VARIATIONAL INFERENCE FROM RANKED SAMPLES WITH FEATURES

Appendix A. Proof of Lemma 1
We first use the standard quadratic bound (Jaakkola and Jordan, 1997; Bishop, 2006): for any y € R
and £ € R,

log(L+¢7¥) S AE)(y* — &) + (~y +)/2 + log(1 + ), (29)

which implies:
o(y) > o (£)eW=9/2- MO~ (30)

When A = {¢;, ¢}, we have:

OO 1 T
C =2~¢ A = = =0\, = 0
p( l’ ) S¢, + sz, 14 e—eT(%—“’Ez) ( )

31
@9 T T 2 g2 D
> o(¢)exp (@50~ €)/2 = AE) (@] ,0) -~ €7)).

To prove Eq. (13), we use Bouchard’s inequality (Bouchard, 2007), which states that for all y =

[y;]; € RE and all a € R:

K K

log(z e’*) <a+ Z log(1 + e¥~%). (32)

k=1 k=1

Combining Eq. (32) with Eq. (29), for every £ = [§;]i=1,.... k € Rf we get

K K
Z ek e H ((1 + e—gk)e(yk—a+§k)/2+)‘(£k)((yk_a)2_51%)>‘ (33)
k=1 k=1

Hence, the top query probability under the Plackett Luce model satisfies:

exp(z/,6)
plc=qld) = :
ZjeAl exp(az?@)
O exp(z] 0)
T o] <(1 4 efgj)e(wfefam)/2+A<5j><<mfefa>2ffs§)) (34)
jEA
= exp(zL0 — a) H (U(gj)e(*w;‘-reJraffj)/2%(5;')((96?9*04)27&?))
jeA
(|
Appendix B. Proof of Lemma 2
The posterior ¢(@) has the Gaussian form, i.e.:
0(6) = e bOwS 0 (35)
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where B, = (2m)%2|S|"/2, u € R? and § € R?*? and the ELBO L(q) satisfies:
(a po(6 exp(67z,,)
L) YR [1 ] +E [ log !
@ «®) q(0) € ; > jea, exp(0Tx;)
0—p)'S1(6— 0 — Ts-1e— 1 S

27 |Sol
{Zl exp(67a,,) ]

= ]EA exp(0Tx;)

By Lemma 1, exp(67z,)/ exp(8T z;) is bounded by @, and Lemma 2 follows. O

JEA

Appendix C. Proof of Lemma 3

The variational lower bound (14) is an expectation of a quadratic function of 8, and we can obtain
the corresponding variational parameters S, p by identifying the linear and quadratic terms in 8. To
maximize the lower bound in Eq. (14), the quadratic term satisfies:

07519 = 075,10 + 0T<22A(g§ Toaal 42> SN )z )9, (37)
leLo lELS2jEA;
and the linear term satisfies:
_ _ L ¢ k j
0TS 'y = 9T501u0+9T<Z Ly (xcl + 3 2ME)a 23))). (38)
leLo l€Lso JEA

As the Eq. (37) and Eq. (38) hold for any 8, Lemma 3 follows.

O
Appendix D. Proof of Lemma 4
From (14), objective of (16b) is separable w.r.t. ¢ and &, ¢, and
Cl(k+1) = argmax E,[Q;], [ € Lo, (39)

G

where (); is given by (15). Hence, the optimal (; is a stationary point:

¢

As X({;) > 0, stationary points satisfy Eq6) [(BTJ:CZ 751)2] = CZQ , which yields (19) for (; > 0. O

<Cz>< 0 [(0" 2 )] —c?) =0, [ € Ly, (40)

Appendix E. Proof of Lemma 5
By (15), we have that:

l_élj
2

fl& o) = —ar+ Y (10g0(5lj) +

JEA

~ M&) (B (@] 0-c0)?) = &) ). @)
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This is a quadratic function with respect to ;. The solution for Eq. (21a) is a stationary point, so we
have:

ofr _ (mu—2)

ooy~ 2 22)\(581))04 +2) A&))Eyo)le] 6] =0, 1 € Lo, (42)
JEA JEA

which implies Eq. (22). For &;, the solution for Eq. (21b) should also be a stationary point:

8 / n .
6751? ==X (&) (Eq(e) (07 x; — Oél( H))Q] - 512]> =0,l¢€Lsa,j €A, (43)
J

As X(&;) > 0, stationary points satisfy E,g) [(07 x;; — al(n+1))2] = §l2j’ which implies (23) for
&; = 0. U

Appendix F. Proof of Lemma 6

The derivation follows the same argument as in Jaakkola and Jordan (1997). Briefly, to see why
Eq. (25) holds, note that in step (16a), covariance .S and mean g are updated. Subsequently, L
defined as in Eq. (14) is the sum of two terms: the KL divergence between two Gaussian distributions
and a normalization factor. The optimum in step (16a) therefore occurs when the two Gaussian
distributions are identical. Because of this, we can omit all quadratic and linear terms from (14)
when computing (25): we only need to calculate the normalization factor by adding the constant
items in Eq. (14).
In more details, quantity @); defined in Eq. (15) can be written as:

Q=Q+Q +Q (44)
where Q;, Q;/ and @, are defined as:
, falo+ ¥ [ alo/2+2aM(&) («0)] L€ Lo,
Q= JEA (45a)
:cCTmO/Z l e Lo,
. [ X M@ (=T6) L€ Lo,
Q =4 J€A4 (45b)
—AMG)(x,5,0)%, l €Ly,
_ —a;+ )] {10g0(flj) - O‘l;fu — &) (of — ffj)}, L€ Lo,
Q= = (45¢)
log o (G1) = Gi/2 + MG)EE, l € Lo

After step (16a), the following equations hold:

Eqe) [ZQE} + Eq(o) [ —-0"S 'ut06"S; luo] =0, (463)
leL
Ey0) [ZQ}/] +Eq0) [0T5—19/2 —675;"6, /2] — 0, (46b)
leL
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which are equivalent to Eq. (38) and Eq. (37). Thus, Eq. (14) can be written as:

S! 'S 'p pl Sy o
= 71 o T E,
_ 47)
_ZQ X 71 ’S| TS_IN 3 Sg o
! %15, y 2 2
leL
This is equivalent to Eq. (25). g
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