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Abstract

The existing approaches to intrinsic dimension estimation usually are not reliable when the
data are nonlinearly embedded in the high dimensional space. In this work, we show that
the explicit accounting to geometric properties of unknown support leads to the polynomial
correction to the standard maximum likelihood estimate of intrinsic dimension for flat
manifolds. The proposed algorithm (GeoMLE) realizes the correction by regression of
standard MLEs based on distances to nearest neighbors for different sizes of neighborhoods.
Moreover, the proposed approach also efficiently handles the case of nonuniform sampling
of the manifold. We perform a series of experiments on various synthetic and real-world
datasets. The results show that our algorithm achieves state-of-the-art performance, while
also being robust to noise in the data and competitive computationally.

Keywords: Intrinsic dimension estimation, Manifold learning, Maximum likelihood esti-
mation.

1. Introduction

Dimensionality reduction is one of the critical steps of data analysis. The proper application
of dimensionality reduction allows to decrease the required space for data storage and
increase the speed of the data processing by machine learning algorithms. Most importantly,
it often significantly improves the performance of many machine learning algorithms, which
often rapidly degrades in high dimensions.

The majority of existing dimensionality reduction methods require the true dimension
of the data as an input parameter. Not surprisingly, the problem of estimating the true
dimension of the data known as intrinsic dimension estimation is a well-studied problem,
and numerous specialized intrinsic dimension estimation methods exist (Bailey et al., 1979;
Grassberger and Procaccia, 1983; Levina and Bickel, 2005; Hein and Audibert, 2005; Lom-
bardi et al., 2011; Little et al., 2012; Ceruti et al., 2014; Johnsson et al., 2015; Granata
and Carnevale, 2016). In addition, some dimensionality reduction methods such as princi-
pal component analysis (PCA) (Jolliffe, 1986) can be modified for estimating the intrinsic
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dimension, see (Fukunaga and Olsen, 1971; Bishop, 1998; Tipping and Bishop, 1999). How-
ever, the existing intrinsic dimension estimation approaches have some disadvantages: some
fail on data with a non-linear structure, some require a large number of observations for
efficient performance, others are computationally expensive (Campadelli et al., 2015).

In this paper, we introduce a new efficient method for intrinsic dimension estima-
tion. We base our approach on the Mazimum likelihood estimation of intrinsic dimension
(MLE) (Levina and Bickel, 2005) which is one of the most commonly used methods due to
its simplicity and computational efficiency. However, when the true dimension of the data
is large, the MLE method is known to underestimate it significantly Ceruti et al. (2014).
The explanation of this fact is contained in the key assumption of the method: the local
neighborhood of each point is approximated by a linear subspace with a uniform density.
Since real-world data often lie on or near to a nonlinear manifold with an arbitrary density,
such an assumption is restrictive and leads to the bias in the procedure. To overcome the
problems mentioned above we propose a data-driven approach, which explicitly introduces
the correction for non-uniformity of density and nonlinearity of manifold into the likeli-
hood and estimates unknown parameters by regression with respect to the radius of the
neighborhood.

Our main contributions are the following:

e We propose a new intrinsic dimension estimation method Geometry-aware mazimum
likelihood estimation of intrinsic dimension (GeoMLE). Our approach takes into con-
sideration the geometric properties of a manifold and corrects for a nonuniform sam-

pling.

e GeoMLE shows the state-of-the-art results in the estimation of intrinsic dimension.
In a series of experiments, GeoMLE outperforms MLE (Levina and Bickel, 2005)
and other intrinsic dimension estimators. In particular, our estimator gives accurate
results for datasets in high dimensions, in case of which the performance of many
competitors is rather weak. Moreover, the proposed method is shown to perform well
in the case of nonuniform sampling of the manifold, while being also robust to noise
and competitive computationally.

