small angle encouraged the co-activation and these
numerical values matched our theoretical values.

We chose two input vectors and calculated its activation rate at each block (Fig. 10). The
activation rate of the MLP quickly increased through the blocks and the skip-connection
and the BN suppressed this increase, which agreed with our analysis.

4.4. Effect of training on the distance ratio and relation to the error

We stacked a softmax layer on top of the L blocks neural networks and trained these models
with the stochastic gradient descent by minimizing the cross-entropy loss. We calculated
error rates and the ratios of the between-class distance to the within-class distance in
Theorem 1,

vT (m+1 −m−1)√
vTS+1v +

√
vTS−1v

where v = (m+1 −m−1), (15)

on the test set. We plotted distance ratios before and after training (Fig. 11) and the
relationship between the distance ratio and the classification error (Fig. 12). We applied
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Figure 9: Co-activation rates. We plotted
the mean and the standard devia-
tion of the co-activation rate over
ten randomly initialized weights.
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Figure 10: Co-activation rates through
blocks. We plotted the mean
and the standard deviation of
the co-activation rate over ten
randomly initialized weights.
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Figure 12: Error rate vs. the distance ratio.
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of blocks of the neural networks.

this simulation only on the binary class CIFAR10 dataset because the binary class MNIST
dataset was so easy that the all DNN perfectly classified data even on the test set.

Fig. 11 shows that the skip-connection and the BN improve the distance ratio compared
with the MLP although deeper neural networks degraded the distance ratio. Fig. 12 shows
that the error rate is negatively correlated to the distance ratio (the correlation coefficient
is -0.91). These results supported our claim.

5. Conclusion

To clear the success of the ResNet and the BN, we analyzed the change of the distance
between feature vectors through blocks of the MLP, the ResNet, and the ResNet with BN
because a large ratio of the between-class distance to the within-class distance of feature vec-
tors at the last block induces small classification error. Our results show that the randomly
initialized MLP degrades this ratio because of the strong decrease of the between-class an-
gle. The skip-connection and the BN relax this degradation thanks to the preservation
of the between-class angle. Our analysis also implies that this preservation of the angle at
initialization encourages training to improve the distance ratio and thus the skip-connection
and the BN induce high performance. Numerical simulations supported these results.
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Appendix A. Proof of the recurrence relation (Theorem 3,5,6, and 11)

Before we prove the recurrence relation, we present the following lemma which plays an
important role in our analysis. The strategy of its proof is the same way as Giryes et al.
(2016); Gulcu and Gungor (2019), that is, we use the fact that the random Gaussian vector
is uniformly distributed on the sphere. Theorem 11 can be proved in the same way.

Lemma 13 Let w ∈ RD be a random vector which follows the Gaussian distribution
N
(
0, σ2I

)
. Then, for x(n), x(m) ∈ RD,

E
[
φ(wTx(n)) · φ(wTx(m))

]
=
σ2

2
‖x(n)‖‖x(m)‖ · ψ(∠(x(n), x(m))) (16)

where ψ(θ) = 1
π{sin θ + (π − θ) cos θ}.

Proof of Lemma 13 Without loss of generality, we can take x(n) to lie along the w1-
axis and x(m) to lie on the w1w2-plane. Integrate out the D − 2 orthogonal coordinates
of the random weight vectors and represent x(n), x(m) by the remaining two-dimensional
Cartesian coordinate system of w1w2-plane. Consider integration over w1w2-plane by the
change of variables (w1, w2) = (r cos θ, r sin θ). Let u(θ) = (cos θ, sin θ)T . Then,

E
[
φ(wTx(n)) · φ(wTx(m))

]
=

∫ ∞
0

∫ 2π

0
p(ru(θ))φ(ru(θ)Tx(n))φ(ru(θ)Tx(m)) Jdθdr (17)

where p(ru(θ)) = 1
2πσ2 exp

(
−r2
2σ2

)
is the two dimensional Gaussian density function and J =∣∣∣det

[
∂(w1,w2)T

∂r , ∂(w1,w2)T

∂θ

]∣∣∣ = r is the Jacobian. Notice that φ(u(θ)Tx(n)) · φ(u(θ)Tx(m)) is

non-zero iff u(θ) is the same direction as input vectors x(n), x(m) (Fig. 11).

