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Abstract

Stochastic Gradient Descent (SGD) has been widely adopted in training Deep Neural net-
works of various structures. Instead of using a full dataset, a so-called mini-batch is selected
during each gradient descent iteration. This aims to speed up the learning when a large
number of training data is present. Without the knowledge of its true underlying dis-
tribution, one often samples the data indices uniformly. Recently, researchers applied a
diversified mini-batch selection scheme through the use of Determinantal Point Process
(DPP), in order to avoid having highly correlated samples in one batch (Zhang et al.
(2017)). Despite its success, the attempts were restrictive in the sense that they used fixed
features to construct the Gram-matrix for DPP; using the raw or fixed higher-layer features
limited the amount of potential improvement over the convergence rate. In this paper, we
instead proposed to use variable higher-layer features which are updated at each iteration
when the parameter changes. To avoid the high computation cost, several contributions
have been made to speed up the computation of DPP sampling, including: (1) using hier-
archical sampling to break down a single DPP sampling with large Gram-matrix into many
DPP samplings of much smaller Gram-matrix and (2) using Markov k-DPP to encourage
diversity across iterations. Empirical results show a much more diversified mini batch in
each iteration in addition to a much improved convergence compared with the previous
approach.

Keywords: Image classification, Sampling methods

1. Introduction

Mini-batch and SGD are common tools used in machine learning. Often, the size of training
data becomes so large that it is impractical to render batch optimization (i.e., using the
entire dataset in every iteration). For example, Krizhevsky et al. (2012) trained a CNN
to classify 1.2 million images from ImageNet. Sutskever et al. (2014) built a sequence-
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to-sequence neural translation model with 12 million sentences that contained 348 million
French words and 304 million English words. Therefore, mini batch training was employed
to reduce the communication cost and parallelize the learning process (Li et al. (2014)).

Despite its wide usage, the most standard form of selecting mini-batches in SGD is to
sample data uniformly in each iteration and perform an update as follows:

wt+1 ← wt −
η

n

n∑
i=1

∇φi(wt) (1)

where wt is the parameter at time step t, φ is the loss function, η is the learning rate and
n is the size of the mini batch. As standard SGD employs uniform sampling, the stochastic
gradient is an unbiased estimate of the true gradient. It nonetheless, introduces variance
between iterations, which negatively affects the performance (Zhao and Zhang (2015)).

Using large mini batches can mitigate the problem by reducing the variance but it also
slows down the actual convergence (Byrd et al. (2012)). There have been several attempts
made to optimize the performance of mini batch training: Li et al. (2014) added a con-
servative constraint to the loss function in order to control differences between parameters
across iterations and γ is a coefficient:

wt = argmin[φ(w) +
γ

2
||w − wt−1||22] (2)

Johnson and Zhang (2013) proposed a method named Stochastic Variance Reduced
Gradient (SVRG) that replaced the training target with a new random vector that had the
same expectation but a smaller variance. Alain et al. (2015) applied distributed importance
sampling where the sampling weight was proportional to the L2-norm of the gradient. Gopal
(2016) proposed a similar idea by separating the data into bins using side-information and
maintaining the distribution at a class level rather than an instance level. Yin et al. (2017)
studied the role of dissimilarity between concurrent gradient updates in the mini-batch
SGD performance and proposed a data-dependent scheme to choose the batch size. Xie
et al. (2016) analyzed one-hidden-layer neural network and proposed a novel regularization
function that could potentially lead to better generalization.

Other researchers reduced variances through modifying sampling methods. Zhao and
Zhang (2014) proposed an algorithm named Stochastic Gradient Descent with Stratified
Sampling (SGD-ss) that applied clustering to separate the dataset into clusters before uni-
formly sampling for mini batches within each cluster. In addition, the method required data
in each cluster belonging to the same category. The weight update formula now becomes:

wt+1 ← wt −
η

n

k∑
i=1

b∑
s=1

∇φs(wt) (3)

where k is the total number of clusters and b is the number of samples to be selected
within each cluster.