In the next section, we describe the MLE approach in detail. Section 3 provides the idea of
the correction for nonlinear geometry and nonuniform density and introduces the resulting
GeoMLE algorithm. The experimental evaluation of the method is given in Section 4, while
the review of the related literature is given in Section 5. Section 6 concludes the study.

2. Maximum Likelihood Estimator of Intrinsic Dimension
Consider data manifold of unknown dimension m:
X={zx=g9g0b)eRP:beB CR"},
where (B, g) is a single coordinate chart embedded into an ambient p-dimension space R?,

such that m < p. The mapping g is a one-to-one mapping from an open bounded set B C RP
to manifold X = ¢g(B), with a differentiable inverse map g~': X — B. The manifold X is
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unknown, and a finite data set D = {X1,..., X,,} C X C R? is sampled from a distribution
with an unknown density f(z).
Levina and Bickel (2005) suggested to consider the binomial process

N(t,z) =) 1{X; € S.(t)}, 0<t<R,
=1

where S, (t) is a ball of radius ¢ centered at x. They propose to approximate this process by
Poisson process N (t,x) with rate A\, g(t) and 6 = log f(z). Suppressing the dependence
on z, the log-likelihood of the observed process Ny (t) is

R R
Ly(m, 0) = /0 log Ao (£)ANA(£) — /0 Ao (t)dt (1)

The key idea of MLE (Levina and Bickel, 2005) is to fix a point x and for an unknown
smooth density f on X assume that f(z) ~ const in a ball z € S;(R) C RP of small radius
R centered at x, while the intersection of X and S, (R) is approximated by m-dimensional
ball S*(R). Then, the observations are treated as a Poisson process in SJ'(R) C R™. The
rate of the Poisson process for the resulting approximation is

Amo(t) = f(x)Vimt™ 1, (2)

where V,,, is the volume of the unit sphere in R™.

Let Ti(x) be the Euclidean distance from a fixed point x to its k-th nearest neighbor in
the sample D. Levina and Bickel (2005) prove that the intrinsic dimension estimate for a
manifold X at a point = obtained by maximizing the likelihood (1) with a rate (2) is equal
to

1 N5 (R,x) n -1
mp(r) = (N(R75U) ; lOgTj(:c)> .

A

For numerical calculations it might be more convenient to fix the number of neighbors &
rather than the radius of the ball R. Then the MLE reads as

1= @)\
mk(x)_<k—1jz::110gTj(x)) ;

where k is the number of neighbors. The authors suggest to construct the resulting estimator
by simple averaging over a range of small to moderate values of nearest neighbours k €
[k1, k2]

3. Geometry-Aware MLE of Intrinsic Dimension

Levina and Bickel (2005) approximate the local neighborhood of each point by a linear
subspace with a uniform density. However, usually, real-world data lie on or near to an
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unknown nonlinear manifold with a density far from being uniform, which leads to bias in
the MLE method. In this section, we propose an improvement of the MLE by introducing
a correction for non-uniformity of density and nonlinearity of manifold into the likelihood
function.

3.1. Adjusted Likelihood Construction

We start from the general Poisson process-based likelihood (1) but aim to find a better
approximation to the rate A, (t). Our derivation requires several assumptions of manifold
X and density f(x).
We assume that density f(x) is bounded for z € X and denote frax = sup f(x). Let us
zeX

also define the bounds on maximum eigenvalues of first and second derivatives of f(z):

Cp1 = sup IVof@)ll, Cpa= sup VoV f(@)]]
2€XET(X): |In]l=1 EXNET:(X): |In]l=1

where T,(X) is a tangent space to the manifold X at the point z € X. Bounded values of
Cp.1 and Cp ;1 lead to smooth behaviour of the density f(x).

