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Abstract

We introduce Active Change-Point Detection (ACPD), a novel active learning problem for
efficient change-point detection in situations where the cost of data acquisition is expensive.
At each round of ACPD, the task is to adaptively determine the next input, in order to
detect the change-point in a black-box expensive-to-evaluate function, with as few eval-
uations as possible. We propose a novel framework that can be generalized for different
types of data and change-points, by utilizing an existing change-point detection method to
compute change scores and a Bayesian optimization method to determine the next input.
We demonstrate the efficiency of our proposed framework in different settings of datasets
and change-points, using synthetic data and real-world data, such as material science data
and seafloor depth data.

Keywords: change-point detection, Bayesian optimization

1. Introduction

The problem of detecting abrupt changes in data is called change-point detection (Basseville
and Nikiforov, 1993; Gustafsson, 2000). It has been enthusiastically studied in data mining
and industry, covering a broad range of data types, such as sensor data (Idé et al., 2016)
and dynamic network data (Wang et al., 2017), among others. Its applications include, for
example, fault detection (Kawahara et al., 2007), network-intrusion detection (Yamanishi
et al., 2004), and trend change detection (Liu et al., 2013).

Typical change-point detection problems assume that parts of time series data are in-
crementally observed in an online manner, or that the entire data is given at once in a batch
manner. In both settings, they passively observe the data and do not consider the cost of
data acquisition. However, when the data acquisition cost is high and unignorable, we need
to choose informative data points in an interactive manner for saving the costs.

One motivating example is found in material science. Imagine a physical experiment
that attempts to detect a phase transition temperature of a material (Figures 1, 2 and 3).
Phase transitions are sudden changes in physical properties (e.g., density, energy, electric
resistance, and specific heat) and phases (e.g., gel-sol, solid-liquid, and nematic-isotropic)

© 2019 S. Hayashi, Y. Kawahara & H. Kashima.



Hayashi Kawahara Kashima

at particular temperatures. Finding phase transition temperatures is crucial for developing
new materials. They are usually examined via real experiments and simulations, wherein we
set a material at a particular temperature and observe its physical property by consuming
some financial or temporal resources. Another example is found in geoscience. Studying
the geography of seafloor which has rugged landscapes (Figure 8(a)) is important for un-
derstanding ocean currents and other phenomena. Measuring the depth of the sea requires
considerable amount of resources, and we want to reduce the number of locations to make
measurements. In both of the examples, it is desirable to save data acquisition costs by in-
teractively choosing the conditions or locations of measurements based on past observations,
rather than measuring randomly or thoroughly.

In this paper, we consider Active Change-Point Detection (ACPD), a novel active learn-
ing problem of change-point detection with data acquisition cost. The goal is to detect a
change-point in a black-box expensive-to-evaluate target function; however, unlike tradi-
tional change-point detection problems, we actively obtain data by querying the target
function for its outputs. Therefore, we aim to determine an effective sequence of input
queries to find the change-point using as few queries as possible. In the material science
example, the input and the output correspond to the temperature and the physical prop-
erty, respectively. In the geography example, they correspond to the location (longitude
and latitude) and the depth. Note that ACPD does not consider the input is time.

We propose a simple and general solution to ACPD, which does not rely on the under-
lying data structures or the definitions of change-points. Our solution is a meta-algorithm
based on an idea that we regard ACPD as black-box optimization of change scores. It
reuses an existing change-point detection algorithm to compute change scores from data. It
also employs a Bayesian optimization technique to determine the next input to find where
the change score is high. Our empirical results using synthetic datasets and real-world
datasets, such as material science data and seafloor depth data of different types of data
and change-points, demonstrate the efficiency of the proposed framework.

The main contributions of this paper are summarized as follows:

• Proposal of ACPD, a novel active learning problem for efficient change-point detec-
tion in situations where the cost of data acquisition is expensive so that we need to
determine the next input to be evaluated in an interactive manner.

• A general solution to the ACPD problem, which is a meta-algorithm exploiting an
existing change detection method and a Bayesian optimization technique, and is ap-
plicable to a variety types of data and change-points.

• Empirical supports for ACPD framework using synthetic data sets and real-world
data sets.