While most research in the space of SGD variance reduction assumes the loss function to
be convex and smooth, such as in Shamir (2011), recent works by Johnson and Zhang (2013)
and Reddi et al. (2016) also proved that SVRG can be applied to non-convex functions.
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Although these works can theoretically accelerate the training process, there is still the
requirement for an underlying data distribution to be known for the weight updates.

In order to improve the efficiency of SGD convergence without the assumption of any
underlying data distributions, Zhang et al. proposed a strategy called DM-SGD that applied
k-DPP to mini-batch sampling.

Given fully-connected feature vectors W and corresponding one-hot labels H, DM-SGD
calculates the feature vector for each data sample as a weighted concatenation between the
two, i.e. feature vectors are calculated as:

F = [(1− w)W wH], 0 ≤ w ≤ 1 (4)

The Gram-matrix L for the sampling is defined as L = FF>. In addition, authors
proved that: For all data points xi and xj and all parameters θ, if:

∀i 6=j : Cijg(xi, θ)
>g(xj , θ) < 0 (5)

Then DM-SGD has a lower variance than SGD. Here, g represents the gradient, Cij is
the correlation between the two data points, which is negative when data points are similar
and positive when dissimilar. Therefore, applying k-DPP sampling guarantees variance
reduction.

Authors demonstrated the performance on several datasets including the MNIST (Le-
Cun et al. (1998)) and Oxford flower 102 datasets (Nilsback and Zisserman (2008b)). In
the MNIST dataset, authors used the raw image pixels to define feature vectors. In Oxford
Flower 102 dataset, the feature vector for each image was defined using the first fully-
connected layer of the pre-trained VGG-16 network (Simonyan and Zisserman (2014)).
Authors then trained a linear softmax classification with off-the-shelf CNN features. There
are two drawbacks in DM-SGD:

Firstly, when raw input features are used, it measures diversities in terms of the Eu-
clidean distance in the input space. This is prohibitive; and in fact, the very reason neural
network is applied, is to transform data non-linearly from its original space into a layer
before the output, such that the features now becomes a lot more expressive. Therefore, if
any features are to be used to guide the mini-batch selection, we need to use them before the
last layer instead of the first input. However, this also creates another problem in that the
network parameters are not static and are updated throughout the iterations; Therefore,
we must use the updated features at each iteration as opposed to what DM-SGD proposes.

Secondly, mini-batch selection using DPP may become prohibitively slow when the entire
set of data Ω is used to compute its Gram-matrix, even if this operation is only computed
once. Therefore, the “fixed” feature approach is somewhat only theoretically plausible.

For these reasons, we must update the features to compute the Gram-matrix at each
iterations. Given sampling DPP once is already far too much computation, sampling at
each iteration with an updated Gram-matrix would further increase the already-infeasible
complexities. Therefore, it is natural to use an approximated DPP to dramatically improve
its computation time. By observing this in the last or higher layer, we found that features
within each class have a higher tenancy to stay closer and data between classes tend to
separate. Therefore we chose the last fully-connected layer to construct the Gram-matrix
in our algorithms. We also took the so-called Class-Dependent DPP sampling by using
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hierarchical sampling to break down a single DPP sampling with large Gram-matrix into
many DPP sampling of much smaller Gram-matrix. In the lower hierarchy, each sampling
is to be performed on data within its own class. To further improve the computational
efficiency, we also used Markov k-DPP to encourage diversity across iterations. Accordingly,
we propose five separate mini-batch selection algorithms, which are explained in section 3;
We also show their empirical effectiveness, where these mini-batch selection schemes are
applied to classification problems on the Oxford 102 (Nilsback and Zisserman (2008a)),
Stanford Dogs (Khosla et al. (2011)) and Caltech 101 dataset (Fei-Fei et al. (2007)).

The rest of the paper is organized as follows. Section 2 reviews approaches to sample
DPP. Section 3 explains the three approaches we propose to enhance the performance of
mini batch training. Section 4 demonstrates the results and comparison between algorithms.
Section 5 is the conclusion.

