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Abstract

The Generative Adversarial Network (GAN) has achieved remarkable progress in generating
synthetic images from text, especially since the use of the attention mechanism. The
current state-of-the-art algorithm applies attentions between individual regular-grid regions
of an image and words of a sentence. These approaches are sufficient to generate images
that contain a single object in its foreground. However, natural languages often involve
complex foreground objects and the background may also constitute a variable portion of
the generated image. In this case, the regular-grid region based image attention weights may
not necessarily concentrate on the intended foreground region(s), which in turn, results in
an unnatural looking image. Additionally, individual words such as “a”, “blue” and “shirt”
do not necessarily provide a full visual context unless they are applied together. For this
reason, in our paper, we proposed a novel method in which we introduced an additional set
of natural attentions between object-grid regions and word phrases. The object-grid region
is defined by a set of auxiliary bounding boxes. They serve as superior location indicators
to where the alignment and attention should be drawn with the word phrases. We perform
experiments on the Microsoft Common Objects in Context (MSCOCO) dataset and prove
that our proposed approach is capable of generating more realistic images compared with
the current state-of-the-art algorithms.

Keywords: Image generation, Natural language processing, Generative adversarial net-
works

1. Introduction

Generating images from text descriptions is a challenging problem that has attracted much
interest in recent years. Algorithms based on the Generative Adversarial Network (GAN)
(Goodfellow et al. (2014)), specifically Deep Convolutional GAN (DCGAN) (Radford et al.
(2015)) and conditional GAN (Mirza and Osindero (2014)), have achieved remarkable
progress on various datasets. Works from Reed et al. (2016c) and Xu et al. (2017) have
shown promising results in synthesizing images that contain a single object, such as on the
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CUB (Welinder et al. (2010)) and Oxford-102 (Nilsback and Zisserman (2008)) datasets.
However, synthesizing an image that models human poses or involves multi-object interac-
tions usually lacks sufficient details, and can easily be distinguished from real images.

We believe that the in-depth connection between individual words and image sub-regions
is not yet fully utilized in the current network design and the model performance could be
improved upon. In fact, current frameworks build the connection on individual words and
equal-sized regular-grid regions. This does not work well when multiple objects are present
and multiple words are used to describe each object. For example, consider the sentence:
A man swinging a baseball bat. We would expect the two phrases: a man and a baseball
bat, each define an identifiable object in the generated image.

Therefore, in this paper, a few novel strategies have been proposed to improve the
current attention based mechanism, in particular, we uniquely incorporate object-grid image
features into the learning of text phrase embedding in the Encoder. This embedding is then
used to compute a new set of attentions with the image in the Generator.

These strategies have delivered three unique outcomes: (1) when generating pixels inside
a object-grid region, the attention is paid to the phrases rather than individual words,
which makes sense from a natural language point of view. (2) pixels within each region
describes the same phrase by sharing the same attention score, so that objects are more
easily recognizable, (3) Moreover, the spatial information of the generated objects are more
likely to be correctly reflected. The rest of this paper is organized as follows.

In section 2, we review the GAN network and several other literature that we applied
as the basis and inspiration of our work. In section 3, we introduce assumptions and the
architecture of our model. The performances are compared and discussed in section 4.

2. Background and Related Work

Text-to-image generation comes across multiple disciplines, and in this section we review
previous methods that inspire our work.

2.1. Sentence Embedding

Generating images from text requires each sentence to be encoded into a fixed length vector.
This vector is used as the conditioning factor for the image generation. Previous works such
as StackGAN (Zhang et al. (2016)) and StackGAN ++ (Zhang et al. (2017)) used sentence
embeddings generated by a pre-trained Convolutional Recurrent Neural Network (Reed
et al. (2016b)). Recent works such as AttnGAN (Xu et al. (2017)) used a bi-directional
Long Short-Term Memory (LSTM) that was trained from scratch. However, both methods
were only capable of extracting word and sentence representations, which overlook the
importance of phrases for the image generation.

