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Abstract

Deep learning approaches have made great progress for the scene text detection in recent
years. However, there are still some difficulties such as the text orientation and varying
aspect ratios. In this paper, we address these issues by treating a text instance as a
sequence of fine-scale proposals. The vertical distances from a text pixel to the text borders
are directly regressed without the commonly used anchor mechanism, and then the small
local proposals are connected during the post-processing. A U-shape convolutional neural
network (CNN) architecture is used to incorporate the context information and detect small
text instances. In experiments, the proposed approach, referred to as Anchor-Free oriented
text detector with Connectionist Text Proposal Network (AFCTPN), achieves better or
comparable performance with less time consumption on benchmark datasets.
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1. Introduction

Scene text detection is an important task in computer vision. Driven by its numerous po-
tential applications like product identification and autonomous driving, scene text detection
has obtained great development these years. However, it is still challenging to detect the
scene text coming with complex scenarios, diverse shapes and various aspect ratios.

Scene text can be detected at three levels, including character, word and line level.
Most traditional text detectors work at the character level, for example, Maximally Stable
Extremal Regions (MSER) based methods (Neumann and Matas (2011)) assumed chro-
matic consistency within each character and Stroke Width Transform (SWT) based meth-
ods (Epshtein et al. (2010)) assumed consistent stroke width within each character. Deep
learning approaches usually work at the word level or the line level. Different from charac-
ters which have constant aspect ratios, words or lines may have varying aspect ratios. A
sentence in Latin languages consisting of a sequence of words separated by spaces can be
detected at the word level. However, a sentence in many non-Latin languages, such as Chi-
nese, Japanese and Korean, consists of a long sequence of characters and no obvious mark
can be found to split neighboring characters. Compared to the character-level detection, it
seems easier and more efficient to locate the whole sentence for non-Latin languages. Un-
fortunately, the text lines usually come with extreme aspect ratios, thus common methods
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designed for the word-level detection fail on this task due to the anchor mechanism used
and the limitation of receptive field.

Some approaches have been proposed to solve the aspect ratio problem. In TextBoxes
(Liao et al. (2017)), anchors with large aspect ratios and one-dimensional horizontal convo-
lutional kernels were used. The CTPN (Tian et al. (2016)) detected a text line in a sequence
of fine-scale text proposals in convolutional feature maps. A vertical anchor mechanism was
proposed that jointly predicted location and text/non-text score of each fixed-width pro-
posal. The sequential proposals were then connected by a recurrent neural network to
explore the context information.

Another issue for the scene text detection is the text orientation. Scene texts may have
arbitrary orientations and even irregular shapes, i.e. curved texts. Some work has been
done for the oriented scene text detection (Liao et al. (2018); Ma et al. (2018); Dai et al.
(2018); Deng et al. (2018); Lyu et al. (2018b)). In the paper (Liao et al. (2018)), rotation-
sensitive features were extracted by actively rotating the convolutional filters for regression.
RRPN (Ma et al. (2018)) followed the standard Faster R-CNN framework (Ren et al.
(2015)) and replaced the standard axis-aligned rectangles with rotation region proposals
for RPN. Instance-aware semantic segmentation methods were used by Dai et al. (2018);
Deng et al. (2018); Lyu et al. (2018b), which leveraged segmentation maps for generating
arbitrary-shaped text mask.

In this paper, we propose a fast and easy-training network named Anchor-Free oriented
text detector with Connectionist Text Proposal Network (AFCTPN) for the oriented scene
text detection. As indicated by its name, AFCTPN follows the idea of CTPN to treat a
text instance as a sequence of fine-scale proposals, which makes it able to detect texts with
varying aspect ratios. We remove the vertical anchors in CTPN and directly predict the
vertical distances from a text pixel to the top and bottom borders. To be more accurate
with smaller text instances, we use a U-shape network to explore the context information
and improve the resolution of the final feature map. By using the higher resolution map
and smaller proposals, our method can detect small texts and long text lines with arbitrary
orientation. Meanwhile, the efficiency is improved by removing the anchors and RNN layer
in CTPN.