2. Background

For completeness, we briefly outline DPP, which is a random process used to model a subset
Y selected from a base set Y. In particular, DPP encourages Y to contain a diverse set of
items, and is therefore applied to some sampling and summarization tasks where diversity is
preferred, for example, detecting people and their poses in an image (Kulesza et al. (2012)).

Consider a random subset Y drawn from Y according to P, for every subset A ⊆ Y:

P(Y ⊇ A) = det(KA) (6)

where K is called the marginal kernel which is a real, symmetric, positive semidefinite N×N
matrix indexed by elements of Y.

DPPs can be constructed alternatively with a real, symmetric matrix L indexed by the
element of Y instead of the marginal kernel K, in which case L is called L-ensembles. Let
L be the Gram-matrix, constructed from B, the feature vector for each element in the base
set Y, i.e., L = B>B:

L-ensembles directly specifies the probability for a possible subset A as follows:

PL(Y = A) =
det(LA)

det(L+ I)
(7)

where LA is a part of L that is indexed by elements in A, and I is the identity matrix.

2.1. K-DPP

k-DPP models the distribution over subsets with size k from Y Kulesza and Taskar (2011),
which ensures that the number of data sampled is of a fixed size.

P k
L(Y ) =

det(LY )∑
|Y ′|=k det(LY ′)

(8)

2.2. Markov DPP

Markov DPP further encourages diversity between two subset selections. Suppose Yt is the
subset sampled at timestep t, and Yt−1 is the subset sampled at timestep t, Markov DPP
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tries to maximize the conditional probability of sampling Yt given Yt−1. In other words, it
tries to make the sample diverse from previous samples as shown below.

The sampling strategies for normal DPP sampling, k-DPP sampling and Markov k-DPP
sampling are demonstrated in Kulesza et al. (2012) and Affandi et al. (2012).

3. Methodology

Deep Neural networks, such as CNN can be thought as a process of data projection to
serve the functions of its final layer, for example, a Softmax. The learning requires back-
propagation, which can be very computational when the data size is large. For this reason,
a mini-batch is used instead at every iteration to approximate a “batch method”:

θt+1 = θt − ηE[Of(x, θ)] (9)

by using:

{x(i) ∼ p(x)} θt+1 = θt − η
1

Mmb

Mmb∑
i=1

Of(xi, θ) (10)

where Mmb is the mini-batch size. In most instances, we do not know the underlying
distribution p(X). Therefore, a uniform sampling of data indices has been used instead.
In our work, we use DPP to select a diversified set of data points within each category for
each SGD iteration.

Although it may be possible to allow the size of mini-batches to vary in each iteration,
it is practical to keep them the same across iterations. Therefore, in this work, we used a
k-DPP, where each DPP draw generates a subset having equal cardinality k.

3.1. Gram-Matrix Construction from variable higher-layer features

DPP sampling requires a Gram-matrix which defines similarities between data points. The
past literature offers two forms of features to construct a Gram matrix, namely the raw
feature and fixed higher layer feature.

In terms of the raw feature, it uses the input directly as feature vectors. For example,
DM-SGD (Kulesza et al. (2012)) uses the Gram-matrix from raw MNIST image pixels which
are first reshaped into 1D. This method does not require additional feature extractions, and
the eigen-decomposition for the matrix only needs to be calculated once without the presence
of neural network.

In terms of fixed higher layer feature, it is obtained by feeding each data sample to a
pre-trained deep neural network such as VGG-16. In the same way as the raw data, the
Gram-matrix is not updated during training.

3.1.1. Variable Higher-Layer Features and the Advantages

The first two constructions are computationally effective since the Gram-matrix and eigen-
decomposition only need to be computed once. However, using raw feature, measuring
diversities in terms of the Euclidean distance in the input space can be mis-leading as the
purpose of neural network is to project data from its original space to a layer before output,
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to better serve the function of the output layer. Therefore, we ought to use data of the
last (or higher) layer instead of the input. Since the parameters changes over iterations,
using fixed higher feature to construct a fixed Gram-matrix, does not reflect the parameter
update and makes it entirely dependent on the initial parameter guess.

For this reason, we used the output from the last fully-connected layer as the feature
vector to construct the Gram-matrix. These features are recomputed since the network is
updated through back-propagation. Thus we name them the variable higher-layer feature.