2.2. Text-to-Image with GAN

Great progress has been achieved in text to image generation with the recent emergence
of the Generative Adversarial Network (GAN) network. The GAN network was originally
proposed in 2014 (Goodfellow et al. (2014)). It involves a 2-player non-cooperative game
by generator and discriminator. The generator produces samples from the random noise
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vector z, and the discriminator differentiates between true samples and fake samples. The
value function of the game is as follows:

min
G
max
D

V (D,G) = Ex∼pdata(x)[logD(x|e)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

Deep Convolutional GAN (DCGAN) (Radford et al. (2015)) utilized several layers of
convolutional neural networks to encode and decode images, in addition to Batch Normal-
ization (Ioffe and Szegedy (2015)) to stabilize the GAN training.

Conditional GAN (Mirza and Osindero (2014)) further allowed samples to be generated
from conditioning factors. In the case of sentence based generation, the conditioning factor
is a fixed length sentence embedding e.

GAN-CLS (Reed et al. (2016c)) proposed one of the first works that applies conditional
GAN (Mirza and Osindero (2014)) to generate plausible images. The generation is based on
the sentence embedding e and a random noise vector z which is sampled from a Gaussian
distribution.

Later another model GAWWN by Reed et al. (2016a) supplies additional information
such as bounding boxes or part locations of the main object. Such a framework allows
controllable image generation.

As previous works failed to generate images with higher-resolution than 128 × 128,
researchers later utilized multi-stage generation process (Zhang et al. (2016)). The first
stage generates a low-resolution image from the sentence embedding, and the later stages
generate higher-resolution images.

AttnGAN (Xu et al. (2017)) was the first work that employs an attention mechanism
between words and regular-grid regions. It was able to generate images of better quality
and achieved so far the highest inception score.

Another work by Li et al. (2019) proposed object-driven image generation. This frame-
work was a three-tier generation process. The first generated bounding boxes and corre-
sponding labels through an attention seq2seq model. The second predicted the shape of
each object through a GAN network given the bounding boxes and categories. The third
was the 2-stage image generator based on the predicted shapes and labels.

2.3. RoI Pooling

The Region of Interest (RoI) pooling layer was first introduced in Girshick (2015). For an
image region with spatial size h × w, it is first divided into H ×W grids of sub-windows.
Each sub-window is then fed through a max-pooling layer, which derives a final pooling
result with spatial size H ×W . The RoI pooling allows each image region to be embedded
into a fixed-length vector with no additional parameters and training involved. In our work
we use RoI pooling to extract features from the object-grid regions.

3. Architecture

Our network is inspired by several recent works including the architecture of AttnGAN
as well as the visual-semantic alignment (Karpathy and Fei-Fei (2015)). Our work differs
significantly, as we introduced the attentions between phrase and object-grid features into
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Figure 1: Network structure for text embedding and GAN network, section IDs have been added
for easier reference

the network. Compared to Obj-GAN, our framework introduces the phrases and the overall
design is much simpler.

To this end, we show our overall model in Figure 1 which consists of an end-to-end
text encoder network, a GAN framework and a bounding boxes prediction framework. The
details for each module are explained in the following sections.

3.1. Text Encoder

The text encoder of current text conditioned GAN network typically extracts a whole sen-
tence representation and word representations using a bi-directional LSTM. In addition
to those features, our proposed work also extracts the phrase features to be fed into our
algorithm.

We define a phrase as a combination of the closest article (digit), adjective and noun.
Such information can be extracted from applying part-of-speech tagging (POS-tagging) to
raw sentences. For example, a sentence “Two black horses standing with a cart attached
to them.” is tagged as [(“Two”, digit), (“black”, adjective), (“horses”, noun), (“standing”,
verb), (“with”, preposition), (“a”, article), (“cart”, noun), (“attached”, verb), (“to”, prepo-
sition), (“them”, pronoun)]. We then group the nearest article(digit)-adjective-noun words
as a phrase, which yields “two black horses” and “a cart’.

The full text encoder framework is shown in figure 2, which in fact can be considered as
a phrase encoder built on top of a sentence encoder. In addition, our design incorporates
object-grid image features to assist the learning. Such image features are extracted from
an image encoder. The details are explained in the following sections.