In summary, our contributions in this paper are three-fold. First, we directly regress a
sequence of fine-scale proposals, which are not affected by the aspect ratio and can be used
for the long oriented text detection. Second, we improve the detection speed by removing
the anchor mechanism and simplifying the pipeline. Finally, our AFCTPN achieves better
or comparable F-measure with much higher detection speed on two benchmark datasets.

2. Related Works

Over the past few years, the scene text detection has been a hot research area due to the
great potential on real-world applications. Numerous inspiring ideas and effective methods
based on deep learning have been proposed to distinguish text instances from complex
natural scenes. These approaches can be roughly divided into two categories: regression-
based methods and segmentation-based methods.

Regression-based methods usually follow the standard object detection frameworks, such
as Faster R-CNN and SSD (Liu et al. (2016)). TextBoxes (Liao et al. (2017)) modified the
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anchor shape and kernel size of SSD to adapt to various aspect ratios of text regions. RRPN
(Ma et al. (2018)) used rotation region proposals for the regional proposal network (RPN)
of Faster R-CNN to detect the arbitrary oriented text. However, common regression-based
methods usually rely on the custom anchor design and fail to detect the extremely long
texts. In the paper (He et al. (2017c)), a deep direct regression method was proposed for
the oriented text detection, in which the vertex coordinates of quadrilateral text boundaries
were directly predicted without anchors (or proposals).

Inspired by the fully convolutional network (FCN) (Long et al. (2015)), many approaches
treat the text detection as a semantic segmentation problem. They usually output a dense
pixel-level score map indicting whether a pixel belongs to a text region, thus segmentation-
based methods can be used for the oriented text detection with extreme aspect ratios. How-
ever, text instances in scene images usually lie very close to each other. In such cases, they
are very difficult, and are sometimes even impossible to be separated via semantic segmen-
tation. Instance-aware semantic segmentation method was used by Dai et al. (2018), which
leveraged the merits from accurate region proposal based methods and flexible segmenta-
tion based methods generating arbitrary-shaped text mask. PixelLink (Deng et al. (2018))
generated a connection map to divide pixels into different text instances. TextSnake (Long
et al. (2018)) was proposed to represent the curved text region with ordered disks. PSENet
(Wang et al. (2019)) predicted segmentation mask with different scales and introduced a
progressive scale expansion algorithm to obtain the final detection result.

In the papers (Zhou et al. (2017); Lyu et al. (2018b)) the regression-based method
and the segmentation based method were combined. EAST (Zhou et al. (2017) predicted
a dense score map like segmentation-based methods and a geometry map to regress the
shapes of text instances. The final text region was retrieved from the post-processing on
the two maps. In the paper (Lyu et al. (2018b)), 4 corner points and 4 position sensitive
segmentation maps were predicted. In inference stage, candidate boxes were generated by
sampling and grouping corner points, which were further scored by segmentation maps and
suppressed by non-maximum suppression (NMS).

Our approach is mostly related to EAST (Zhou et al. (2017)) and CTPN (Tian et al.
(2016)). Similar to EAST, we use direct regression without anchors. But different from
EAST, we predict a sequence of fine-scale proposals and only predict the vertical distances
to the top and bottom borders, since it is harder to predict the horizontal distances precisely
due to the text orientation and aspect ratio. That is why EAST may fail to detect the long
text. Our method is inspired by CTPN. Considering the fact that text instances seldom
overlap each other, we eliminate the anchor mechanism in CTPN. And we also remove the
RNN layer in CTPN, which is used to encode the text-line context information. We argue
that the horizontal RNN enrolls too much background while detecting oriented text and it
is time-consuming and poses a challenge to train the whole network. A U-shape network
architecture is used in our model and the context information can be obtained from top
layer features. Our approach has outperformed the EAST and CTPN by a large margin on
ICDAR2015 dataset in both accuracy and speed. Comparison of the detection results of an
image is shown in Fig. 1. It can be seen that CTPN fails for the oriented text detection,
and EAST performs poorly for the long text lines.
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(a) (b) (c)

Figure 1: Detection results of CTPN (a) , EAST (b) and our method (c), respectively.

3. Methodology
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Figure 2: Network Architecture based on VGG16. The maps after convolution, pooling and
upsampling are represented by yellow, red and blue, respectively.