We also assume that the manifold X is not too curved. This limitation can be expressed
in terms of the second normal form II(n,7n) and the Ricci curvature Ric(n,n), those are
bounded for manifolds with smooth enough parametrizations according to Lemmas 3 and
4 from (Yanovich, 2016). We assume that for a given manifold X there exist such positive
constants C and Cgje that for all z € X, n € T,(X), and [|n|| =1

]I(nﬂ?) S C]I? Rlc(na 77) S CRiC'

Under the considered assumptions the following result follows.

Proposition 1 The rate of Poisson process Nx(R,xz) on the manifold X can be expressed
as

Amo(R) = R™ 1V, (mf(z) + R25(R)) = Amo(R) + RV, - §(R),
where the term §(R) can be bounded as

mC

24
+(m + 4)R20p’QCRjC + f(2)Cric(m + 2). (3)

S(R)] < 8 uax(m +2) ™o+ Cpa(im +2) + (m + 8)RCy Cric

The result of Proposition 1 allows us to represent the true log-likelihood (1) in the following
way:

R
Ly(m,0) = (m — 1)/ logt dNy(t,x) + NA(R, z)log Vi, + Nx(R, x) logm
0

R 2
+NA(R, 7) log f(x) +/0 log (2626 (t) )Ny (t, ) — Vi R™ <f(x) L fm) _

The following result allows to compute the maximizer for the function Ly(m,@).
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Proposition 2 Assume that R25(R) < 1 and R*5(R)/f(x) < 1 for all x € X. Then the
mazximum of the function Ly(m, @) is achieved by

2
n(x) = () (1 n e(R)@) , (4)

where |e(R)| < C|6(R)| for some absolute constant C.

Unfortunately, the estimate mp(z) cannot be computed directly as the quantities 6(R) and
g(R) are unknown. We know the explicit upper bound (3) on §(R), but it still includes a
number of unknown parameters depending on manifold X and density f(z).

However, the form of dependency in equation (4) suggests that mp(x) can be found by
computing the correction to the standard MLE mg(x). We note that by Taylor expansion
we can represent (4) in the following form

l
mR(m) = mR(l’) + ZCjRj + O(RZ—H)’
j=1

where vector ¢ = ((1,...,(;) represents coefficients of a polynomial of degree .

The key idea is to consider the estimates mpg(x) for different values of R and try to fit
polynomial approximation to them. Under the assumption that mpg(x) does not depend
on R, the zero order term in the approximation will give an estimate m(x) of the intrinsic
dimension. By fixing the number of neighbors k and estimating 7 (z) we obtain the
following polynomial regression problem

!
i (w) = m(z) + ) GT () + e,
j=1

where €, represents an error due to ignoring higher order terms in polynomial approxima-
tion. The estimation of m(z) and other coefficients of polynomial { can be done based
on estimates My (x) computed for different values of the number of neighbors k and corre-
sponding distances Ty (x).

3.2. Algorithmic implementation of GeoMLE

To estimate the intrinsic dimension m(x) of the manifold in the vicinity point z based on the
sample D = { X7, ..., X,;} by polynomial regression, we should construct a dataset of MLEs
Mg, (x), ..., Mk, (z) for a range of values of k = k; < --- < kg with k; and k2 being input
parameters of the method. It is important to choose ki large enough to ensure the stability
of distance estimates Tj(z), while ko can not be very large to validate the approximations
used to construct the estimates. In practice, due to the finite size of the data, the estimates
my(z) are unstable for small and even moderate values of k. We suggest to estimate this
uncertainty by special bootstrap procedure and incorporate obtained uncertainty estimates
directly into regression problem. Such an approach also allows making the method less
dependent on the choice of the number of nearest neighbors k.
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We start by creating M bootstrapped datasets Dy, ..., Dy of the sample D = {X1,..., X}

For each k we repeat the following procedure. First, we find k£ nearest neighbors of point x
among the points in Dj bootstrapped dataset for j = 1,..., M. Then, for z we calculate its
distance from its k-th nearest neighbor Ty (x, D;) in D; and find its dimension 11 (z, D;)
by MLE approach.