E
[
φ(wTx(n)) · φ(wTx(m))

]
=

∫ ∞
0

p(ru(θ)) r3 dr ·
∫ 2π

0
φ(u(θ)Tx(n)) φ(u(θ)Tx(m)) dθ

=
σ2

π

∫ π
2

−(π
2
−∠(x(n),x(m)))
‖x(n)‖ cos θ · ‖x(m)‖ cos(θ − ∠(x(n), x(m))) dθ

=
σ2

2
‖x(n)‖‖x(m)‖ · ψ(∠(x(n), x(m))).

(18)
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Table 2: Recurrence relation. Let ψ(θ) = 1
π{sin θ + (π − θ) cos θ}

Model Length ql+1(n) Inner product ql+1(n,m)

MLP ‖hl(n)‖2 ‖hl(n)‖‖hl(m)‖ψ(∠(hl(n), hl(m)))
ResNet 2‖hl(n)‖2 ‖hl(n)‖‖hl(m)‖

(
ψ(∠(hl(n), hl(m))) + cos∠(hl(n), hl(m))

)
BN l+3

l+2‖h
l(n)‖2 ‖hl(n)‖‖hl(m)‖

(
1
l+3ψ(∠(hl(n), hl(m))) + l+2

l+3 cos∠(hl(n), hl(m))
)

A.1. Recurrence relation of MLP

Let W l
i,• =

(
W l
i,1, ...,W

l
i,D

)
be a row vector.

Length:

ql+1(n) = E
[
‖hl+1(n)‖2

]
=

D∑
i=1

E
[
φ(W l

i,•h
l(n))2

]

=
D∑
i=1

1

2
E

 D∑
j=1

W l
i,j

2
hlj(n)

2

 = ‖hl(n)‖2.

(19)

Inner-product:

ql+1(n,m) = E
[
hl+1(n)Thl+1(m)

]
= E

[
φ(W lhl(n))Tφ(W lhl(m))

]
=

D∑
i=1

E
[
φ(W l

i,•h
l(n))Tφ(W l

i,•h
l(m))

]
.

Note that W l
i,• is the random Gaussian vector. Apply Lemma 11 into the above equation.

ql+1(n,m) = ‖hl(n)‖‖hl(m)‖ · ψ
(
∠(hl(n), hl(m))

)
. (20)

Then, we can calculate the recurrence relation of the angle by applying these into Eq.9.

Figure 13: Condition of φ(u(θ)Tx(n)) · φ(u(θ)Tx(m)) > 0.
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A.2. Recurrence relation of ResNet

Length:

ql+1(n) = E
[
‖W l,2φ(W l,1hl(n)) + hl(n)‖2

]
= E

[
‖W l,2φ(W l,1hl(n)‖2

]
+ 2E

[
h(n)l

T
W l,2φ(W l,1hl(n))

]
+ ‖hl‖2

= 2‖hl(n)‖2.

(21)

Inner-product:

ql+1(n,m) = E
[{
W l,2φ(W l,1hl(n) + hl(n)

}T {
W l,2φ(W l,1hl(m) + hl(m)

}]
= E

[{
W l,2φ(W l,1hl(n))

}T {
W l,2φ(W l,1hl(m))

}]
+ hl(n)TE

[
W l,2φ(W l,1hl(m)

]
+ hl(m)TE

[
W l,2φ(W l,1hl(n)

]
+ hl(n)Thl(m).

(22)

The first term can be calculated using Lemma 11.