2. Problem Settings

In this section, we briefly describe the problem setting of standard offline change-point
detection and its typical approach. Then, we state the problem setting of active change-
point detection.
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Figure 1: First-order phase transition from
solid to liquid state at 143.15
and randomly-sampled 100 obser-
vations.
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Figure 2: Second-order phase transition
from gel to sol at 143.15 and
randomly-sampled 100 observa-
tions.
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Figure 3: Nematic-isotropic phase tran-
sition of the CBO11O mate-
rial at 426.9 [K] (Sebastián
et al., 2011) and randomly-
sampled 100 observations.
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Figure 4: An overview of the active change-point
detection procedure. At every iter-
ation, an ACPD algorithm queries a
black-box target function for an input,
observes a noisy output, and updates
its internal models to determine the
next query.

2.1. Change-Point Detection

There exist a variety of problem settings of change-point detection up to definitions of data
and change-points. For simplicity, we review the standard (passive) problem setting of
1-dimensional change-point detection with a change-point in an offline setting (Basseville
and Nikiforov, 1993; Gijbels et al., 1999). Suppose we have N observations D = (X,Y ) =
{(xi, yi)}Ni=1, where the input xi ∈ X (we assume X is an interval in R) and the output
yi ∈ R are associated by an unknown function f(yi|xi, θ), which is parameterized by a
piecewise-constant parameter θ. Here, we define a change-point xcp ∈ X as the point where
the model parameter “suddenly” changes from θ = θ1 to θ = θ2. The typical settings deal
with temporal data, that is, xi corresponds to a time index, which we do not assume in this
paper. For example, xi corresponds to a temperature value, yi corresponds to the measured
value of a physical property, and their relationship is governed by some physical law (with
some noise) f (Figures 1, 2 and 3).

In change-point detection problems, the goal is to find the change-point xcp ∈ X. A
typical approach is to model a change score function sD : X → R, which quantifies how f
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“changes” over the inputs. The change-point is estimated as a point that maximizes the
change score:

x̂cp = arg max
x∈X

sD(x). (1)

The change score function is designed in such a way that its scores reflect the type of
change-points we want to detect. A possible choice is the maximum likelihood function,
which is given as

sD(x) = max
θ1,θ2

ln

 ∏
j|xj<x

P (yj | xj , θ1)
∏

k|x≤xk

P (yk | xk, θ2)

. (2)

Typically, additive Gaussian noise is assumed: P (y | x, θ) = N (y | f(x), σ2). The change
score is computed according to how much the model with the parameters fits the data.

2.2. Active Change-Point Detection (ACPD) Problem

In contrast to the passive change-point detection problem, where we have no control over
the inputs to the target system f , the ACPD problem allows us to interact with the target
system by actively selecting the inputs to be investigated.

The goal of ACPD is to estimate the change-point xcp by making queries to the target
function f in an iterative manner. At each iteration, we first determine the next input
query based on the past observations, we give an input query x ∈ X to the target function,
and then observe the corresponding output y. We usually have a limited budget B, which
is the maximum number of queries we can make in total; therefore, an ACPD algorithm is
required to suggest an effective sequence of input queries to find the change-point based on
the past observations. An overview of the ACPD procedure is illustrated in Figure 4.

Note that, for simplicity, we assume one-dimensional continuous input and output vari-
ables, and there exists only one change-point as a point with a sudden change in our problem
setting; however, the problem setting can be extended to other types of inputs, outputs, and
change-points, for example, multi-dimensional inputs, outputs and multiple change-point
cases, which we will show in the experimental part.

3. Proposed Method

There are many possible definitions of change-points and change score functions depending
on the target applications. Therefore, instead of designing a solution specialized for a
particular choice of data and change-points, we propose Meta-ACPD, a simple and general
ACPD method, which is applicable to a wide variety of data and change-points.

Our key idea is to see the ACPD problem as a black-box optimization problem of a
change score function. As a summary of the meta-algorithm, we utilize an existing change-
point detection method to compute change scores and then perform Bayesian optimiza-
tion (Mockus et al., 1978; Snoek et al., 2012) on the change scores to decide the next input
that would maximize the change score. At each iteration, we use a change-point detection
method to obtain the change scores S for the data points X that we have observed so far.
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Figure 5: Our proposed Meta-ACPD method. For the current input-output observations D
of the target system, it exploits an existing change score function from a change-
point detection algorithm to obtain a set of change scores D′. A Bayesian opti-
mization algorithm determines the next query input xnext. The observations D
and the models are updated according to the response from the target system.
The above procedure is iterated until the budget B runs out.

We next estimate the change scores over the input space using a Gaussian process with
the computed change scores, and determine the next query input xnext such that it would
maximize the change score using an acquisition function. We iterate this procedure until
the given budget runs out, and then output the final change-point estimate x̂cp using the
change-point detection algorithm. Our proposed procedure (for one-change-point functions)
is illustrated in Figure 5 and Algorithm 1.