3.1. Network Architecture

The network architecture is shown in Fig. 2. There are five blocks in the backbone network.
We use VGG16 (Liu and Deng (2015)) and ResNet50 (He et al. (2016)) in our experiments
as the backbone network.

Instead of directly conducting the output layer after the backbone as CTPN, we merge
feature maps gradually like U-net (Ronneberger et al. (2015)) and finally get a feature map
of 1/4 size of the original input image. Since the final feature map contains both texture
details from lower layers and semantic information from higher layers, our network is able
to predict the dense text score map and geometry map more precisely. As shown in Fig. 3,
the predicted proposals of our method are more smooth, which is the key point to detect
oriented text.
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Figure 3: The predicted proposals (top) and detection results (bottom) of CTPN (left) and
our method (right).

We also remove the anchor mechanism, considering the fact that text instances seldom
overlap each other. As a result, the output just consists of a text score map and 2 geometry
maps that indicate distances to top and bottom borders of corresponding quadrilateral
bounding box. Compared to the original CTPN with k score maps and 2k regression
targets (k is the number of anchors, set to 10 in the paper), our approach is much more
efficient with only 1 score map and 2 regression channels.

3.2. Label Generation

In order to distinguish words from each other and decrease the noise brought by the less
accurate ground truth, we adopt the idea in EAST to shrink the ground truth with a
coefficient of 0.3. Only the pixels inside the shrunk region of the ground truth are considered
positive. For each positive location, two vertical distances are calculated at the scale of the
original input image as regression targets.
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3.3. Loss Function

The loss function can be formulated as

L = Lcls + λgLreg (1)

where Lcls and Lreg represent the classification loss for the text/non-text score map and
the regression loss for vertical coordinates regression, respectively. λg is the loss weight to
balance different tasks and is set to 1.0 in our experiments.

Loss for Score Map It is common to use balanced sampling and hard negative mining
in anchor-based approaches. To facilitate a simpler training procedure, we eliminate anchor
mechanism and transfer the text classification into a semantic segmentation problem. In-
spired by Milletari et al. (2016), we choose the Dice loss which is based on Dice coefficient.
The Dice coefficient between the predicted score map and ground truth can be written as

D(P,G) =
2
∑

x,y(Px,y ·Gx,y)∑
x,y Px,y +

∑
x,y Gx,y

(2)

where Px,y and Gx,y refer to the text score of prediction and ground truth at each location
(x, y), respectively. Using this formulation, we do not need to add extra processing on
training images to establish the right balance between foreground and background voxels.
Lcls is the loss for text/non-text classification, which can be formulated as

Lcls = 1−D(P,G) (3)

Loss for Regression Since the scales of scene text usually vary tremendously, it is not
proper to simply use L1 or L2 loss for regression. Aiming to detect both large and small text
instances, we adopt IoU loss proposed in Yu et al. (2016), which is robust to the variation
in scales of object.

Lreg =
1

|Ω|
∑
x∈Ω

− log IoU(R̂x, R
∗
x) =

1

|Ω|
∑
x∈Ω

− log
|R̂x ∩R∗x|
|R̂x ∪R∗x|

(4)

Note that Ω is the set of valid points. R̂x and R∗x represent the predicted geometry of fine-
scale proposal and its corresponding ground truth, respectively. As the width of fine-scale
proposals is fixed, the intersection can be formulated as

|R̂x ∩R∗x| = min(d̂1, d
∗
1) + min(d̂2, d

∗
2) (5)

where d1 and d2 represent the distances of a pixel from top and bottom borders of its
corresponding text instance, respectively. The union is given by

|R̂x ∪R∗x| = |R̂x|+ |R∗x| − |R̂x ∩R∗x| (6)

|Rx| = d1 + d2 (7)

Therefore, Lreg can be easily calculated by the two output distances.
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3.4. Post-processing

After the feedforward, the network outputs a score map and a geometry map. We use the
score map as a mask and only the pixels with a text score no less than the threshold (set
to 0.99 in our experiments) are considered valid. Then the fine-scale proposals are restored
from valid points on the geometry map, followed by a non-maximum suppression (NMS).
Finally, we connect the proposals to text regions. Since we have adopted a shrinked region
as ground truth, offsets are added to both ends of a segmentation mask. In our experiments,
we set the offset to 0.3H, where H is the average height of the corresponding text instance.
The whole process is shown in Fig. 4.

