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Abstract

Recently, anchor-based regression methods have been applied to challenging regression
problems, e.g., object detection and distance estimation, and greatly improved those per-
formances. The key idea of anchor-based regression is to solve the regression of the residuals
between selected anchors and original target variable, where the variance is expected to be
smaller. However, similar to an ordinary regression method, the anchor-based regression
could face difficulty on a fine-grained regression and ill-posed problems where the residual
variables tend to be too small and complicated to accurately predict. To overcome these
problems on the anchor-based regression, we propose to introduce an adaptive residual
encoding in which the too small residual is magnified, and the too-large residual is trun-
cated using adaptively tuned sigmoidal function. Our proposed method, called ATR-Nets
(Adaptive Truncated Residual-Networks) with an end-to-end architecture could control the
range of the target residual to be fitted based on the regression performance, Through ex-
periments with toy-data and the system identification for earthquake asperity models, we
show the effectiveness of our proposed method.
Keywords: neural network, anchor based regression, residual encoding and decoding,
system identification

1. Introduction

Recently, anchor-based regression in Ren et al. (2015); Redmon and Farhadi (2017); Hachiya
et al. (2018) have been applied to challenging regression problems, e.g., object detection and
distance estimation. In these regression problems, the variance of target variables tend to
be prohibitively large due to the large variation of the combination of target variables; for
example, the combination of row-column coordinates, width, and height of bounding boxes
is tremendously large. In the anchor-based regression, to overcome this large variance
problem, the regression problem is reformulated to the combination of the anchor-selection
and the residual regression.

More specifically, an ordinary regression method is performed to minimize the squared
loss of Lreg(θ) as

min
θ
Lreg(θ) ≡ Ex,y

[(
y − fθ(x)

)2]
(1)
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where x ∈ Rdx is an input vector following independently and identical distribution, i.e.,

x
i.i.d∼ P (x) and y is an output scalar 1 of the target function f(x), i.e., y = f(x), and fθ(x)

is a model of the target function, e.g., neural network, with a training parameter vector θ.
Meanwhile, the anchor-based method is performed to minimize the squared residual loss

of Lres(θ) as

min
θ
Lres(θ) ≡ Ex,y

[(
y − ŷc −Rθ(x, yc)

)2]
(2)

where ŷc is a selected candidate for the target output y and Rθ(·) is a residual regressor,
respectively. This candidate ŷc is called anchor. That is, the goal of anchor-based regression
is to accurately predict the residual r defined as

r ≡ y − ŷc. (3)

With a well-designed anchor, ŷc, the variation of the residual r would become smaller than
the one of the original target output y and thus the anchor-based regression would be
expected to perform well.

However, similarly to an ordinary regression, the anchor-based regression faces difficul-
ties as follows:

1. when the regression problem is ill-posed where multiple outputs y exist for a specific
input x, e.g., due to noises. Training the residual regression Rθ(·) could become also
unstable since different residuals r would exist for a specific anchor and result in a
large variance even in residuals

2. for a fine-grained regression problem where the target variable y changes slightly e.g,
in the third decimal place, training Rθ(·) becomes difficult since the residual r and its
resulting gradient would be too small to update parameters in a real-time

In this paper, to overcome these difficulties, we propose to adaptively encode the residual
r into the range of [0, 1] using a sigmoidal function rat = σα(r) = 1

1+exp(αr) where the
steepness parameter α of the function is optimized based on the performance of regression.
We have following two advantages:

1. large residuals caused by ill-posed problem, e.g., due to noises affecting the regression
performance, would be compromised to ignore, e.g., rat = σα=10(r ≤ −3) ≈ 0 and
σα=10(r ≥ 3) ≈ 1.

2. Small residual changes, e.g., in the third decimal place are magnified into the change
in [0, 1], e.g., σα=10(r = 0.01) = 0.525 and σα=10(r = 0.02) = 0.55.

We evaluate our proposed method, ATR-Nets, with a toy problem and a system iden-
tification problem. The toy problem provides artificial ill-posed problems by intentionally
adding noises, and we analyze the robustness of our proposed method against it. The system
identification problem is related to the simulation of Nankai trough earthquakes in which
the asperity between oceanic plates on the west side of Japan is mathematically modeled

1. For simplicity, we use a scalar value for the output of the target function f(x)—we can easily extend it
to be a vector value.