We describe the meta-algorithm in detail below. In the setting of offline change-point
detection, we see that we typically estimate the change-point as the data point that maxi-
mizes some change score in a set of N observations D = (X,Y ) = {(xi, yi)}Ni=1. In ACPD,
we try to find the change-point in a domain X , such as R. If we had infinite number of
observations D∞ = (X , Y ) over the entire domain X , we could estimate the change-point
in the same way as the passive offline change-point detection, by finding the maximizer in a
set of change scores. The key idea is to regard the change scores over the entire the domain
as a function s : X → R and see the ACPD problem as a black-box optimization problem of
the unknown change score function s using a finite number of observations, to estimate the
maximizer of the change score function as the change-point. However, in addition to the
fact that observations are finite and might be noisy, the change scores depend on the selec-
tion of the observations; different sets of observations produce different change scores. To
take the uncertainty of the computed change scores in consideration, we model the change
score function using a probabilistic model, a Gaussian process, which enables us to utilize
Bayesian optimization to determine the next input for finding the maximum change score.

Given N observations D = (X,Y ) = {(xi, yi)}Ni=1, we apply a change score function of
a change-point detection algorithm to D in order to obtain a set of change scores D′ as

D′ = {(xi, sD,i) | sD,i = sD(xi)}Ni=1 = (X,SD). (3)

We assume that a black-box change score function s follows a Gaussian process (Rasmussen
and Williams, 2006), that is, sD follows a Gaussian distribution with mean µ(x) and variance
σ2(x):

sD ∼ N
(
µ(x), σ2(x)

)
. (4)
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Algorithm 1 Meta-ACPD

Input:
Change-point detection algorithm and its change score function: s
Acquisition function: a
Query budget: B
Initial set of observations: D = {(xi, yi)}Ni=1

Output: Change-point estimate x̂cp

1: for t = 1, 2, . . . , B do
2: Apply s to D and obtain change scores D′ (Eq. (3))
3: Determine the next input xnext using an acquisition function a (Eq. (7))
4: Observe the output ynext by evaluating the target function at xnext

5: Update the observations D ← D ∪ {(xnext, ynext)}
6: end for
7: return The final change-point estimate by the change-point detection algorithm x̂cp

Given the computed change scores D′, the posterior mean µD′(x) and variance σ2D′(x) for
an input x are respectively estimated from D′ as

µD′(x) = k(x,X)(K + λ2I)−1SD, (5)

σ2D′(x) = k(x, x)− k(x,X)(K + λ2I)−1k(X,x), (6)

where k : X × X → R is a positive definite function, K is an N × N Gram matrix whose
(i, j)-th entry is k(xi, xj), and λ2 is the variance of the output noise.

Next, we design the next input using Bayesian optimization. In Bayesian optimization,
after the Gaussian process regression, an acquisition function a : X → R, which quantifies
how much an input point should be evaluated, is used to determine the next input point
xnext. Using the Gaussian process and an arbitrary acquisition function a(x), we determine
the next input xnext that gives the maximum value of the acquisition function:

xnext = arg max
x∈X

a(x). (7)

One possible choice for the acquisition function is the upper confidence bound algorithm
(Srinivas et al., 2010): a(x) = µD′(x) +κσD′(x), where κ is a hyperparameter that balances
exploration and exploitation. Another choice is the expected improvement (Mockus et al.,

1978), a(x) = σ(x) (γ(x)Φ (γ(x)) +N (Φ (γ(x)) | 0, 1)), where γ(x) = µ(x)−ybest
σ(x) , ybest is the

current greatest observed output, and Φ(·) denotes the cumulative distribution function of
the standard normal.

By evaluating the target function at the next input, we observe the corresponding output
ynext. The above iteration terminates when the query budget runs out or some particular
condition is satisfied. Consequently, we estimate the change-point using the change-point
detection algorithm.One of the significant advantages of the proposed method is that it does not depend on
the target data types and the definitions of the change-points, because it is a meta-algorithm
utilizing an existing change-point detection algorithm to compute one-dimensional change
scores. It would work for other types of inputs, outputs, and changes, such as multi-
dimensional input-output, noise-level changes, and multiple change-points, as long as the
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underlying change-point algorithm can compute the change scores and we can define an
appropriate kernel for the data structure.