3.1.1. Sentence Encoder

Firstly, a bi-directional LSTM is applied to each sentence to extract word and sentence
representations. Given a sentence {w1, . . . wT }, the tth word representation et is a concate-

nation of a forward eft and a backward hidden state ebt , i.e., et ≡ [eft e
b
t ]. The full sentence

embedding ē is defined using the last hidden states, i.e., ē ≡ [efT e
b
T ].
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Figure 2: Text Embedding with a 2-layer LSTM Networks

3.1.2. Phrase Encoder

On top of the extracted word representations e where e ≡ {e1, . . . eT }, phrase representa-
tions are extracted by applying a second LSTM in the following way. Given the t′th phrase,
a LSTM is applied over the sequence of words in the phrase. The last hidden state is
used as its feature representation which we refer to as pt′ . An alternative way to extract
phrase embeddings is by taking the average of word embeddings in each phrase. We the
performance for both methods in Section 4.2.

Our phrase-based embedding clearly has an advantage over the traditional word-based
mechanism where each word has one representation. For example, none of the individual
words in the phrase “a green apple” portrays an overall picture of the object; all three words
work together to capture its visual meaning.

3.1.3. Image Encoder

Figure 3: Examples of full image region, regular-grid region and object-grid region

The image encoder itself comes from the pre-trained Inception-v3 network (Szegedy
et al. (2015)) and is not further fine-tuned in our framework. We apply the image encoder
to extract three types of image features from a single image: a object-grid region feature,
a regular-grid region feature and a full image feature. As shown in figure 3, a object-grid
region is defined over a single object and thus the regions differ in sizes, and regular-grid
regions have equal sizes and each of them can contain half an object or multiple objects.
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Common to all features, each image first undergoes the Inception-v3 model. We use
the last feature layer, i.e, ”mixed 6e” layer as the designated layer for the regular-grid
region. The full image feature is obtained from the last average pooling layer. In addition,
both regular-grid region feature and full image feature are converted into vectors in the
same semantic space using a trainable Fully Connected (FC) layer. Therefore, the resulting
features have the following dimensions: a regular-grid region feature v ∈ R289×D where
289 = 17 × 17 is the dimension for ”mixed 6e” layer feature map. The image feature is
denoted as v̄ ∈ RD.

To obtain a object-grid region feature, the location and size of each region must first be
identified. In several open datasets, such as the Microsoft COCO (MSCOCO) dataset, the
manually-labeled bounding boxes of object(s) within an image are readily available. In the
case where the dataset does not provide such information, they can also be obtained from
off-the-shelf image object detectors, such as R-CNN (Girshick et al. (2014)). This makes it
possible to apply our algorithm to any image datasets with text annotations, including the
CUB and the Oxford Flower 102 datasets.

The ”mixed 6e” layer feature map and its bounding box information is fed through the
Region of Interest (RoI) pooling to generate its object-grid region feature. These features
are fed through a convolution operation with a kernel of an equivalent size, resulting in
a vector in a common semantic space as text features. We denote the object-grid region
feature as b ∈ RK×D where K is the number of bounding boxes in each image.

3.1.4. Attention-Based Embedding for Text

Text embedding and the perceptron layer for image and region features are bootstrapped
prior to training the GAN. The training requires an overall loss function, which is defined
as Equation 2:

LTEXT = LSENT-IMG + LWORD-REGULAR + LPHRASE-OBJ (2)

The above loss function is comprised of three separate losses, each of them follows Xu
et al. (2017). Therefore, without loss of generality, the target of the loss function is to
minimize the negative log posterior probability for the correct image-sentence pair. i.e. for
a batch of image-sentence pairs (Si, Ii)

M
i=1, for clarity, we drop the subscript for L:

L = −
M∑
i=1

(logP (Si|Ii) + P (Ii|Si)) (3)

where P (Si|Ii) is the conditional probability for a text data Si to be matched with an
image data Ii defined as:

P (Si|Ii) =
exp(γ1R(Si, Ii))∑M
q=1 exp(γ1R(Sq, Ii))

(4)

Here R(Si, Ii) gives the similarity score between the text and the image data. In here,
text may refer to sentence, word or phrase, and the image may refer to their corresponding
“entire image”, “regular-grid region” and “object-grid region” respectively. γ1 is a manually
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defined smooth factor. The posterior probability P (Ii|Si) for an image being matched to a
sentence is defined in a similar way.