869



Hachiya Yamamoto Hirahara Ueda

in Hori et al. (2004); Hori (2006); Hyodo et al. (2016). It is required to accurately estimate
the asperity parameters to reproduce the historical sequence of earthquakes in simulation
to forecast next megaquakes. This system identification problem requires the fine-grained
regression and we show the effectiveness of our proposed method.

2. Related Works

2.1. Anchor-based regression in object detection

Anchor-based regression has greatly advanced the performance of object detection tasks,
e.g., in Faster R-CNN by Ren et al. (2015) and Yolov2 by Redmon and Farhadi (2017).
In Faster R-CNN, a variety of candidates for bounding boxes (BBs) with different shapes
and sizes are manually prepared. The anchors of BBs, 4 dimensional vectors of row-column
coordinates, width, and height, are given a score on how likely these contain target objects
in region proposal network and then following neural networks predict the residual between
highly scored anchors and the ground-truth BBs. Meanwhile, in Yolov2, the anchors of
BBs have generated automatically though k-means clustering, and then the confidence and
residual of each anchor are estimated at the same time through a single convolutional
neural network. The anchor-based regression for object detection is further extended to the
distance estimation in Hachiya et al. (2018) using 2.5D anchors where the depth candidate,
the distance from the camera, is added to 2D anchors for BBs, i.e., 5 dimensional vectors.

Overall, many studies are showing anchor-based regression is a promising approach for
object detection and 3D localization from images. However, as discussed in Sec. 1, the
anchor-based regression tends to fail in the ill-posed regression problem and fine-grained
problem.

2.2. Piece-wise Linear Regression Method

The piece-wise linear model has been long studied to solve a nonlinear fitting problem
in Dantzig (1963); Choi and Farrell (2000); Trecate and Muselli (2002). Recently, piece-
wise linear method neural networks are shown to reduce the variance of target variables
by dividing a nonlinear model into several linear models in Bagnall et al. (2015); Ji et al.
(2018). For example, the target variable y could be approximated by the sum of linear
sub-functions ŷ = Σn

i=1wifi(xi), where wi is the weight for i-th sub-function fi(xi) and the
domain x ∈ Rdx assumes to be known. However, as discussed in Sec. 1, even in a piece-wise
linear model which has a similar concept with anchor-based regression, tends to fail in the
ill-posed regression problem and fine-grained problem.

3. Proposed Method: ATR-Nets

To overcome two problems: ill-posed and fine-grained, in this section, we firstly define a
generalized anchor-based regression and secondly extend it to adaptively truncated residual-
networks (ATR-Nets).
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Figure 1: Diagram of the structure of a generalized anchor-based regression consisting of
anchor-selector Cφ(x) ∈ Rdc and residual regressor Rθ(x, ŷc) ∈ R. CE and MSE
indicate the cross-entropy loss Lcls in Eq. 6. the mean squared error Lres in Eq. 2.

3.1. Generalized anchor-based regression

Fig. 1 depicts the structure of a generalized anchor-based regression. As the figure shows our
generalized anchor-based regression consists of two-networks, anchor selector Cφ(x) ∈ Rdc
and residual regressor Rθ(x, ŷc) ∈ R. More specifically, anchors here are designed to be the
center values of intervals of the target variable y defined as

yc = ymin + (c− 1)β +
β

2
(4)

where yc is the center value of the c-th interval, ymin is the minimum value of the target
variable y, and β is a hyper parameter representing the fixed width of the interval. β is
usually set to a divisible number of ymax − ymin where ymax is the maximum value of y.
Thus, the number of intervals is dc = ymax−ymin

β .
Given an input vector x, the anchor-selector Cφ(x) computes the scores of dc intervals

and the interval ĉ with the maximum score is selected as

ĉ = argmax
c

Cφ(x)[c] (5)

where Cφ(x)[c] indicates the c-th element of the output vector of Cφ(x). Then, the anchor
ŷc of the target output y is computed using Eq. 4. Cφ(x) is trained so as to minimize the
cross-entropy loss as

min
φ

(φ)Lcls ≡ Ex,c

[
−

dc∑
c=1

p(c|x) log(Cφ(x)[c])
]

(6)

Given the anchor ŷc, the residual regressor Rθ(x, ŷc) in Eq. 2 predicts r̂ for the ground-truth
residual r defined in Eq. 3.
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Figure 2: Diagram of the process of residual encoding. Vertical (in blue) and horizontal
(in green) axes correspond to the output y and encoded residual rat respectively.
The red point at y-axis indicates the selected anchor ŷc and yellow and orange
points correspond to two different ground-truth targets with smaller residual r1

and with bigger residual r2 respectively. The steepness parameter in this example
is set to α = 10.