However, the change scores, which varies depending on data, might cause biases in the
next input and therefore fall into a wrong solution, especially in the early stages with a small
number of data. In practice, Bayesian optimization could mitigate the problem, because it
explores uniformly in the domain in the early stages. We will discuss this problem in the
experimental part from a perspective of exploration and exploitation.

4. Experiments

For a comprehensive study of the empirical performance of the proposed approach, we study
the change-point detection accuracy under measurement cost limitations using several target
functions with different types of data and change-points.

4.1. Target Functions

4.1.1. Functions with one change-point

We first introduce the four real-valued functions with a one-dimensional input and a change-
point. As simple bench-marking settings, we use two functions:

• a non-continuous piecewise-linear function PTbias: f(x) = 0.1x + 30 if x < 143.15,
and 0.1x+ 60 otherwise (Figure 1), and

• a continuous piecewise-linear function PTslope: f(x) = 0.1x + 30 if x < 143.15, and
x+ 147 otherwise (Figure 2).

These two functions are considered as a first-order phase transition and a second-order
phase transition, respectively.

We also use a multiple-output function MO, that is a piecewise-linear function with five-
dimensional outputs. MO is defined as f(x) = ax+b if x < −130, and f(x) = ax+b+50 oth-
erwise, where a = (0.26,−1.29, 0.49,−1.12,−0.45)> and b = (1.70, 0.79, 0.33, 0.45,−0.37)>.

As a more realistic scenario, we use the nematic-isotropic phase transition function of
the CBO11O material referred to as NI (Figure 3). The function is given as

NI : f(x) =

{
2.13− 2.99 (x/427.03− 1) + 0.0162 |x/427.03− 1|−0.51 (424 ≤ x < 426.9)

2.13− 2.99 (x/426.82− 1) + 0.006 |x/426.82− 1|−0.51 (426.9 ≤ x ≤ 429)
, (8)

that is a regression result in a real experiment (Anisimov, 1991; Sebastián et al., 2011).
Gaussian noise is added to the output y of each function : y ∼ N (f(x), σ2o), where the

standard deviation is set to σo = 20 for PTbias, PTslope, and MO, and σo = 0.1 for NI.

4.1.2. Multiple-change-point function

Our proposed framework can be generalized to target functions with multiple change-points.
We use a piecewise-constant function with three change-points: MCP. The function is
defined as f(x) = 9.34 if x < −143.5, 0.94 if −143.5 ≤ x < −77.7, 9.45 if −77.7 ≤ x <
−41.9, and 4.30 otherwise. Gaussian noise N (0, 12) is added to its output. Figure 7 shows
the function and its noisy observations.

1023



Hayashi Kawahara Kashima

4.1.3. Multiple-input function

Another possible extension is multi-dimensional-input functions. In this setting, we focus on
finding steep depth changes in a seafloor depth dataset, which is important for sea bottom
surveys. We use a seafloor depth dataset1 for the area around Hokkaido, Japan, provided by
Cabinet Office, Government of Japan. The dataset is 450m-mesh data of 840×780 cells, and
we down-sample it into 280×260 for computational resource, as shown in Figure 8(a), where
the land area is colored in white. The two-dimensional location (longitude and latitude) is
the input, and the depth is the output.

4.2. Comparing Method

To the best of our knowledge, there is no existing method directly addressing the ACPD
problems. Hence, we compare the proposed meta-algorithm with two naive baselines: a
random search and an ε-greedy search. They explore the change-points using change scores
computed by a given change-point detection algorithm. The random search samples the
next input from a uniform distribution. The ε-greedy search switches between the random
search with probability ε and a greedy search with probability 1−ε, where the greedy search
suggests the middle point between the input with the greatest change score x1st and the
input with the second greatest change score x2st: xnext = (x1st + x2st)/2. We test different
ε ∈ {0.1, 0.5, 0.9}.

4.3. Change Scores

We employ the maximum likelihood (Eq. (2)) as the change score for the one-change-
point functions, PTbias,PTslope, NI, MO, and the multiple-change-point function, MCP.
We use a third-order polynomial function for NI, a constant function for MCP, and linear
functions for the others. We calibrate the original likelihood change scores {(xi, si)}Ni=1 to
{((xi−1 + xi)/2, si)}Ni=2 to make them symmetric in the input space.