We demonstrated the advantage of using variable higher-layer feature, and its remark-
able expressive power over using raw or fixed higher-layer features. In Figure 1, we plotted
the feature vectors used to construct the three Gram-matrices for the Oxford Flower 102
datasets. In terms of variable higher-layer features, we used the value of the last iteration.

Figure 1: A visualization of three feature vectors being used for constructing Gram-matrix.
From left to right, each figure represents raw, fixed higher-layer and variable higher-layer
features respectively. Each category is represented in a unique color. Features are dimension
reduced using t-SNE.

The figure shows that raw or fixed higher-layer features provide very high intra-class
variances as data of the same class tend not to be close. On the contrary, variable higher-
layer feature have much lower intra-class variance. Numerically, we measured the Calinski-
Harabaz score for the three feature vectors as in Table 1. The Calinski-Harabaz score is
defined as a ratio between the within-cluster dispersion and the between-cluster dispersion.
A higher score shows dense and well separated clusters, and in a classification problem, the
class labels of training data provide the cluster information. Not surprisingly, the variable
higher-layer feature has much higher Calinski-Harabaz score than the other two.

Raw pixels Fixed Features Variable Features

Oxford 102 10.3827 26.7641 78.4164

Table 1: Calinski-Harabaz score for raw, fixed higher-layer and variable higher-layer fea-
tures in Oxford 102.

3.1.2. Computationally-Feasible Way to Construct Variable Gram-Matrix

Knowing that we ought to construct Gram-matrix using variable higher-layer features has
barely solved any problems, as generating random samples from a DPP with a large Gram-
matrix can be prohibitively expensive, since the operation involves eigen-decomposition. For
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these reasons, we proposed five different mini-batch approximation schemes below, which
is also the key contribution of our paper.

In each of these methods the Gram-matrix sizes are drastically reduced, allowing the
algorithm to significantly accelerate training. Remarkably, whilst we update Gram-matrix
construction at each iteration, our experiment shows that our method achieves much quicker
convergence compared with previous approaches. In this paper, we provide two broad
categories of approaches, namely, the Full-set DPP sampling and Class Dependent DPP
sampling.

3.1.3. Full-set DPP Sampling

In this category, one does not take into account of the class label information when sam-
pling DPP. The subsets are selected independent of their labels. There are two versions of
algorithms, which we named FULL-SINGLE-DPP and FULL-MARKOV-DPP respectively:

FULL-SINGLE-DPP In here, in each ith iteration, one first samples a larger subset
S̃ uniformly from the full training set Ω, before sampling a random subset Si using k-DPP
from S̃. Compared with DPP sampling from Ω directly, this method has drastically sped
up its computation. The choice of |S̃| is arbitrary as long as it is larger than K: we have
chosen it to be a multiple of K. Obviously, a larger |S̃| results in a longer duration, but
at the same time it also increases its performance in terms of a faster convergence and
accuracy as well as the Calinski-Harabaz score. Therefore, one may select an optimized and
appropriate trade-off value given the size of the dataset. This approach is summarized in
Algorithm 1.

In addition, in order to collect the feature matrix Wi, a feed-forward process is required
for S̃. The Gram-matrix for the k-DPP sampling is thus calculated as WiW

>
i .

Algorithm 1 FULL-SINGLE-DPP sampling

Data: Data Ω, mini-batch size K
for i = 1 to MaxIter do

S̃ ∼ U(Ω)
Obtain the feature matrix Wi in feed-forward(S̃)
Si ∼ k-DPP(WiW

>
i )

Perform updates according to equation 10
end

FULL-MARKOV-DPP FULL-SINGLE-DPP only provides samples with diversities
within a single iteration. However, diversities are also needed between consecutive itera-
tions. For this reason, we also proposed the cross-iteration diversity sampling scheme which
we named FULL-MARKOV-DPP. In here, it uses conditional Markov k-DPP to perform
sampling on Si conditioning on all previous samples {St<i}. Therefore, in addition to en-
couraging samples in each mini batch to be as diverse as possible, it also encourages samples
to be more diverse across the iterations. Details are in Algorithm 2.