(a) Input image. (b) Text score map.

(c) Geometry map, indicates the distances to top and bottom borders of
corresponding text, respectively.

(d) Fine-scale proposals. (e) Result.

Figure 4: Steps of post-processing.
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4. Experiments

4.1. Datasets

We test our model on the following datasets.

ICDAR2015 The ICDAR2015 dataset (Karatzas et al. (2015)) is from challenge 4 of
the 2015 Robust Reading Competition. It includes 1000 training images and 500 testing
images. Scene text images in this dataset are taken by Google Glasses in an incident way.
The text instances from this dataset are labeled as word level quadrangles.

ICDAR2013 The ICDAR2013 dataset (Karatzas et al. (2013)) is from challenge 2 of the
2013 Robust Reading Competition. It contains 229 training images and 233 testing images.
This dataset aims at focused scene text detection, which is the typical scenario for text
reading and text translating applications.

4.2. Data Augmentation

Data augmentation is important to keep a model robust when the training data is quite
limited. We resize the height in range [0.8, 1.2] randomly and then the image is rotated in
range [−10◦, 10◦]. Finally, the image is cropped to the size of 512x512 and we adjust its
brightness, contrast and saturation randomly.

4.3. Implement Details

Our method is implemented on PyTorch 1.0 (Paszke et al. (2017)). We adopt Adam opti-
mizer (Kingma and Ba (2014)) as our learning rate scheme. For each training, the learning
rate decays from 10−3 by 1/10 every 300 epochs and finally stops at 10−5. All the ex-
periments are conducted on a server with a NVIDIA Tesla K40 GPU and Google Cloud
Platform with a NVIDIA Tesla P100 GPU.

4.4. Quantitative Results

ICDAR2015 To get a direct and fair comparison with the original CTPN, we choose
VGG16 (Liu and Deng (2015)) as our backbone and train the model for 900 epochs only
with the 1000 training images from ICDAR2015. As shown in Tab. 1, our AFCTPN achieves
a F-measure of 0.792, which outperforms CTPN (0.608) by a large margin and surpasses
both VGG16-based EAST (0.764) and PVANET2x-based EAST (0.782). Note that we
evaluate the model with the original input resolution of 1280x720 and use no magic such as
multi-scale testing.

The frames per second (FPS) of the CTPN, VGG16-based EAST and our AFCTPN is
retrieved from the same environment with a NVIDIA TESLA P100 GPU and our approach
achieves FPS of 9.4, which is faster than CTPN (7.1 FPS ) and EAST (8.3 FPS). We also
test our method with ResNet50 and it achieves FPS of 12.0 with a F-measure of 0.774.

Compared with other methods, our F-measure of 0.792 is not as good as PixelLink
(0.837) and TextSnake (0.826), but our FPS of 9.4 is much higher than PixelLink (3.0) and
TextSnake (1.1).
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Table 1: Quantitative results on ICDAR2015. FPS of ours, CTPN and VGG16-based EAST
is from our test with NVIDIA Tesla P100 for comparison, others are from the
original papers.

Method Precision Recall F-measure FPS

Ours + VGG16 0.827 0.760 0.792 9.4

Ours + ResNet50 0.807 0.743 0.774 12.0

CTPN (Tian et al. (2016)) 0.742 0.515 0.608 7.1

EAST + VGG16 (Zhou et al. (2017)) 0.804 0.727 0.764 8.3

EAST + PVANET2x (Zhou et al. (2017)) 0.836 0.735 0.782 13.2

Zhang et al. (2016) 0.708 0.431 0.535 0.476

Yao et al. (2012) 0.723 0.587 0.648 1.61

SegLink (Shi et al. (2017)) 0.731 0.768 0.750 -

Liu et al. (2018b) 0.72 0.80 0.76 -

SSTD (He et al. (2017b)) 0.802 0.739 0.769 7.7

WordSup (Hu et al. (2017)) 0.793 0.770 0.782 -

He et al. (2017a) 0.820 0.800 0.810 1.1

TextSnake (Long et al. (2018)) 0.849 0.804 0.826 1.1

PixelLink (Deng et al. (2018)) 0.855 0.820 0.837 3.0

ICDAR2013 Since the ICDAR2013 dataset is too small for training a deep neural net-
work, we choose the images that contains English or Chinese from ICDAR2017 MLT training
set for this task. During the test, we resize the short side to 600 while keeping the aspect
ratio unchanged, which is the same as CTPN. As shown in Tab. 2, our method achieves
a F-measure of 0.883 with ResNet50, which surpasses CTPN (0.877), EAST (0.873) and
other methods on this dataset.