E
[{
W l,2φ(W l,1hl(n))

}T {
W l,2φ(W l,1hl(m))

}]
=

D∑
i=1

E
[ D∑
j=1

W l,2
i,j

2
φ(W l,1

j,•h
l(n)) · φ(W l,1

j,•h
l(m))

]

=
D∑
i=1

1

D
E
[ D∑
j=1

φ(W l,1
j,•h

l(n)) · φ(W l,1
j,•h

l(m))
]

= ‖hl(n)‖‖hl(m)‖ · ψ(∠(hl(n), hl(m))).

(23)

The second term and the third term are zero. Then,

ql+1(n,m) = ‖hl(n)‖‖hl(m)‖
(
ψ(∠(hl(n), hl(m))) + cos∠(hl(n), hl(m))

)
. (24)

Thus, we can calculate the recurrence relation of the angle by applying these into Eq.9.

A.3. Recurrence relation of ResNet with BN

We first calculate the statistics of BN.
Mean:

E
[
ul+1
i

]
= E

[
W l,1
i,•h

l
]

= 0. (25)
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Variance:

Var
(
ul+1
i

)
= Var

( D∑
j=1

W l,1
i,j h

l
j

)
=

2

D

D∑
j=1

Var
(
hlj

)

=
2

D

D∑
j=1

Var
(
W l−1,2
j,• φ(BN(W l−1,1hl−1)) + hl−1j

)

=
2

D

D∑
j=1

{ D∑
k=1

1

D

1

2
+ Var

(
hl−1j

)}

=
2

D

D∑
j=1

{1

2
+ Var

(
hl−1j

)}

=
2

D

D∑
j=1

(
l

2
+ Var (xj)

)
= l + 2.

(26)

By applying these statistics into Eq.3, we can derive the recurrence relations in the same
way as those of the ResNet.

Appendix B. Proof of the angle dynamics through layers (Table 1)

B.1. Angle dynamics through layers of MLP

If θ is small, arccos(ψ(θ)) can be well approximated by linear function, a · ∠(hl(n), hl(m)),
where a < 1 is a positive constant. Therefore,

∠1(n,m) ' a · ∠(x(n), x(m)) (27)

Apply this procedure L times, we obtain

∠L(n,m) ' aL · ∠(x(n), x(m)). (28)

B.2. Angle dynamics through layers of ResNet and ResNet with BN

Notice that ψ(θ) + cos θ is positive in θ ∈ [0, 2] and arccos θ is concave in positive θ.
Therefore, we can obtain a lower bound of the angle dynamics of the ResNet by using the
Jensen inequality.

∠1(n,m) = arccos
(1

2
ψ(∠(x(n), x(m))) +

1

2
cos∠(x(n), x(m))

)
>

1

2
arccos

(
ψ(∠(x(n), x(m)))

)
+

1

2
· ∠(x(n), x(m))

' 1 + a

2
· ∠(x(n), x(m))

(29)

Apply this procedure L times, we obtain

∠L(n,m) '

(
1 + a

2

)L
· ∠(x(n), x(m)). (30)
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We can obtain a lower bound of the angle dynamics of the ResNet with BN in the same
way as that of the ResNet.

Appendix C. Proof of Theorem 9

Cosine similarity can be written as follows.

cos∠(hl+1(n), hl+1(m)) =
hl+1(n)Thl+1(m)

‖hl+1(n)‖‖hl+1(m)‖

=
1

‖hl+1(n)‖‖hl+1(m)‖

D∑
i=1

φ(W l
i,•h

l(n)) · φ(W l
i,•h

l(m))

=
‖hl(n)‖‖hl(m)‖
‖hl+1(n)‖‖hl+1(m)‖

D∑
i=1

δli(n,m) · ‖W l
i,•‖2 · cos∠(W l

i,•, h
l(n)) cos∠(W l

i,•, h
l(m))

∝
D∑
i=1

δli(n,m) · ‖W l
i,•‖2 · cos∠(W l

i,•, h
l(n)) cos

(
∠(W l

i,•, h
l(n))− ∠(hl(n), hl(m))

)
(31)

where δli(n,m) = 1[W l
i,•h

l(n) > 0] · 1[W l
i,•h

l(m) > 0].
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