After that, we average the distances to neighbors and MLEs in the following way

B LM . | M .
Ti(z) = 37 > Ti(w,Dy), mu(z) = i > iz, D;).
j=1 j=1

In addition, for each neighbor k& we calculate the variances of MLE dimensions for x in the
sample
1 & 2
~92 ~ ~ _
6t(@) = 37 > (i, Dy) — mg ()™
j=1
Given estimates of the variances 67 (z) of estimated dimension 7 (z), we can build a het-
eroscedastic polynomial regression model

N T ] L,
s 32 g (mete) =) = 367w

where we fit to the data the polynomial of degree [ with constant term given by m(z) and
other coefficients given by vector (. In order to find the resulting intrinsic dimension m
we can run the procedure for each point in the sample D = {X;,..., X,,} and average the
obtained local estimates:

= % zn:m(xi).

i=1

Figure 1 illustrates GeoMLE approach by showing the resulting polynomial estimates for
the samples from spheres of three different dimensions. We note that it is not possible to
get MLE estimates for the values of R close to zero as the smallest possible values of R
are determined by the distances to nearest neighbours of the central point. Thus, GeoMLE
clearly improves over MLE and gives the estimate close to the true dimension. In the next
section, we proceed with the evaluation of GeoMLE compared to other intrinsic dimension
estimators.

4. Experiments

In this section, we present the performance of GeoMLE by conducting a series of experiments
on synthetic and real-world datasets that are suggested as a benchmark for evaluating
intrinsic dimension estimators in (Rozza et al., 2012). Simulated datasets used in our
experiments are generated from different well-known manifolds such as linear subspace with
normal distribution, sphere, Swiss roll, helix, cube surface, paraboloid, and some others.
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—— Sphere-9D
—— Sphere-8D
9.0 —— Sphere-7TD

Estimated dimension
-1

Figure 1: Hlustration of GeoMLE for the samples from spheres of 3 different dimensions.
Points indicate average MLEs of bootstraped datasets for different values of R
with corresponding standard deviations. Curves show weighted quadratic re-
gression fitted to the points, while stars represent the resulting estimates of the

dimension.
Table 1: Parameters of each algorithms
Method MLE GeoMLE MiNDyg, DANCo ESS PCA Hein
Parameters kl1=20 "kl =20 k =37 k=37 d=1 «a=0.05 None

k2 =55 k2 =55

Table 2: Hyperparameters of the algorithms used in the experiments.

For the experiments on synthetic data we take the size of datasets equal to 1000. Real-
world datasets in our experiments include Digits (Alpaydin and Kaynak, 1998), ISOMAP
face (Tenenbaum et al., 2000), and ISOLET (Fanty and Cole, 1990).

In our experiments we consider several classical baseline methods such as Local PCA (Fuku-
naga and Olsen, 1971), MiNDg;, (Lombardi et al., 2011), Hein (Hein and Audibert, 2005)
and MLE (Levina and Bickel, 2005), and state-of-the-art approaches DANCo (Ceruti et al.,
2014) and ESS (Johnsson et al., 2015) according to the recent review (Campadelli et al.,
2015). See a more detailed discussion of these methods in Section 5.

We observed that already the quadratic polynomial works well for GeoMLE and used
it with 15 bootstrap samples for each local estimate in all the experiments. The other
hyperparameters of all the methods were also fixed in our experiments and are summarized
in the Table 2. The following link provides access to the implementation of the proposed
method and all the experiments: https://github.com/premolab/GeoMLE.
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Table 3: Estimation results on synthetic datasets averaged over 10 samples with standard
deviations reported in brackets. p is the dimension of space into which the data is
embedded and m is the true dimension of the data.