The similarity scoreR(Si, Ii) can be defined in multiple ways using off-the-shelf methods
from the statistics community to suit each situation. In our work, we apply three R values:
RSENT-IMG, RWORD-REGULAR and RPHRASE-OBJ to Equation 3 and Equation 4, which
derives three corresponding loss values LSENT-IMG, LWORD-REGULAR and LPHRASE-OBJ.

3.1.5. Choices of R for LSENT-IMG, LWORD-REGULAR and LPHRASE-OBJ

LSENT-IMG describes the similarity between text and image. We have chosen RSENT-IMG =
φ(Si, Ii) to be the cosine similarity between a sentence representation ē and a whole image
feature v̄i.
LWORD-REGULAR utilizes the attention mechanism built between the regular-grid regions

and the words. Its similarity score is chosen asRWORD-REGULAR = log(
T∑
t

exp(γ2φ(ct, et)))
1
γ2 .

In here, γ2 is a second smooth factor. φ(ct, et) is the cosine similarity between a word em-
bedding et and a regular-grid-region-context vector ct. ct is calculated as a weighted sum

over regular-grid image features: ct =
289∑
j=0

αjvj , where αj is the attention weight for the jth

regular-grid towards the tth word and αj = γ3φ(ct,et)∑289
k exp(γ3φ(ct,ek))

.

LPHRASE-OBJ is defined using the attention mechanism between the object-grid regions

and the phrases. The similarity score is RPHRASE-OBJ = log(
K∑
t′

exp(γ2φ(ct′ , pt′)))
1
γ2 where

ct′ is the object-grid-region context vector. ct′ is calculated in a similar way as ct except that
it is a weighted sum over the object-grid region features instead of regular-grid features.

Another alternative to define L is using the attention connection between the object-grid
regions and words instead of phrases. We denote such a loss value LWORD-OBJ.

3.1.6. Overall Text Embedding Loss

Having defined the four loss values above, we applied them to our overall network archi-
tecture as shown in Graph 1. In section 4.2, we illustrated the performance of different
combinations of L. This further demonstrates that object-grid region and phrases are im-
portant conditional information in image generation.

3.2. Attentional Text to Image Generation

Inspired by previous network designs, our work constructs text to image generation as a
multi-stage process. At each generation stage, images from small to large scales are gen-
erated from corresponding hidden representations. We name the first stage as “thumbnail
generation” which takes sentence embedding ē as the input and generates images with the
lowest resolution. At the following stages, images with higher resolution are generated from
the hidden state of the last stage with an attention-based structure.
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3.2.1. Thumbnail Generation

The thumbnail generation is inspired by the bounding box conditioned sentence to image
design by GAWWN and has been modified to suit our network design. The Generator
structure is shown in figure 4.

Figure 4: Thumbnail Generator

The generation process branches into two paths. The global path, which is not bounding
box conditioned, takes the conditioning factor F0 and the noise vector to produce a global
feature tensor. F0 itself is a Gaussian latent variable whose mean and diagonal covariance
matrix come from F ca which is a function of the sentence embedding. The local path
instead uses the sentence embedding directly. It first combines the sentence embedding
and the bounding box through spatially replicating e and zero out the region out of the
bounding box. In the case where multiple bounding boxes coexist, the resulting tensor is
averaged. The local path then takes the combined tensor through another several layers to
generate a local feature tensor. Tensors from both paths are concatenated depth-wise to
derive the first hidden representation h1.

In terms of the discriminator, one naive approach to incorporate the bounding box
information is to follow GAWWN, where features extracted from an image is to concatenate
with the features extracted from the image-bounding boxes pair. The Discriminator then
evaluates this concatenated vector. However, the experiment results shows unfavourable
outcome using this approach. In our work, we introduce a three Discriminators approach.
The details are discussed in section 3.2.4.