For computation of the change score in the multiple-input problem, the seafloor
depth data, we use a spatial anomaly detection method AvgDiff (Kou et al., 2006).
It computes the change score of a data point (x, y) by comparing the output y with
the outputs of its spatial nearest neighbors NN(x). The score is defined as s(x, y) =∑

(xi,yi)∈NN(x)w(x, xi) |y − yi| ,where w(x, xi) is a spatial weight between x and xi. We use
the inverse Euclidean distance as w(x, xi) and the 10-nearest neighbors as NN(x).

Note that the choice of the change-point detection method or change score depends
on the types of change-points a user wants to detect. A thorough comparison of different
methods for each function is beyond the scope of this paper.

4.4. Change-Point Estimation and Evaluation

For one-change-point functions, we assume there exists one change-point and estimate it
by Eq. (1). We evaluate the absolute error between the estimated change-point and the
ground-truth change-point.

For the multiple-change-point function, MCP, we assume we are not given
the number of change-points. We estimate the change-points {x̂cpi }n̂i=1 using a

1. Area 0450-09 (https://www.geospatial.jp/ckan/dataset/1976)
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segmentation-based approach (Fryzlewicz, 2014) with the Bayesian information crite-
rion penalty (Yao, 1988): Ω({xcpi }n̂i=1) = n̂

2 logN . The error is measured by the
Hausdorff distance e({xcpi }ni=1, {x̂

cp
i }n̂i=1) = max{maxxcp∈{xcpi }ni=1

minx̂cp∈{x̂cpi }n̂i=1
|xcp −

x̂cp|,maxx̂cp∈{x̂cpi }n̂i=1
minxcp∈{xcpi }ni=1

|xcp − x̂cp|} (Truong et al., 2018).
For the multiple-input function, the seafloor depth dataset, we may consider the inputs

with rapid depth changes as change-points, and however there are no ground-truths. In
this experiment, we use the change-points estimated using all the data as the ground-
truth change-points. In particular, we compute the ground-truth change scores using
all the 72,800 data points (Figure 8(b)). We define the inputs with the top k change
scores and the others as the ground-truth change-points and non-change-points, respec-
tively. For each method, we evaluate precision@k for change scores at the same inputs as
the ground-truths, which are estimated by posterior mean of a Gaussian process. Because
the number of change-points is assumed to be few compared to non-change-points, we set
k = {728(1%), 3640(5%), 7280(10%), 10920(15%), 14560 (20%)}.

We sample five points from a uniform distribution as the initial data for the one-
dimensional input functions, and 20 points for the seafloor depth data. Each method
explores for B = 100 iterations. We measure each of the above values at each iteration, and
evaluate a mean value over the B iterations and a final value after the B iterations. We
conduct each experiment for 30 times.

4.5. Setting of Proposed Method

The proposed method is a meta-algorithm, and it needs the specifications of the un-
derlying Bayesian optimization method, in particular, a covariance function k(x, x′) and
an acquisition function a(x). We use the ARD Matérn 5/2 kernel (M52) (Snoek et al.,

2012): k(x, x′) = θ0

(
1 +

√
5r2(x, x′) + 5

3r
2(x, x′)

)
exp

(
−
√

5r2(x, x′)
)

, where r2(x, x′) =

ΣD
d=1(x

(d) − x′(d))
2
/θ(d)

2
. To study to what extent we should place priority on the uncer-

tainty and exploration, we compare two acquisition functions: the expected improvement
(EI) (Mockus et al., 1978) and the upper confidence bound (UCB) (Srinivas et al., 2010).
We set the hyperparameter of the UCB algorithm as κ ∈ {0, 3, 6, 9,∞}, where κ = 0 and
κ = ∞ corresponds to a full exploitation strategy and a full exploration strategy, respec-
tively. The hyperparameters of the covariance function {θ0, θ1, . . . , θD, λ2} are optimized
by the empirical Bayes method at every time when a new observation is obtained.

4.6. Results and Discussions

Table 1 and 2 show the results of the mean error over iterations and the final error af-
ter iterations, respectively, for the target functions except the seafloor depth data. For
PTbias, PTslope and NI, the proposed meta-algorithm with the EI and the UCB (κ = 3, 6, 9)
performed well. Especially, all the results of the EI except for the MCP mean error over
iterations are better then the comparing methods. Through the iterations, the proposed
methods effectively decreases the errors as shown in Figure 6. In contrast, the greedy ap-
proaches (the UCB (κ = 0) and the ε-greedy strategy) showed poor results. This might
be because the greedy approaches fell into the local optimums. As discussed in Section 3,
change scores may vary depending on data. When the computed change scores at the
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ground-truth non-change-points were incorrectly high, the greedy approaches might fall
into incorrect solutions. Especially the full exploitation strategy without any exploration,
the UCB (κ = 0) did not improve the errors well after falling into the incorrect solutions
as shown in Figure 6. On the other hand, the proposed meta-algorithm not only exploits
the knowledge, but also explores uniformly in the input space in the early stages, which
could provide the high change scores on the ground-truth change-points. Thanks to the
property, the proposed meta-algorithm could avoid falling into the incorrect solutions and
demonstrated the performance.