Dataset P m MLE GeoMLE MiNDur, DANCo ESS Hein
Affine 10 10 8.00(0.00)  10.00(0.00)  8.00(0.00) 9.60(0.55) 10.00(0.00)  8.00(0.00)
Cubic 35 30 18.00(0.00) 29.80(0.84) 19.20(0.45) 29.80(0.84) 30.40(0.55)  21.00(0.71)
Helix 3 1 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 3.00(0.00) 1.00(0.00)
Moebius 3 2 2.00(0. OO) 2.00(0.00) 2.00(0.00) 2.00(0.00) 2.00(0.00) 2.00(0.00)
Nonlinear 36 6 7.00(0.00) 7.00(0.00) 7.00(0.00) 7.80(0.45) 12.00(0.00)  6.00(0.00)
Paraboloid 30 9 5.00(0.00) 9.00(0.00) 5.00(0.00) 6.00(0.00) 1.00(0.00) 2.60(0.55)
Roll 3 2 2.00(0.00) 2.00(0. 00) 2.00(0.00)  2.00(0.00)  3.00(0.00)  2.00(0.00)
Sphere 15 10 8.80(0.45) 10.20(0.45)  9.00(0.00) 11.00(0.00) 11.00(0.00) 9.00(0.00)
Spiral 13 1 2.00(0.00) 1.80(0.45) 2.00(0.00) 2.00(0.00) 2.00(0.00) 1.00(0.00)
Uniform 55 50  25.00(0.00) 51.00(1.22) 27.00(0.00) 49.00(1.22) 49.20(1.30)  30.40(0.89)
MPE 0.269 0.097 0.248 0.164 0.385 0.188
Time 0.354 3.608 0.050 21.220 0.273 0.079376

4.1. Simulated and real-world data

For the evaluation we consider 45 different synthetic datasets with 10 independent samples
generated for each of them. Table 3 presents the resulting estimates for selected synthetic
datasets. Here p denotes the full dimension of data space and m is the true dimension of
the data for synthetic datasets. The results are averaged over 10 independent samples, and
the best estimates for each dataset are in bold. For more quantitative comparison of the al-
gorithms we also calculate mean percentage error (MPE), which is MPE = 2 3% | ‘m‘m il
where n is the number of synthetic manifolds, m; is the true dimension, and m; is the
estimated dimension. We also report the average computing time for all the methods. It
is clearly seen that GeoMLE is the most accurate estimate in the majority of cases, while
other methods give the best results only for few datasets each. Moreover, GeoMLE gives
the best results in terms of MPE and is computationally significantly faster than its closest
competitor in terms of MPE (DANCo).

In Figure 2 we summarize the results for synthetic datasets by plotting Dolan-More
curves (Dolan and More, 2002) which are a benchmarking tool for comparison of the per-
formance of different methods. Each curve p,(7) defines the fraction of problems in which
the a-th algorithm has the error not more than 7 times bigger than the best competitor.
Thus, the higher curve, the better performance of the algorithm, and p,(1) is equal to the
fraction of problems for which algorithm a gives the best result over all the algorithm. We
see that GeoMLE shows the best result in more than 80% of the problems. The closest
competitor to GeoMLE is DANCo, while other methods perform significantly worse.

In Table 4 we report the results for real-world datasets. True dimensions m for real-
world datasets are not known, so we provide only the expert opinion on them, see (Rozza
et al., 2012). We see that in 2 out of 3 cases GeoMLE clearly outperforms the competitors.
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Dolan-More curves

0.9

MLE
GeoMLE
—— MIND
—— DANCo

— Hein
061 = — ESS
3

PCA

40

Figure 2: Dolan-More curves for all synthetic datasets to compare the estimates of MLE,
GeoMLE, MiNDgy,, DANCo, Hein, ESS, and PCA. p,(7) shows the ratio of
problems on which the performance of the a-th method is the best.

Table 4: Estimation results achieved on real-world datasets. p is the dimension of space
into which the data is embedded and m is the estimate by expert on the true
dimension of the data.