3.2.2. Super-resolution I & II

Super-resolution enlarges the previously generated thumbnails through constructing the
attention mechanism between the last hidden state and text features. At stage n, a hidden
representation hn is constructed from the last hidden state hn−1. hn is later translated to
an image with the image generation network in section 3.2.3.

We incorporate two sets of attentions in our framework. The first is between individual
words and regular-grid regions, the second is between phrases and object-grid regions.

Given the word embeddings e where e ≡ e1, . . . eT for T words in a sentence and phrase
embeddings p where p ≡ p1, . . . pT ′ for T ′ phrases in a sentence, hn is calculated as:

hn = Fn(hn−1, F
attn1
n (e, hn−1), F

attn2
n (p, hn−1)) (5)
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Here, Fn is a deep neural network that constructs the hidden representation hn from
given inputs. F attn1 and F attn2 are the deep neural networks that construct the word-
context matrix and phrase-context matrix respectively.

The word-context matrix is constructed from word embeddings e and regular-grid image
region features from hn−1. e are first fed through a perceptron layer to be converted into
the common semantic space as image features. The regular-grid region is defined here in a
similar way to section 3.1.3, except that the input feature map is not from the pre-trained
Inception-v3.

Given jth regular-grid region feature hjn−1, a word-context vector cj is defined as the
weighted sum over word embeddings:

cj =
T∑
t

ϕj,tet (6)

Here ϕj,t is the attention weight between the tth word and the jth regular-grid region and

ϕj,t =
exp(hjn−1

>
et)∑T

τ exp(hjn−1

>
eτ )

. Suppose there are J regular-grids, the final word-context matrix is

then defined as the union of the cj value for each regular-grid region, i.e., F attn1n (e, hn−1) =
(c1, · · · , cJ).

This phrase-context matrix is calculated in a similar way, except that word embeddings
are replaced with phrase features, and regular-grids are replaced with object-grid features.
Here object-grid features are derived from hn−1 by feeding it through the RoI pooling.

The resulting phrase-context matrix is of length K where K is the number of object-grid
regions defined in the image. In order to apply such a matrix to the network, we let each
pixel inside the bounding box carry the same phrase context vector while pixels outside
of bounding box carry zeros. As for regions where multiple bounding boxes overlap, the
phrase context vectors are averaged. Thus, the resulting phrase-context matrix is of the
same shape as the previously defined word-context matrix.

In Figure 5 we show examples of attention-weights mapping, from object-grid image
regions to phrases. It is clear to see that our framework encourages the correct text infor-
mation to be focused in generating each key objects.

(a) A picture of a stop and
go light with a stop sign
next to it.

(b)
A female wearing a red
shirt lies on a bed, rest-
ing.

(c) A metal counter topped
with lots of cheesy piz-
zas.

Figure 5: Example of attention being paid to a phrase when generating each object-grid region.
White rectangles on the left figure highlight the object-grid regions in the image. The matched pair
of phrase and object-grid image region is highlighted in the right figure.
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3.2.3. Image Generation Network: Hidden Representation to Images

As shown in Figure 1, the previous thumbnail generation and super-resolution stages do not
produce images directly. They instead produce hidden representations that are fed through
an additional convolution layer using kernel size and a depth dimension 3 to generate images.

3.2.4. Discriminators

In general, we use three types of Discriminators. The first evaluates an entire image as being
real or fake, which we named it Dim. The second evaluates a pair of image and sentence, we
named it Dim-txt. The third evaluates a group of image, sentence and bounding boxes, we
named it Dim-txt-bnd. Collectively, our Discriminator set is: D ≡ {Dim, Dim-txt, Dim-txt-bnd}

In addition, we incorporate the logic of matching-aware Discriminator from Reed et al.
(2016c), where the latter two Discriminators are fed through real, fake and unmatched
samples. The value function for the Generator and the Discriminator at each stage is given
below where we denote the bounding box information as b:

min
G

max
D
V (D, G) = Exi∼pdata(xi)[logD(xi)] + Ez∼pz(z)[log(1−D(G(z|ē)))]