The original Markov k-DPP works on a fixed Gram-matrix across time steps. However,
as we apply sampling on a set of randomly selected data points, the Gram-matrix also
needs to be re-calculated. From the second iteration, the Gram-matrix is calculated from
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Algorithm 2 FULL-MARKOV-DPP sampling

Data: Data Ω, mini-batch size K
for i = 1 to MaxIter do

S̃ ∼ U(Ω)
Obtain the feature matrix Wi in feed-forward(S̃)
if iter = 1 then
Si ∼ k-DPP(WiW

>
i )

else
Si ∼ markov-kDPP(WiW

>
i , {St<i})

end
Perform updates according to equation 10

end

the uniform random subset S̃i and conditioning factors {St<i} that are mini batch samples
from the previous iterations.

3.1.4. Class-Dependent Stochastic DPP

The second broad category of our proposed methods is Class-Dependent stochastic DPP.
Given categories 1, . . . , C, it takes a hierarchical approach to sampling: in the first hierarchy,
a sampling is first performed within each class to obtain d initial data points. In the second
hierarchy, a second k-DPP is applied to sample the final mini-batch with size K. This
hierarchical approach of DPP sampling breaks down a single DPP sampling with large
Gram-matrix into many DPP sampling of much smaller Gram-matrix, hence enhancing its
performance dramatically.

We propose three methods in this category as shown in Algorithm 3, differing only
in terms of the first hierarchy: CLASS-SINGLE-DPP and CLASS-MARKOV-DPP
applies k-DPP and Markov k-DPP respectively as in the Full-set DPP sampling case in
section 3.1.3.

CLASS-IMBALANCE: this is to handle scenarios where there are class-imbalance
problems. Some classes may have significantly more data points than other sets, therefore,
DPP sampling is only applied to “smaller” class data, and uniform sampling is applied to
the rest. In here, Markov k-DPP is only applied to classes with numbers of samples below
a threshold δ. The Class-Dependent Stochastic DPP is summarized in Algorithm 3.

where
SELECT(W c,Ωc) =

kDPP(W cW>c ) CLASS-SINGLE-DPP

markov-kDPP(W cW>c , {St<i}) CLASS-MARKOV-DPP{
markov-kDPP(W cW>c ), nc < δ

U(Ωc), nc ≥ δ
CLASS-IMBALANCE

In conclusion, the differences between the proposed methods relative to DM-SGD lie in
the following perspectives.
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Algorithm 3 Class-Dependent Stochastic DPP

Data: Data Ω, number of samples in each categories {n1, . . . , nC}
for i = 1 to MaxIter do

for c = 1 to C do
obtain W c

i in feed-forward(Ωc)
Sc
i ∼SELECT(W c

i ,Ω
c))

end
Obtain the feature matrix Wi by concatenating features of [S1

i , . . . S
c
i ]

sample Si ∼ k-DPP(WiW
>
i )

Perform updates according to equation 10
end

1. The feature vectors W used to compute the Gram matrix are not coming from raw or
fixed higher-layer features and instead they are variable higher-layer features, which
are updated as parameters change in each iteration.

2. Unlike DM-SGD as in Equation 4, the label information is not used in defining the
feature vector for each data sample.

3. Various techniques are employed to avoid DPP sampling on the full training set which
significantly saves the time cost in performing sampling.

4. Markov k-DPP is employed to encourage diversity across iterations as well.

In terms of the variance reduction, Zhang et al. (2017) proved that DM-SGD, which
employs k-DPP sampling, has a lower gradient variance than vanilla SGD. The same proof
can be easily applied to our proposed method. The proposed methods also employ distance-
dependent similarity kernel and sample diverse points, thus naturally inherit the properties
of k-DPP.

3.2. Computation Complexity Analysis

In this section, we give the sampling duration computation complexity of the proposed
methods and compare it with DM-SGD.