3.2. Adaptive encoding of residuals

We extend the generalized anchor-based regression in Fig. 1 by introducing an adaptive
encoding of residual r to alleviate the influence of multiple large residuals caused by the
ill-posed problem and to magnify the fine-grained residuals as discussed in section 1. To
this purpose, we encode the residual using a sigmoidal function σα(r) as follows:

rat = σα(r) =
1

1 + exp (−αr)
(7)

where α is the steepness parameter and rat is the encoded residual.
To more visually explain, Fig. 2 depicts the diagram of the process of residual encoding.

In this figure, a sigmoidal function σα(r) is located at the selected anchor ŷc indicated by
the red dot on the vertical output y axis. For a ground-truth value y1 which is by accident
close to the anchor ŷc, the small residual, e.g., r1 = 0.01 is encoded to a magnified residual
value, e.g., r1at = 0.525 where the third decimal change is magnified to the second one and
thus the residual regression by Rθ(x, ŷc) could be alleviated. Meanwhile, for a ground-truth
value y2 which is far from the anchor ŷc, the large residual r2 = 3 is encoded to truncated
residual value, e.g., r2at ≈ 1. That is, the influence of the large residual r2 in the training
Rθ(x, ŷc) could be limited. The steepness parameter α controls the range of the training
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Figure 3: Diagram of structure of proposed method, adaptive truncated residual-networks
(ATR-Nets) consisting of anchor-selector Cφ(x), adaptive residual encoder σα(r),
residual regressor Rθ(x, ŷc) and residual decoder σ−1α (r̂at). CE indicates the cross-
entropy loss Lcls(φ) in Eq. 6. MSE1 and MSE2 indicate the mean squared error
for the encoded residual Lenc(θ) and the output Ly(φ, θ, α) in Eq. 10.

target of Rθ(x, ŷc). That is, the smaller α is, the more gradual slope of sigmoidal function
in Fig. 2—the range of the output y encoded rat in [0, 1] becomes wider and vice-versa.

After the adaptvely encoded residual r̂at is predicted by Rθ(x, ŷc), it is decoded back to
the original residual r using decode function σ−1α (r̂at) defined as

r = σ−1α (r̂at) = − 1

α
log
( 1

r̂at
− 1
)
. (8)

3.3. Architecture of ATR-Nets

Our proposed method, called adaptive truncated residual-networks (ATR-Nets) introduces
adaptive residual-encoder σα(r) into anchor-based regression in Fig. 1. Fig. 3 depicts the
entire structure of ATR-Nets, which consists of anchor-selector Cφ(x), adaptive-truncator
σα(r), residual regressor Rθ(x, ŷc) and decoder σ−1α (rat). To optimize the entire networks
with adaptive truncation, we minimize two losses: the cross-entropy loss Lcls(φ), i.e., CE
in Fig. 3 and the following encoded residual loss Lenc(θ), i.e., MSE1 in Fig. 3:

min
θ
Lenc(θ) ≡ Ex,y

[(
Rθ(x, yc)− σα(r)

)2]
. (9)

The final output of the ATR-Nets is ŷ = ŷc + σ−1α (r̂at) and its mean squared error, i.e.,
MSE2 in Fig. 3 is defined as follows:

Ly(φ, θ, α) ≡ Ex,y

[(
y − ŷc − σ−1α (r̂at)

)2]
. (10)
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Table 1: Detailed information of layers of neural networks. dx is the dimension of input
x, dh is the number of nodes in fully connected (fc) layers, dc is the number of
intervals of the output y splitted by the width β and L is number of layers.

Table 2: Layers of Cφ(x).