+ Exi∼pdata(xi)[logD(xi, ē)] + Ez∼pz(z)[log(1−D(G(z|ē), ē))]
+ Exi∼pdata(xi)[logD(xi, ē, b)] + Ez∼pz(z)[log(1−D(G(z|ē), ē, b))]

(7)

In Table 1 we report the detailed network architecture for the discriminator performed on
the smallest 64×64 images. Dd = 96, De = 256 are the chosen hyper-parameters. fD refers
to features produced in the network. Up-sampling consists of a nearest neighbour image
resize, a convolution, a batch normalization and a GLU layer. Down-sampling consists
of a convolution, a batch normalization and a leaky ReLU layer. The kernel size and
the stride value used in both operations are shown in the bracket. Note that identical
function/framework applies to all stages with deeper network designs on larger images.
The full network architecture can be found in the Appendix.

Stage Sub-stage Name Input Tensors Output Tensors

Image + Sentence Discriminator

Convolution + leaky ReLU 64× 64× 3 32× 32×Dd

Down-sampling (kernel=4, stride=2) ×3 32× 32× 96 f IMG
D (4× 4× (Dd × 8))

D(x) Convolution (Image only logits) 4× 4× (Dd × 8) 1
D(x, ē) \textbf{Sentence conditioned logits} f IMG

D , ē 1

Image + Sentence + Bounding Box Discriminator

Convolution 64× 64× 3 32× 32×Dd

Down-sampling (kernel=4, stride=2) 32× 32×Dd f IMG2

D (16× 16× (Dd × 2))
Spatial Replicate ē 16× 16×De

Concatenation 16× 16×De, f
IMG2

D 16× 16× (De +Dd × 2)
Apply bounding box mask 16× 16× (De +Dd × 2) 16× 16× (De +Dd × 2)

Down-sampling (kernel=4, stride=2) ×2 16× 16× (De +Dd × 2) f IMG−BBOX
D (4× 4× (Dd × 8))

D(x, ē, b) \textbf{Sentence conditioned logits} f IMG−BBOX
D , ē 1

Sentence conditioned logits

Spatial replicate ē 4× 4×De

Concatenation f IMG
D or f IMG−BBOX

D , ē 4× 4× (De +Dd × 8)
Down-sampling (kernel=3, stride=1) 4× 4× (De +Dd × 8) 4× 4× (Dd × 8)
Convolution 4× 4× (Dd × 8) 1

Table 1: Network Architecture for the Discriminators on the 64× 64 images.

3.3. Bounding Box Prediction

As the image generation relies on bounding box information which is not available in the
testing phase, a separate bounding box prediction network is trained based on the sentence
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embedding. We define two prediction tasks in the network. The first is to predict the
coordinates for bounding boxes. The second is to predict the total number of bounding
boxes described in the sentence. We structure both prediction as a regression problem.
Therefore, given a sentence embedding, it is first fed through 2 multi-layer neural networks,
in which is the final layer of both networks is a mean squared error of the predicted value
and the real value.

We adopt several processing steps on the data in the following manner. First, the
coordinates of bounding boxes is normalized to the proportion of the full length, so that the
maximum value is 1 regardless of the size of the bounding box or the image. Second, given
a predicted number of bounding boxes, the coordinates for the bounding boxes that out-
number the predicted value are considered “invalid”, and are thus excluded in computing
the loss. In addition, we define words such as “left”, “right” as position related words. We
later compare the performance between using all sentences for the training and using only
sentences that contain position related words.

4. Experiments

Below we demonstrate the superior performance of our work, as well as the performance of
each of the proposed components, i.e., the text encoder, the GAN network and the bounding
box predictor from sections 3.1, 3.2 and 3.3 respectively.

The dataset we used is the MSCOCO dataset, which includes various images that involve
natural scenes and complex object interactions. It contains 82,783 images for training
and 40,504 for validation. Each image has 5 corresponding captions. Bounding boxes are
provided for objects in 80 categories.

The text encoder is trained over 150 iterations and the learning rate is set as 0.0002.
Then the fine-tuned text encoder is used to train the GAN network over 120 iterations and
the learning rate for both the generator and the discriminator is set as 0.0002.