Assume that the entire dataset Ω contains N data samples and each mini-batch contains
K items. In each iteration, DM-SGD requires O(N3) to perform the eigen-decomposition
and O(NK + K2) to perform the sampling in each iteration. The total time cost after I
iterations is:

TDMSGD = O(N3 + (NK +K2) · I) (11)

Full-set DPP performs sampling on a much smaller subset Si in iteration i. Assume
that the size of Si is T of the original set Ω and T ∈ (0, 1] (e.g. T = 1/3). The proposed
methods do not require the eigen-decomposition to be performed on the N ×N similarity
kernel prior to the training. The computation cost in each iteration is O((NT )3 +NTK +
K2). The total computation cost for I iterations is:
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TFULL SET = O
((

(NT )3 +NTK +K2
)
· I
)

(12)

If we compare the two values TDMSGD and TFULL SET, we can easily derive that the
condition for TDMSGD > TFull SET is:

(1− T 3I) ·N2 + (1− T ) ·KI > 0 (13)

As (1 − T ) · KI is always positive, if we only focus on the first term, then as long as
T 3 < 1/I, we can have TDMSGD > TFull SET. For example, when I is 10, 000, as long as Si
is smaller than 1/22 of the entire dataset, FULL-set DPP is more time efficient than DM-
SGD. This is quite an easy constraint to be met. Taking the second term into consideration
should further loosen this constraint.

Class-dependent DPP is slightly more complex as it performs separate sampling in
each category of data. If we simplify the problem setting by assuming that C categories
equally split the entire dataset, and the subset Sc

i sampled from category c contains T of
total samples in this category, the total computation cost is

TClass-dependent =

((
(
N

C
)3 + (

N

C
) · (N

C
· T ) + (

N

C
· T )2

)
·C + (NT )3 + (NT ) ·K +K2

)
· I

(14)
Therefore, the required condition for TDMSGD > TClass-dependent is:(

I

C2
+ I · T 3 − 1

)
·N2 +

(
T

C
+
T 2

C

)
·NI + (T − 1) ·KT < 0 (15)

If we take the Stanford Dogs dataset, whose statistics are shown in Table 2, as an
example and we set K = 50, T < 1/32 is required such that Class-dependent DPP is more
computationally efficient than DM-SGD.

In Figure 2, we plot the training duration, which includes the sampling, feed-forward
and back-propagation duration, over different T when the total iterations I is 10, 000. All
experiments are performed on the Oxford 102 dataset using the full VGG-16 network.
DMSGD2 is the baseline model, the details and explanation of which can be found in
Section 4.2. It is clear to see that the computation cost of the proposed algorithms is lower
when T is larger. When T < 1/10, all four proposed methods are more efficient than the
baseline model.

4. Experiments

4.1. Datasets

Experiments were performed on several image classification problems using the Oxford 102
Flower (Nilsback and Zisserman (2008a)), Stanford Dogs (Khosla et al. (2011)), Caltech
101 datasets (Fei-Fei et al. (2007)) and MNIST dataset. The statistics of these datasets are
as below.

Following the original paper from Zhang et al. (2017). The training of Oxford 102
Flower dataset was performed on the 6,149 testing images and the testing was performed
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Figure 2: Duration over T on the Oxford 102 dataset

Dataset Oxford 102 Stanford Dogs Caltech 101 MNIST

#categories 102 120 101 10

#samples
train test val train test val 9,145 train test
1,020 6,149 1,020 12,000 8,580 8,580 60,000 10,000

Table 2: Statistics for Datasets

on the 1,020 training images, i.e. the training and testing sets were interchanged in our
experiments. In addition, as Caltech 101 dataset does not provide the train-test split, we
randomly selected 80% of the data from each category as the training set and we equally split
the rest of the data in each category as the testing and validation set. Lastly, performing
eigen-decomposition on the entire Gram-matrix generated from MNIST image features is
extremely time consuming. Therefore, we randomly selected 20% from each category to
perform the training, another 20% as the validation set. We used the original test set for
the testing. The results were collected from multiple experiments with random selections.