Dataset P m MLE GeoMLE MiNDyy; DANCo ESS  Hein
Isomap 4096 3 4 3.3 4.0 6.0 7.4 3.0
Digits 64 9-11 7.7 11.0 8.0 9.0 132 7.0
ISOLET 617 16-22 16.9 25.0 15.0 14.0 12.4  14.0

4.2. Robustness to noise

We also evaluate the robustness of GeoMLE and other methods with respect to noise. We
add zero mean Gaussian noise to samples for synthetic datasets. Standard deviations of
noise are taken to be from 0 to 0.05 with step size equal to 0.01. The results are averaged
over all synthetic datasets and 5 independent realizations of noise. We see in Figure 3 that
PCA and ESS are almost not affected by noise, while GeoMLE still shows the best quality
of intrinsic dimension estimation for considered levels of noise.

4.3. Effect of nonuniform sampling

Finally, we want to explicitly test whether GeoMLE allows to correct for nonuniform den-
sity, as in all the previous synthetic experiments density was always uniform. In Table 5 we
compare the performance of GeoMLE and MLE on 5-dimensional spheres with uniform and
nonuniform densities embedded into 7-dimensional space. Non-uniformity was achieved by
generating points with uniform density in 5 dimensional space and then projecting them
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Dependence on noise

0.6y —— MLE

GeoMLE

—*— MIND
0.5 —— DANCo
—+— Hein

—— PCA

|

0.1

0.00 0.01 0.02 0.03 0.04 0.05
Noise

Figure 3: Dependence of estimates of MLE, GeoMLE, MiNDgky,, DANCo, ESS, and PCA
on noisy 4-dimensional sphere data.

Table 5: Dimension estimates of GeoMLE and MLE of 5-dimensional sphere in 7-
dimensional space with uniform and nonuniform densities. The results are av-
eraged over 10 samples of 1000 points each.

Method Uniform Nonuniform
GeoMLE 5.13 (0.08) 5.04 (0.10)
MLE 4.87 (0.05)  4.64 (0.05)

on the sphere. The presented estimates are averaged over 10 samples of 1000 points each.
Despite there are no major differences between the methods for spheres with uniform den-
sities, in case of nonuniform densities MLE underestimates the dimension while GeoMLE
gives much more accurate result.

5. Related Work

This section reviews most recent and efficient intrinsic dimension estimators, which can be
classified into 4 big groups: projective, fractal, nearest neighbor based, and simplex based.

Projective intrinsic dimension estimation methods are based on Multidimensional Scal-
ing (MDS) (Romney et al., 1972) that try to maintain as much as possible pairwise distances
in the data, and Principal Component Analysis (PCA) (Jolliffe, 1986), that find the best
projection subspace. One of the most efficient methods in this group is local PCA (Fukunaga
and Olsen, 1971).

Fractal methods rely on the assumption that data points are drawn thought a smooth
probability density function from the manifold on which they lie. Some of the widely used
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fractal methods are Correlation dimension (Grassberger and Procaccia, 1983), the method
by Camastra and Vinciarelli (2002), and the method by Hein and Audibert (2005). The
later is among the best performing algorithms according to the recent review by (Campadelli
et al., 2015). Another fractal dimension estimation method is proposed by Hino et al. (2017),
which also considers de-biasing. Nevertheless, their results clearly show that there is still
significant bias in the estimation.

The main assumption of nearest neighbor based approaches is that close points are uni-
formly drawn from m-dimensional balls with sufficiently small radii, where m is the true
dimension of the data. Some of the most successful nearest neighbor based methods are
MLE (Levina and Bickel, 2005), MiNDg;, (Lombardi et al., 2011), and DANCo (Ceruti
et al., 2014). MiNDgy, (Lombardi et al., 2011) calculates the empirical probability den-
sity function of nearest neighbor distances. Then, it finds the distribution of the nearest
neighbor distances of points uniformly sampled from synthetic hyperspheres of known di-
mension. The idea of MiNDxgy, is to minimize the Kullback-Leibler divergence between
these two distributions to obtain the dimension estimate. DANCo (Ceruti et al., 2014)
is an extension of MiNDgr, and reduces the underestimation, which is the main downside
of MiNDky,. In addition to the probability density function of the distribution of neigh-
borhood distances, DANCo includes a second probability density function representing the
distribution of pairwise angles.