Layer Name Num. of channels activation

input dx -
fc1 dh relu
fc2 dh relu
...

...
...

fcL dc -

Table 3: Layers of Rθ(x, ŷc).
Layer Name Num. of channels activation

input dx + dc -
fc1 dh relu
fc2 dh relu
...

...
...

fcL 1 sigmoid

We tune the steepness parameter α adaptively in the process of the training of the entire
networks based on the final output error Ly as

α ∝ Ly(φ, θ, α) (11)

where the larger final error leads to a steep sigmoidal function, i.e., large α, like in Fig. 2 and
active magnification and truncation of residuals—even small residuals would be encoded to
[0, 1]. In this situation, the contribution of the residual regressor Rθ(θ) becomes low and
the entire system of ATR-Nets relies on the anchor ŷc selected by Cφ(φ).

Meanwhile, the smaller final error leads to a gradual sigmoidal function, i.e., small α and
inactive magnification and truncation of residuals—even large residuals would be encoded
to [0, 1]. In this situation, the residual regressor Rθ(θ) actively corrects the residual of the
anchor ŷc.

Overall, our proposed ATR-Nets, adaptively tunes the steepness parameter α based on
the final training error Ly and controls the contribution of the residual regressor; in other
words, controls the combination between classifier (anchor-selector) and regressor (residual
regressor).

3.4. Training of ATR-Nets

We design L-layer fully-connected (fc) neural networks for both Cφ(x) and Rθ(x, ŷc) as
shown in Table 2 and 3.

To train the neural networks, we prepare training data Dtr as follows:

Dtr =
{
xn, yn, cn}Nn=1 (12)
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Figure 4: An example of toy-data, 3-dimensional spiral staircase data, when the number of
rolling m = 2. The horizontal axes x1 and x2 are input variables and the vertical
axis y is the output variable.

where N is the number of training data, xn, yn and cn are the n-th input vector, target
output and β-width interval where yn is located. We also prepare test data Dte which are
not overlapped to the training data Dtr for the evaluation purpose.

4. Experimental evaluation on toy data

To evaluate our proposed method, ATR-Nets on the ill-posed problems discussed in Section 1
in comparison with ordinary regression in Eq. 1 and anchor-based regression in Fig. 1, we
use artificial toy data, 3-dimensional spiral staircase data, as shown in Fig. 4.

4.1. Setting of toydata

The toy data in Fig. 4 are generated as follows:

yn
i.i.d∼ U(ymin, ymax)

xn1 = sin(m× yn) +
1

log(yn)

xn2 = cos(m× yn) + log(yn) (13)

where (xn1 , x
n
2 ) are the n-th two dimensional input vector, yn is the n-th output, U(ymin =

2, ymax = 6) is the uniform distribution in the range [ymin, ymax] and m = 2 is the number
of rolling of spiral staircase.
We randomly generated 10000 data {xn1 , xn2 , yn, cn} using Eq. 13 and randomly select 80%
of the data as training data Dtr and the rest as test data Dte. We add random noise to the
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output of yn in the training data Dtr as

yn = yn +N (0, σ2), yn ∈ Dtr (14)

where σ is the manually tuned standard deviation. We randomly split training data Dtr

into 10-minibatch each size of which is 800 every epoch in the training process.

4.2. Evaluation on toydata

We compare three methods: ordinary regression, anchor-based regression and our proposed
ATR-Nets with the number of layers L = 3, the dimension of input dx = 2, and the
number of nodes dh = 128. We train all methods using the same training data Dtr with
different noise levels σ ∈ {0.0, 1.0, 5.0} for 50000 iterations and evaluate using test data
Dte. As for anchor-based regression and ATR-Nets, we prepare two different numbers of
intervals dc ∈ {10, 20} corresponding width-parameters β ∈ {0.4, 0.2}. As for the steepness

parameter of ATR-Nets, we updated every 500 iteration using the final error L̂y computed
using a corresponding minibatch training data as

α̂t+1 = αbase × L̂y(φt, θt, αt) (15)

where t indicates the iteration number and αbase is a magnification ratio set at 1 or 10.
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Figure 5: Examples of results by ordinary regression
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Figure 6: Examples of results by anchor-based regression with dc = 20