4.2. Baseline Models

We compared the proposed methods against two baseline models on the first three datasets.
The first baseline model is the DM-SGD from Zhang et al. (2017), which uses the off-the-
shelf last fully-connected features and the label information to construct the Gram-matrix.
As the design from the original paper only trains the layer before the softmax layer, we
also compared the proposed algorithms with the second baseline model, which we named
as “DMSGD2”. DMSGD2 allows all layers of deep neural networks to be trained while the
sampling still relies on the off-the-shelf last fully-connect features. For both DM-SGD and
DMSGD2, Equation 4 is applied to calculate the feature vector F for each data sample.
The proposed methods construct the Gram-matrix using the last fully-connected features
as shown in the pseudo-codes.

In terms of the MNIST dataset, we compared the proposed methods against one baseline
model DM-SGD. Following Zhang et al. (2017), DM-SGD uses the raw image pixels and the
label information to construct a RBF kernel for the sampling. It also trains a full 5-layer
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CNN network instead of only the last layer as on the previous datasets. The proposed
method still uses the Gram-matrix generated from the last fully-connected features and
trains the same 5-layer network.

4.3. Performance Evaluation on Oxford 102 Flower

This section evaluates the performances of the proposed methods, by comparing them
against the baseline models.

Comparisons were made in terms of accuracy, Calinski-Harabaz scores and time costs.
Following the original paper, the results are demonstrated via fine tuning the pre-trained
VGG-16 model. Experiments were performed with 10, 000 iterations, learning rate is fixed
as 1e−5 and the batch size is set to be K = 50. The same setting is applied to all datasets.

Experiment Calinski-Harabaz Score

FULL-SINGLE 66.4588± 1.6767
FULL-MARKOV 68.1966± 2.5753
CLASS-SINGLE 72.8985± 3.5527
CLASS-MARKOV 78.4164± 2.0534
DM-SGD 26.7737
DMSGD2 26.7737

Experiment Accuracy Duration(seconds)

FULL-SINGLE 0.9010± 0.0027 17, 587.096± 77.5
FULL-MARKOV 0.9080± 0.0065 24, 867.031± 96.0
CLASS-SINGLE 0.9157± 0.0027 24, 671.139± 106.3
CLASS-MARKOV 0.9333± 0.0040 28, 760.66± 151.6
DM-SGD 0.8852± 0.0038 31, 257.426± 82.8
DMSGD2 0.8983± 0.0044 33, 994.164± 143.5

Table 3: Demonstration of performances on the Oxford 102 Flower dataset. The top row
shows the Calinski-Harabaz Score of the training set over iterations and the final score. The
bottom row shows the validation accuracy over the training duration in addition to the final
testing accuracy and total duration.

In terms of the accuracy, Table 3 shows that the proposed algorithms were able to
achieve faster convergence rates and higher final testing accuracies. The proposed methods
achieved up to 3.50% higher accuracy than baseline models.

In addition, compared with baseline models which used fixed Gram-matrices, we were
able to achieve a much higher Calinski-Harabaz score during training.
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Table 3 also reports validation accuracies over time costs and the total training du-
ration. The displayed time costs for the proposed methods include both sampling and
back-propagation duration in each iteration while omitting the data processing duration.

Results show that all four proposed methods spent less time in sampling than the DM-
SGD, even when the eigen-decomposition needed to be performed in each iteration. In
particular, FULL-SINGLE spends 56.27% time costs of the original DM-SGD and achieves
a higher testing accuracy.

Compared among the four proposed methods on the four datasets, class dependent
stochastic sampling achieves a better performance than full-set sampling on all four datasets.
Methods that employs markov-kDPP performs better than using k-DPP.

4.4. Performance Evaluation on the Stanford Dogs Dataset

Table 4 reports the validation accuracy over training iterations and the training duration
on the Stanford Dogs Dataset. The best performed CLASS-MARKOV were 5.5% higher in
accuracy than DM-SGD and 3.0% higher than DMSGD2. In terms of the training duration,
all four proposed methods require less training duration compared to DM-SGD. It is clear in
the figure that the proposed algorithms have a faster learning curve and a clear advantage
in computation efficiency.