Finally, simplex based methods evaluate simplex volumes and then analyze their geo-
metric properties. One of the best performing methods in this category is Expected Simplex
Skewness (ESS) (Johnsson et al., 2015).

5.1. Improvements of MLE

Maximum Likelihood technique has several refined approaches. MacKay and Ghahramani
(2005) replace the arithmetic mean in the formulas of 7, and m by the harmonic mean.
The modified estimator shows improved performance for some problems.

Another extension of the MLE approach is presented in (Gupta and Thomas, 2010),
where authors apply regularized maximum likelihood to the neighborhood distances. They
compute the Kullback-Leibler divergence between the rate parameters of the Poisson process
in order to do regularization. The purpose is the reduction of bias in case if the number of
nearest neighbors is small.

In (Karbauskaite et al., 2011) the MLE method is performed with geodesic distances
instead of Euclidean distances, resulting in considerable improvement of the estimates for
some datasets. Additionally, Karbauskaite and Dzemyda (2015) suggest to use the formula
where MLE is calculated with radius instead of the number of neighbors &, since the bias
of MLE is high for both large and small values of k. However, this approach is based on
the assumption that the neighbors around each point are independent.

6. Conclusions

In this paper we have introduced a state-of-the-art intrinsic dimension estimator GeoMLE.
It was inspired by one of the most widely used intrinsic dimension estimation approaches
suggested by Levina and Bickel (2005). We extended the method by taking into consid-
eration geometric properties of unknown support and possible non-uniformity of the data
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sampling. In the result, we propose a data-driven correction which allows to overcome the
main drawbacks, which are underestimation of the true dimension in high dimensions and
sensitivity to nonuniform sampling.

We compare the performance of GeoMLE to other intrinsic dimension estimators in
the variety of synthetic and real-world problems. The comparison shows that GeoMLE
achieves state-of-the-art performance with DANCo (Ceruti et al., 2014) being its closest
competitor. Moreover, our approach is computationally faster than DANCo, while also
being more robust to noise.
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Appendix A. Proof of Proposition 1

The manifold X is generally nonlinear and density f(z) is non-constant. Let us estimate

9 P . . . . . .
W |r=¢ by considering the results obtained in (Yanovich, 2016, 2017). Firstly, we

replace the domain of integration with sphere S ¢(R) in tangent space T'x (X) and calculate
the error of this replacement. From Lemma 8 (Yanovich, 2016) we obtain

’P(m € Sg(R+AR)) —P(z € Sg(R+ AR)) — P(v € S4(R)) + P(v € S’X(R))‘

C C m—+1 ) ‘
< 8V finaz (R + AR)™2 — R™2) % = 8V, fmaxAR% (R + AR)IRm+1-
=0
C
< 8Vi frnas(m + 2)AR(R + AR)’”“%.

We replace the density f(X) with the density at a point f(x) and calculate the error of this
replacement

/ F(R)AV (X) - /S . f(w)dV(X)‘

Sz (@)

= {#(2) = p(@) + 1V,p(2) + £/29;Vip(X), X € Sx(R)}
_ / / (V) + /295 Vap(K0) (17 + 97 Ric (i, ) )dedy
Sa-1.J0
R R y
< /Aml/o tmvnp(m)dtdn+[4ml/o t" )2V Viap(X)dtdn

R R
T /Am1 /O "I (@) Rie g (7, 1) dtdn + /0 ™3 )2V 5V ip(X) Ric (i), 7)dtdn

< R™2V,,(Cp2 + RCp1Cric + R2C) 2CRic).