For MCP, the greedy approaches (the UCB (κ = 0) and the ε-greedy strategy (ε = 0.1))
also showed the worse results than the exploration approaches (Table 1 and 2). This might
be because it is required to explore uniformly in the input domain for the distributed three
change-points. The proposed meta-algorithm with the UCB (κ ≥ 6), which place priority
rather than exploration, demonstrated the performance equal to or slightly better than the
comparing methods. This might be derived from the inherently difficult multiple change-
point detection without knowing their number, for which the errors of each method were
not significantly different. The proposed meta-algorithm with the UCB (κ ≥ 6) exploited
the knowledge a little while exploring, which might provide the slightly better performance
than the comparing methods for the final errors after iterations.

For the seafloor depth data, Table 3 and 4 show the mean precision@k over iterations
and the final precision@k after iterations, respectively. The proposed methods without a
full exploitation UCB (κ = 0) performed better than the comparing methods for all the
different k. Especially, the EI and the UCB (κ = 9) worked well for the mean precision@k
over iterations and the final precision@k after iterations, respectively. This might be be-
cause balancing between exploration and exploitation was important, compared to the one-
dimensional-input functions, for the large search space of the seafloor depth data with the
two-dimensional input. Figure 8(c,d,e,f) shows the observed data and the posterior mean by
the Gaussian process of the proposed methods with the EI, the UCB (κ = 9), the ε-greedy
(ε = 0.1) search, and the random search. The proposed methods explored the ground-truth
change-points and non-change-points in a balanced manner. Consequently, their change
scores computed using only 120 data points correspond well to the ground-truth change
scores (Figure 8(b)) computed using 72, 800 data points. In contrast, the ε-greedy (ε = 0.1)
search (Figure 8(e)) only explored the few change-points and not the others. The change
scores by the random search (Figure 8(f)) do not correspond to the ground-truths clearly
in the right bottom part.

5. Related Work

To the best of our knowledge, there is no work directly comparable to ACPD, so we review
related works in a wide context, by illustrating differences of their problem settings.

Change-point detection (Basseville and Nikiforov, 1993; Gustafsson, 2000) is the task of
finding abrupt changes in time-series data. There are several closely related tasks such as
concept drift (Gama et al., 2014), event detection (Guralnik and Srivastava, 1999), and time-
series segmentation (Keogh et al., 2001; Fryzlewicz, 2014). Spatial outlier detection (Kou
et al., 2006) is the task of detecting areas that are significantly different from the other areas
in spatial data. Spatial outlier detection and image segmentation (Pal and Pal, 1993) can be
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Table 1: Means and standard deviations of the mean errors over iterations for 30 trials.

Method PTbias PTslope NI MO MCP

ACPD (EI) 23.6 ± 20.1 23.6± 8.8 0.145± 0.117 15.4± 13.6 33.8± 6.7
ACPD (UCB κ = 0) 37.7± 29.0 35.9± 25.9 0.760± 0.657 24.5± 26.9 60.6± 21.2
ACPD (UCB κ = 3) 27.5± 20.8 21.5 ± 9.1 0.123 ± 0.082 16.6± 18.0 32.5± 4.2
ACPD (UCB κ = 6) 28.9± 18.4 26.0± 12.2 0.138± 0.091 15.3 ± 16.5 30.4± 2.8
ACPD (UCB κ = 9) 27.9± 23.8 25.5± 12.6 0.173± 0.126 17.0± 13.4 29.5± 1.9
ACPD (UCB κ =∞) 45.2± 33.0 32.4± 11.6 0.242± 0.180 21.4± 8.8 28.4 ± 2.3
ε-greedy (ε = 0.1) 40.1± 24.9 37.1± 21.3 0.434± 0.395 32.5± 20.5 61.3± 15.2
ε-greedy (ε = 0.5) 35.7± 22.9 32.4± 19.3 0.239± 0.231 18.7± 12.5 34.1± 5.4
ε-greedy (ε = 0.9) 37.4± 24.3 34.9± 12.7 0.233± 0.166 15.9± 6.9 29.3± 2.6
Random 42.9± 22.6 34.7± 15.8 0.273± 0.201 16.1± 7.2 30.0± 3.5

Table 2: Means and standard deviations of the final errors after iterations for 30 trials.