Experiment Accuracy Duration(seconds)

FULL-SINGLE 0.7738± 0.0228 25, 268.7± 110.1
FULL-MARKOV 0.8114± 0.0135 29, 497.8± 83.5
CLASS-SINGLE 0.8130± 0.0072 30, 831.7± 84.8
CLASS-MARKOV 0.8165± 0.0032 36, 814.6± 78.5
DMSGD 0.7612± 0.0115 47, 817.7± 118.0
DMSGD2 0.7867± 0.0014 49, 763.4± 79.1

Table 4: Performances for the Stanford Dogs Dataset. The table reports the final testing
accuracy and training duration, the right graph shows the validation accuracy over the
training duration.

4.5. Performance Evaluation on the Caltech 101 Dataset

Table 5 reports the validation F1 score over training iterations and the training duration on
the Caltech 101 Dataset. Since the dataset is highly imbalanced, the results are measured
by F1 score rather than accuracy. The best performed CLASS-SINGLE results in a 7.2%
higher F1 than DM-SGD and 2.4% higher than DMSGD2. In terms of the training duration,
FULL-SINGLE requires approximately of the 49.8% time cost compared to DM-SGD, and
all proposed methods spent less time than the two baseline models. It is clear to see that
the proposed methods achieve a better performance on this highly imbalanced dataset.
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Experiment F1 Duration(seconds)

FULL-SINGLE 0.9165± 0.0317 20, 231.5± 96.6
FULL-MARKOV 0.9182± 0.0116 20, 464.8± 108.0
CLASS-SINGLE 0.9232± 0.0093 26, 548.0± 82.1
CLASS-MARKOV 0.9221± 0.0023 26, 809.6± 143.3
CLASS-IMBALANCE 0.9097± 0.0359 26, 250.9± 65.6
DM-SGD 0.8515± 0.0102 40, 604.2± 84.5
DMSGD2 0.8990± 0.0092 45, 491.3± 167.0

Table 5: Performances on the Caltech 101 dataset. The table reports the final F1 score and
training duration, the right graph shows the validation accuracy over the training duration.

In addition, it can be noted that class-dependent stochastic sampling methods perform
better than the full-set sampling methods on this dataset, while CLASS-MARKOV performs
slightly worse than CLASS-SINGLE in terms of the testing F1. This is because images in
the CALTECH 101 dataset has high intra-class variance. While class-dependent sampling
performs seperate sampling across categories, further encouraging diversity across iterations
does not necessarily improve the performance as on other datasets.

4.6. Performance Evaluation on MNIST

Table 6 reports the performance on the MNIST dataset. The proposed method still out-
performs DM-SGD in terms of the final testing accuracy. As for the computational cost,
class-dependent DPP actually require a longer duration. This finding is also supported by
our analysis in Section 3.2, as MNIST only has 10 categories. On the contrary, the proposed
full-set DPP methods only require less than 30% total training duration of DM-SGD.

Experiment Accuracy Duration (seconds)

FULL-SINGLE 0.9704± 0.0025 6, 841.92± 163.57
FULL-MARKOV 0.9703± 0.0011 11, 109.3± 160.67
CLASS-SINGLE 0.9712± 0.0015 36, 204.4± 120.07
CLASS-MARKOV 0.9714± 0.0034 52, 640.0± 247.16
DM-SGD 0.9609± 0.0004 32, 224.8± 202.95

Table 6: Performances on the MNIST dataset. The table reports the final testing accuracy
and training duration, the right graph shows the validation accuracy over the training
duration.
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5. Conclusion

Diversified mini-batch selection at each Deep Neural networks iterations results in a faster
algorithm convergence compared with uniform selection. In this paper, we proposed several
fast, approximated DPP sampling strategies by taking advantage of available class-label
information, which, in turn, allowed us to sample DPP using a Gram-matrix that is con-
structed from the variable higher layer features, updated at each iteration as parameters
change. We detailed the five approaches employed in this paper and the rationale behind
how these methods have significantly reduced the time costs. We demonstrated that all
proposed algorithms were able to achieve a faster convergence rate and a higher accuracy
compared to the previous state-of-the art “fixed” feature approach.
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