Table 2: Quantitative results on ICDAR2013.
Method Precision Recall F-measure

Ours + ResNet50 0.948 0.826 0.883

Ours + VGG16 0.875 0.793 0.832

EAST + PVANET2x (Zhou et al. (2017)) 0.926 0.826 0.873

CTPN (Tian et al. (2016)) 0.930 0.830 0.877

Zhang et al. (2016) 0.88 0.78 0.83

SynthText (Liu et al. (2018a)) 0.920 0.755 0.830

Holistic (Yao et al. (2016)) 0.889 0.802 0.843

PixelLink (Deng et al. (2018)) 0.864 0.836 0.845

SegLink (Shi et al. (2017)) 0.877 0.83 0.853

Lyu et al. (2018a) 0.933 0.749 0.858

He et al. (2017a) 0.92 0.80 0.86
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4.5. Qualitative Results

As mentioned above, our approach is able to detect the extremely long text, which is
quite challenging for word-level approaches such as EAST. Since the images from common
benchmark datasets only contain short word-level text, we conduct some experiments with
long or large text. All the input images are resized to 720x360 and both the backbones of
EAST and our method are ResNet50. Results are shown in Fig. 5. It is obvious that the
proposed approach performs better on the larger or longer text while as accurate as EAST
on the smaller ones.

Fig. 6 lists some detection results of CTPN and our method on ICDAR2015 from ICDAR
Robust Reading Competition website. It can be seen that the proposed approach performs
better on the smaller and oriented text.

Figure 5: Qualitative results of EAST (left) and proposed method (right). Detection results
of EAST are retrieved from http://east.zxytim.com/.

4.6. Ablation Study

Influence of the feature map resolution and proposal width. We study the effect
of the feature map resolution and proposal width by modifying the number of upsampling
layers. Resolutions of output feature maps are set to 1/16 (no upsampling), 1/8, 1/4, 1/2 of
the input image and the corresponding widths of proposals are 16, 8, 4, 2, respectively. All
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Figure 6: Qualitative results of CTPN (left) and the proposed method (right) on IC-
DAR2015 dataset. Detection results can be found on ICDAR Robust Reading
Competition website. Green, red and gray regions stand for true positive, false
positive and don’t care, respectively.

the models are trained for 1000 epochs with VGG16 backbone and evaluated on ICDAR2015.
Tab. 3 shows the experiment results, from which we can find that using higher resolution
and smaller proposals results in better accuracy since it is difficult to separate the small
words which are close to each other with lower resolution and larger proposals. Note that
the model tends to split a word into characters if the proposals is too small, for example
width of 2, which leads to worse performance. The visualization of different proposals is
similar to Fig. 3 (corresponding to proposal width of 16 and resolution of 1/4).

5. Conclusion

In this paper, we have presented a fast yet accurate approach for arbitrary-length oriented
text detection. By taking advantage of the locality and homogeneity of text, our method can
overcome the limitation of receptive field while detecting the text instances with extreme
aspect ratios. We have simplified the pipeline by removing the anchor mechanism and RNN
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Table 3: Test results with different resolutions and proposals. ’16s’, ’8s’, ’4s’ and ’2s’ means
the resolution of the feature map is 1/16, 1/8, 1/4 and 1/2 of the input image.

Method Precision Recall F-measure

Ours-16s 0.582 0.432 0.496

Ours-8s 0.692 0.504 0.583

Ours-4s 0.827 0.760 0.792

Ours-2s 0.801 0.750 0.774

layer to increase the efficiency. Our method has achieved better or comparable results with
less time consumption on the ICDAR2013 and ICDAR2015 benchmarks.
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