Three metrics, Inception scores, Frechet Inception Distance (FID) score and R-precision
were utilized to perform the evaluation.

4.1. Metrics: Inception Score, FID Score and R-precision

As it is difficult to measure the performance of image generation in a quantitative way, the
inception score (Salimans et al. (2016)) and the Fréchet Inception Distance (FID) score
(Heusel et al. (2017)) were two popular metrics for automatic image quality evaluation.

Both scores measure only the quality and diversity of images generated, but not how
accurate an image can reflect the description of a sentence. Therefore, a third metric called
R-precision is used in the previous work (Xu et al. (2017)).

R-precision is defined as the top r relevant text descriptions out of R retrieved texts for
an image, and the candidate sentences are one relevant and 99 randomly selected sentences.
We observed through experiments, that when the sample size (i.e., number of candidate
sentence) is small, the R value has very high variance. Therefore, we used two sample sizes
at 100 and 30, 000, which we named R-precision(100) and R-precision(30K) respectively.

Limitations of both Inception and FID score were pointed out in several previous liter-
ature (Barratt and Sharma (2018), Lucic et al. (2018)). In terms of R-precision, it requires
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a pre-trained image-to-text retrieval model that is not available in some previous methods.
Therefore, we also show examples of our generation results versus previous literature.

The experiment results demonstrated below were performed on 30, 000 random samples
from the validation set for the IS score and the R-precision values. The FID score is reported
over the full validation set.

4.2. The Text Encoder

Below in Table 2, we demonstrate the performance of multiple text embedding losses in-
troduced in Section 3.1.4 and Section 3.1.5. The comparison is made in terms of the final
R-precision scores on the testing set. When calculating the R-precisions, the relevance be-
tween a pair of an image and a sentence is calculated using the cosine similarity between
the full feature of both.

Table 2 shows that applying LSENT-IMG +LPHRASE-OBJ achieves the highest R-precision
scores, which are 0.07% higher testing R-precision(100) and 0.12% higher R-precision(30K)
than the baseline model. The score is also higher than the two experiments that apply-
ing word-regular-grid attention (i.e. using LWORD-OBJ) to the learning. This shows that
firstly, using solely phrase and object-grid regions to construct the encoder loss is better
than applying LWORD-REGULAR and LPHRASE-OBJ together; secondly, introducing phrases
is important in learning the text representation.

Experiment R-precision(100)(%) R-precision(30K)(%)

LSENT-IMG + LWORD-REGULAR (baseline) 72.99± 4.50 4.732± 0.018
LSENT-IMG + LWORD-REGULAR + LPHRASE-OBJ 72.39± 4.26 4.481± 0.005
LSENT-IMG + LWORD-OBJ 71.91 ±1.83 4.473± 0.017
LSENT-IMG + LWORD-REGULAR + LWORD-OBJ 70.69± 2.99 4.030± 0.013
LSENT-IMG + LPHRASE-OBJ 73.06± 4.05 4.851± 0.015

Table 2: The R-precision(100) and R-precision(30K) on the testing set for the text encoders.
LSTM-BASIC is the basic bi-LSTM used in AttnGAN which is our baseline model. LSTM and
LSTM-PHRASE comes from the proposed method.

4.3. The GAN Network

Table 3 reports the R-precision, Inception score (IS) and FID score achieved by the previous
algorithms and the proposed methods. Apart from the metrics for the proposed method, the
R-precision(30K) score and the FID score for AttnGAN, other scores came from previous
literature (Zhang et al. (2017)). As StackGAN did not provide a way to extract image
features, the R-precision values were not reported.

We denote the proposed method which embeds the text information with LSTM-PHRASE
in addition to utilizing the object-grid regions and phrases in constructing the attention
mechanism as the method Proposed. In order to demonstrate the importance of intro-
ducing phrase and object-grid attention, Table 3 also reports the result for first, using only
word-regular-grid attention and second, using word-regular-grid and word-object-grid atten-
tion. We denote these two as WORD-REGULAR and WORD-REGULAR+WORD-OBJ
respectively. Both of them use the same text embedding as the Proposed method.