Method PTbias PTslope NI MO MCP

ACPD (EI) 15.5± 34.9 17.0± 18.3 0.0026± 0.0030 0.1 ± 0.1 12.6± 7.3
ACPD (UCB κ = 0) 36.4± 29.5 36.5± 26.5 0.6875± 0.6777 11.7± 26.3 36.8± 27.6
ACPD (UCB κ = 3) 13.3 ± 24.2 13.1 ± 12.0 0.0008 ± 0.0009 4.7± 18.0 13.5± 7.0
ACPD (UCB κ = 6) 16.7± 31.2 16.9± 14.6 0.0011± 0.0018 0.3± 1.4 12.5 ± 8.6
ACPD (UCB κ = 9) 18.7± 34.5 15.8± 12.2 0.0014± 0.0015 1.4± 6.1 12.8± 5.6
ACPD (UCB κ =∞) 32.1± 45.7 22.2± 15.5 0.0410± 0.0596 0.9± 0.8 12.5 ± 8.8
ε-greedy (ε = 0.1) 33.7± 32.0 33.3± 24.8 0.1751± 0.3558 15.1± 22.0 34.8± 21.9
ε-greedy (ε = 0.5) 24.7± 37.7 22.2± 19.4 0.0343± 0.1200 0.7± 1.8 17.8± 6.9
ε-greedy (ε = 0.9) 20.4± 33.7 22.6± 12.0 0.0177± 0.0151 0.6± 0.8 13.0± 6.1
Random 36.6± 43.4 24.2± 24.0 0.0268± 0.0398 0.9± 0.7 12.9± 7.0

also considered as multiple-input change-point detection problems. In general, change-point
detection assumes that each observation in a time-series data is given at every time step in
an online manner, or that all parts of the time-series are given at once in a batch manner.
In both of the settings, the costs of acquiring data is not usually considered, and their goals
are just to give a label of ‘change’ or ‘normal’ to each data point. On the other hand, in
the ACPD problem, the target data is not usually a time series data, as in (Gijbels et al.,
1999), and the data is acquired in an active manner by paying some cost of measurement.

ACPD is also related to experimental design (Chaloner and Verdinelli, 1995) where sta-
tistical models are used to determine efficient and effective series of experimental decisions.
Bayesian optimization (Mockus et al., 1978; Snoek et al., 2012) suggests the next input to
explore based on past observations to seek out the optimum of a black-box function that is
expensive to evaluate. Gaussian processes (Rasmussen and Williams, 2006) are the typical
choice as a model for the black-box function because it can handle uncertainty in the model.
Various acquisition function are used to determine the next input by balancing exploration
and exploitation based on the posterior mean and variance of the Gaussian processes. We
use the Bayesian optimization technique as the key component of our proposed method,
because our objective is also to find the optimum in a black-box change score function.

Active learning (Settles, 2012) is the task of learning a classifier model in an interactive
manner by determining the next data point to query an oracle (e.g., a human annotator)
for its label. The goal is to output a classifier that minimizes the predictive classification
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Figure 6: Error curves and a precision@5% curve. The proposed method efficiently de-
creases the error faster than the comparing methods for (a) PTbias, (b) PTslope,
(c)NI, and (d) seafloor depth.

loss by choosing informative data points. The idea of active learning is applied to anomaly
detection (Das et al., 2016), where a data point is queried to be labeled anomaly or normal.

The most related work to ACPD is the interactive image segmentation (Vezhnevets et al.,
2012). In the setting, all the pixel values of an image are given, and, at each iteration, a
set of pixels is queried an oracle for its label to segment the image. The problem may be
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Figure 7: Piecewise-constant multi-change-point function (MCP), where change-points are
located at −143.5, −77.7 and −41.9, and its 100 noisy observations.
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Figure 8: (a) The 280 × 260 seafloor depth data. (b) The ground-truth change scores.
(c),(d),(e),(f) 120 data points and change scores estimated by posterior mean of
a Gaussian process, using the proposed methods (ACPD) with the EI and the
UCB (κ = 9), the ε-greedy search (ε=0.1), and the random search. The proposed
methods explored the ground-truth change-scores and non-change-points in a
balanced manner, which produced the scores correspond to the ground-truths
well using a small number of data.

regarded as an ACPD problem, where change-points are the boundaries of the segmentation,
input is a two-dimensional coordinate of an image, and output is a value and label of a pixel;
however, it is special that all the pixel values as a part of the output are given. Another
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Table 3: Means and standard deviations of mean precision@k of each method over iterations
for 30 trials, where k is indicated by percentage of the number of data.