Tab. 4 depicts the mean squared error computed using test data Dte for three methods
in three cases that noise levels in the training data Dtr are changed, σ ∈ {0.0, 1.0, 5.0}. The
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Figure 7: Example of results of ATR-Nets with dc = 20 and αbase = 10

Table 4: Mean squared test error Ly (variance) on toy data for three methods: ordinary
regression, anchor-based regression and our proposed method, ATR-Nets. The
errors in bold indicate the minimum error.

noise level σ = 0.0 σ = 1.0 σ = 5.0

ordinary
regression 0.0141 (0.0404) 0.0178 (0.0225) 0.4942 (0.6251)

anchor-based
dc = 10 0.0248 (0.0131) 0.0252 (0.0671) 0.4868 (1.2745)

anchor-based
dc = 20 0.0036 (0.0178) 0.0245 (0.0575) 0.4595 (0.9096)

ATR-Nets
dc = 10, αbase = 10

0.0173 (0.0920)
α = 0.10

0.0172 (0.0541)
α = 9.86

0.0171 (0.0274)
α = 232.7

ATR-Nets
dc = 20, αbase = 1

0.0105 (0.0533)
α = 0.10

0.0230 (0.0647)
α = 0.96

0.0068 (0.0233)
α = 23.28

ATR-Nets
dc = 20, αbase = 10

0.0015 (0.0721)
α = 0.10

0.0133 (0.0683)
α = 10.34

0.0067 (0.0235)
α = 232.9

table shows that as the noise level changes, the performance of ordinary and anchor-based
regression methods also drastically change. Especially, in the case that noise level is high,
e.g., σ = 5.0, the error of these two methods become prohibitively large.

Fig. 5, 6 and 7 depict examples of predicts of three methods for test data Dte. Fig. 5
shows the ordinary regression surfers ill-posed problem even without noise, σ = 0.0 where
spiral stairs crosses at (x1 = 0.5, x2 = 0.5) (see the left figure in Fig. 5 and thus multiple
outputs y exists. Even if it does not affect much the numerical error in Tab. 4, this is
a critical issue in a real-world application. In addition, both ordinary and anchor-based
regression methods have unstable predictions in large noises, i.e., σ ∈ {1.0, 5.0} due to the
influence of ill-posed situation caused by training noises.

Meanwhile, our proposed method, ATR-Nets, shows stable and accurate performance
for all noise levels as shown in Fig. 7 and Tab. 4, indicating that adaptive encoding of
residuals well controls the balance of influences between anchor-selector Cφ(φ) and residual
regressor Rθ(θ).
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Figure 8: Historical records of megaquakes in Nankai Trough.

5. Application on system identification

We apply our proposed method, ATR-Nets on the fine-grained regression problem discussed
in Section 1 for the system identification of the Nankai trough plate model.

5.1. Nankai Trough earthquake simulation

In southwest Japan, the Philippine Sea plate is subducting along the Nankai Trough,
whereby megaquakes have repeatedly occurred, causing great disasters over southwest
Japan. Fig. 8 is the sequence of megaquakes recorded in Nankai Trough consisting of three
regions Nankai, Tonankai and Tokai over 1400 years. Based on friction laws between plates
and interaction between cells, the megaquake cycles have been simulated to reproduce the
historical record toward forecasting the occurrence of the next Nankai megaquake in Hori
et al. (2004); Hori (2006); Kodaira et al. (2006); Nakata et al. (2014); Hyodo et al. (2016).

However, the Nankai megaquakes have occurred at irregular intervals with large varia-
tions and even the latest studies have not successfully reproduced such irregular recurrence
intervals in Hyodo et al. (2016). In these studies, researchers have so far manually adjusted
the frictional parameters controlling the recurrence intervals to reproduce such complex
megaquake cycles in the simulator, which seems to have some limitations.

5.2. System identification using machine learning

In this study, we apply a machine learning approach to estimate the frictional parameters to
reproduce the sequence of megaquakes. Firstly, let us express the megaquake cycle simulator
by a function F (·) as

{Vi}Ci=1 = F
(
{ai, bi, Li}Ci=1

)
(16)

where Vi is the generated sequence of slip velocities at cell i, C is the number of cells on
the plate model, ai, bi and Li are the friction parameters respectively. Then, we consider
the inverse function F−1(·) as

{ai, bi, Li}Ci=1 = F−1
(
{Vi}Ci=1

)
(17)

We approximate this inverse function using machine learning, e.g., neural networks.
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Figure 9: Feature extraction from time-series plate slip velocities.