Am—1
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Similarly,

o @@= [ @ [ @@ f(x)dV(X)‘
Sx(R+AR) Sx(R+AR) Sx(R) Sx(R)

< VimCpa((R+ AR)™? — R™2) 4+ V,,Cp1CRic((R + AR)™ 3 — R™13)
+ VinCp2Cric((R + AR)™ T — Rm )
< VAR (R+ AR)™ ™ (Cpa(m +2) + (m + 3)(R + AR)Cp,1Cric + (m + 4)(R + AR)*Cp2Chic) -

Now, we find the error of the replacement of density with a constant in a small neigh-
borhood of x

P(z € Sx(R+ AR)) — P(z € Sx(R)) — meRm_lf(x)‘

_ |9 ) — " m=l iy
= |75 (/@Xm) f(2)dV(X) /,4m1/o " )dtdn)‘

R+AR
|[ T e ] < VG (R AR~ )
Am 1

< f(2)VimCricAR(R 4+ AR)™ " (m + 2).
By substituting all the obtained errors we find the estimator \(R) = ap(g;gi;x(m) |R=¢:
. Pz eSg(R+ AR)) — P(z € S¢(R))
lim
AR—0 AR

C
= ViymB™ L f(2) + 8Vin frmas (m + 2)Rm+1% + Vi R (Cpa(m +2)

+ (m + 3)RCp1Cric(m + 4) R*Cp2Chic) + f(2)VinCric R™ (m + 2)
= R" 'V, (mf(z) + R*(R)),

where

mCT
16(R)| < 8 fimaz(m + Q)T + Cpa(m +2) + (m + 3)RCp1 Cric
+ (m+ 4)R2przCRiC + f(2)CRric(m + 2).
A.1. Proof of Proposition 2

In order to consider geometric properties of a manifold, we plugin the obtained estimate

Amo(R) = R" Vi (mf () + R*6(R))
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in the log-likelihood function. We note that below we ignore the dependence of the term
d(R) on parameters m and 6.

R R
L= Ly(m,0) = /0 log A () AN (£) — /0 Mo (£t
R R R
— (m—l)/o log t dN(t)—Hong/O dN(t)+/0 log(mf(z) + t25(t))dN (t)

R R R
- mmf(:c)/o tm—ldt—vma(R)/o tm+1dt:(m—1)/o log tdN (t) + N(R) log Vi,

f 2
b [Clonlmste) + 20 0)an O v (160) + T,

which equals for small R;((Sg”) and m > 1

o [" o OB [ ani) — v () 1 BOE)
L=(m 1)/0 logtdN (t) + N(R)1 g‘/’”+mf(a:)/o t2dN(t) — VR <f( )+ m+2>
o R O(5(R)) .5 B m { ti R%(R)
= (m 1)/0 logtdN (t) + N(R) log Vy,, + @) R°N(R) — VR (f( )+ m+2>’

where ©(0(R)) means both above and below asymptotically bounded function by 6(R).
We maximize the likelihood with respect to 8 = log f(x) and m:

%’ = N(R) — V;uR™e? — R?’N(R)@(:l(jn =ef = ‘J/\:n(g% - (1 - R*©(6(R)));

oL (B v N(R) , . N(R)
N(R) R™2V, (V! (m+2) S(R) 5
— m — m 21— N
ViR V. Rm log R — §(R) (T 2)? T +m+ 27 (2) R3N(R)

" N(R) R™2V,, (Vi 1
= /0 logtdN () + = = = N(R)log R — 6(R)=——* (Vm +1— m+2> — O(6(R))R*N(R).

) 1 N(R,z) R -1
() = (N(R,x) ; tog T-(:@)

J

R™2V,m (V! 1 o &R
'(1”(]’” Cxtiaais (7 1) —007) (75 T >)

Finally, we obtain for small R: mpg(z) = (1 + @(5(R))R72
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