Method Precision@1% Precision@5% Precision@10% Precision@15% Precision@20%

ACPD (EI) 0.145 ± 0.072 0.321± 0.057 0.446± 0.050 0.497± 0.034 0.543± 0.027
ACPD (UCB κ = 0) 0.056± 0.054 0.193± 0.049 0.291± 0.052 0.347± 0.048 0.398± 0.052
ACPD (UCB κ = 3) 0.137± 0.051 0.331± 0.037 0.456± 0.038 0.502± 0.032 0.546± 0.026
ACPD (UCB κ = 6) 0.116± 0.061 0.328± 0.036 0.464± 0.032 0.510± 0.028 0.557± 0.027
ACPD (UCB κ = 9) 0.106± 0.050 0.337 ± 0.037 0.472 ± 0.037 0.515 ± 0.035 0.561 ± 0.031
ACPD (UCB κ =∞) 0.039± 0.030 0.292± 0.053 0.420± 0.054 0.472± 0.046 0.538± 0.040
ε-greedy (ε = 0.1) 0.044± 0.080 0.163± 0.063 0.259± 0.052 0.327± 0.046 0.388± 0.048
ε-greedy (ε = 0.5) 0.038± 0.025 0.204± 0.052 0.329± 0.057 0.394± 0.047 0.453± 0.042
ε-greedy (ε = 0.9) 0.042± 0.046 0.232± 0.061 0.374± 0.062 0.441± 0.051 0.504± 0.048
Random 0.040± 0.067 0.219± 0.059 0.355± 0.064 0.432± 0.062 0.505± 0.062

Table 4: Means and standard deviations of precision@k of each method after iterations for
30 trials, where k is indicated by percentage of the number of data.

Method Precision@1% Precision@5% Precision@10% Precision@15% Precision@20%

ACPD (EI) 0.269 ± 0.175 0.464 ± 0.062 0.584 ± 0.052 0.613 ± 0.041 0.638± 0.031
ACPD (UCB κ = 0) 0.084± 0.119 0.232± 0.077 0.324± 0.083 0.368± 0.089 0.393± 0.090
ACPD (UCB κ = 3) 0.260± 0.113 0.409± 0.072 0.542± 0.065 0.587± 0.051 0.620± 0.041
ACPD (UCB κ = 6) 0.207± 0.159 0.425± 0.081 0.553± 0.056 0.593± 0.042 0.632± 0.030
ACPD (UCB κ = 9) 0.192± 0.117 0.454± 0.059 0.580± 0.054 0.607± 0.037 0.637± 0.030
ACPD (UCB κ =∞) 0.074± 0.091 0.426± 0.055 0.575± 0.048 0.593± 0.033 0.640 ± 0.027
ε-greedy (ε = 0.1) 0.052± 0.082 0.184± 0.066 0.291± 0.053 0.362± 0.052 0.417± 0.053
ε-greedy (ε = 0.5) 0.047± 0.048 0.242± 0.080 0.382± 0.074 0.450± 0.058 0.507± 0.047
ε-greedy (ε = 0.9) 0.064± 0.112 0.284± 0.091 0.447± 0.069 0.516± 0.050 0.574± 0.043
Random 0.064± 0.115 0.307± 0.072 0.473± 0.078 0.541± 0.061 0.606± 0.047

related work is the active learning with drifting streaming data (Žliobaitė et al., 2014). At
each iteration, we obtain a piece of data, and we determine if we query an oracle for its class
label to train a classifier for drifting streaming data. This problem is also similar to ACPD,
when we see input is time and output is the data and its label; however, it is different that
the data as a part of the output is given and that the input is the time.

6. Conclusion

We proposed ACPD, a novel active learning problem for cost-efficient change-point detection
in a black-box expensive-to-evaluate function. In ACPD, we determine the next input to
be explored in order to find the change-point in the function with as few evaluations as
possible. We also proposed a general framework that does not depend on the types of data
or change-points, by reusing an existing change-point detection method and a Bayesian
optimization technique. The experimental results showed that the proposed meta-algorithm
outperformed the comparing methods in consideration of exploration and exploitation.
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