The proposed method achieves 4.2% higher R-precision (100) and 4.1% higher R-precision
(30K) than the baseline, which shows that the proposed method is able to generate im-
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ages that match more closely with the content described in the sentence. In addition, the
proposed method also achieves better performance than WORD-REGULAR and WORD-
REGULAR+WORD-OBJ. This shows that it is important to introduce phrases to the
learning.

Method R-precision(100)(%) R-precision (30K)(%) IS(30K) FID

StackGAN-v1 8.45± 0.03 74.05
StackGAN-v2 8.30± 0.10 81.59
AttnGAN 85.47± 3.69 6.72± 0.15 25.89± 0.47 32.12
WORD-REGULAR 85.97± 3.01 8.20± 0.16 26.18± 0.30 40.54
WORD-REGULAR+WORD-OBJ 88.25± 3.01 10.37± 0.13 24.81± 0.21 36.51
Proposed 89.69± 4.34 10.80± 1.96 26.92± 0.52 34.52

Table 3: R-precision, Inception and FID score score between AttnGAN and the proposed method.

Below we show two aspects with real samples that the generation result surpasses pre-
vious methods.

Firstly, as shown in Figure 4, it is able to generate images that match closer with a given
sentence, which is proven by the higher R-precision rate. This means that the proposed
method is less likely to “miss” objects. For example. In the case where “stop sign” and “go
light” are both mentioned, the proposed method is able to generate both objects instead of
only focusing on the “stop sign”. In addition, when multiple objects / object-grid regions
of the same type co-exist in the image, the proposed method is able to generate the correct
number of objects.

Secondly, the proposed method performs specifically well in displaying identifiable main
object, such as “A female” or “Large brown cow”. Through feeding the true-gird region
information, the proposed method is able to focus the attention on a more precise image
region instead of the entire image.

4.4. Bounding Box Prediction

In the phase of validation and training, the coordinates of each bounding box and number
of bounding boxes are predicted by separate networks, as explained in section 3.3. In this
section, we compare the performances of multiple alternatives of both predictions. Below
we denote the two prediction tasks as “Coordinates Prediction” and “Number Prediction”
respectively. Comparisons were made in terms of the validation losses over the training
iterations.

The first comparison is whether to use all sentences in the prediction tasks or to only
use those sentences with position related words. The second is in terms of the number of
layers used for the prediction

Figure 6: Validation losses of coordinates prediction and number prediction in terms of whether
to use the sentences that include position related words for the training.
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Caption Baseball
players
run after a
ball during
a game

A picture
of a stop
and go
light with
a stop sign
next to it

A kitchen
filled with
wooden
cabinets
and a
microwave
oven.

A metal
counter
topped
with lots
of cheesy
pizzas.

A group of
young men
standing
on top of
a soccer
field.

A pile of
oranges
sitting
inside of a
basket.

AttnGAN

Proposed

Caption A woman
in white
shirt
standing
in kitchen
area.

A busy
traffic area
on a street
during the
day

A female
wearing a
red shirt
lies on
a bed,
resting

Large
brown cow
standing
in field
with small
cow

A pizza
with
purple
cabbage
topping
on a table
next to
white bowl

Black
and white
photo of
a pedes-
trian at a
suburban
crosswalk

AttnGAN

Proposed

Table 4: Examples of images generated by the proposed method and AttnGAN.

From Figure 6 , it is clear to see that the best practice is applying 1 layer neural network
to both predictions, and that the out-numbered bounding boxes should be excluded when
calculating the losses.

5. Summary

Our work provides improvements over the state-of-the-art attention based GAN network for
text to image generation. Using phrase as an additional important encoding unit into image
generation, our proposed work has incorporated the following two innovations: Firstly, we
proposed a new design of text embedding which extracts additional phrase embedding.
Secondly, we incorporate a new set of attentions computed between object-grid regions and
phrases and bring them into our GAN network design. Through the experimentation on
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the MSCOCO dataset, our approach is capable of generating more realistic and accurate
images.
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