5.3. Experimental setting used training data

In usual earthquake cycle simulations, the plate interface is divided into fine cells with the
sizes less than critical nucleation sizes (Rice, 1993); however, it demands heavy computa-
tional costs and resources. Therefore, instead, as a developing stage of the method, we use
a discrete cell model, which consists of 3 discrete cells corresponding to the fault rupture
segments on the plate interface as Nankai, Tonankai and Tokai in Fig. 8. In addition, we
consider only a frictional parameter bi for each cell i, i.e., b1, b2 and b3, and keeping other
parameters fixed.

5.4. Data generation and feature extraction

We use 3-cell simulator of the Nankai megaquakes written in C-language and running on
Windows workstation and generate pairs of the parameters and slip velocity as

{
(
{bni }Ci=1, {V n

i }Ci=1

)
}Nn=1 (18)

Every each sample, one of b1, b2 and b3 is incremented by 0.00005 and the sampling range
of parameters are [0.0125, 0.0170], [0.0120, 0.0165] and [0.0120, 0.0165] respectively—as a
result, we generated N = 753571 samples. Then, we randomly split into N = 678214
training data Dtr and N = 75357 test data Dte. Let us note that we use the same training
and test data for all methods for a fair comparison.

As Fig. 9 depicts, a sequence of slip velocities V n
i in each cell are converted to its

frequency spectrum by fast Fourier transform (FFT), and then the maximum amplitude of
FFT every 25Hz window up to 250(Hz). That is, 10 dimensional vector xni is extracted from
each cell and then vectors extracted from three cells are concatenated as input vector xn, i.e.,
dx = 30. In addition, the output variable here is 3-dimensional vector, i.e., y = (b1, b2, b3) .

5.5. Evaluation on system identification

We compare three methods: ordinary regression, anchor-based regression and our proposed
method, ATR-Nets.

We compare three methods, ordinary regression, anchor-based method and the proposed
method, ATR-Nets. We use dc = 5 layers on regression networks, e.g., Rθ(x, ŷc) and fθ(x),
and dc = 4 layers on anchor-selector Cφ(x). Besides, for simplicity, we set a static value for
α = 20 for the residual encoder.
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Figure 10: Ground-truth (horizontal) vs. predicted (vertical) friction values for test data
Dte at each cell on Nankai megaquakes data. From the left, each column
of graphs corresponds to the prediction by ordinary regression, anchor-based
method with dc = 20 and ATR-Nets with dc = 20, respectively. For the clear
visualization, only 100 data in Dte are plotted.

Table 5: Mean squared error and mean variance for the test data Dte on the Nankai
megaquakes data for three methods: ordinary regression, anchor-based regression
and our proposed method, ATR-Nets. The errors in bold indicate the best.

Method Mean squared error (Mean variance)

ordinary
regression 4.96× 10−7(1.48× 10−13)

anchor-based
dc = 20 6.30× 10−7(2.36× 10−13)

ATR-Nets
dc = 20 4.29× 10−7 (1.45× 10−13)

Tab. 5 depicts the mean-squared error and mean variance for the predicted 3-dimensional
output ŷ, and Fig. 10 depicts the ground-truth (horizontal axis) vs. the predicted (vertical
axis) frictional value b1, b2 and b3 for each cell and method.

As Tab. 10 shows ATR-Nets provides good performances similarly with the toy data
sets.
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6. Conclusion

In this paper, firstly we provided a general framework of anchor-based regression consisting
of anchor-selector and residual regressor, which is expected to mitigate the regression prob-
lem with a large variance in the target variable. However, the anchor-based regression has
two potential issues on ill-posed and fine-grained regression problems. To overcome these
issues, we extended the anchor-based regression by introducing adaptive residual encoding
and decoding, to adaptively magnify and truncate the residuals to be regressed based on
the performance of the entire regression. Through experiments with toy data and system
identification task of the earthquake plate models, we show the effectiveness of our proposed
method, ATR-Nets.
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