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Abstract

In this paper, we propose a novel domain adaptation method that can be applied without
target data. We consider the situation where domain shift is caused by a prior change
of a specific factor and assume that we know how the prior changes between source and
target domains. We call this factor an attribute, and reformulate the domain adaptation
problem to utilize the attribute prior instead of target data. In our method, the source
data are reweighted with the sample-wise weight estimated by the attribute prior and the
data themselves so that they are useful in the target domain. We theoretically reveal
that our method provides more precise estimation of sample-wise transferability than a
straightforward attribute-based reweighting approach. Experimental results with both toy
datasets and benchmark datasets show that our method can perform well, though it does
not use any target data.

Keywords: Domain adaptation, transfer learning, instance weighting

1. Introduction

In many algorithms for supervised learning, it is assumed that training data are obtained
from the same distribution as that of test data (Hastie et al., 2009). Unfortunately, this
assumption is often violated in practical applications. For example, Fig. 1 shows images of
two different surveillance videos that are obtained from Video Surveillance Online Repos-
itory (Vezzani and Cucchiara, 2010). Suppose we want to recognize vehicles from these
videos. Since the position and pose of the camera are different, the appearance of the
vehicle is somewhat different between two videos. Due to this difference, even if we train
a highly accurate classifier on video A, it may work poorly on video B. Such discrepancy
has recently become a major problem in pattern recognition, because it is often difficult to
obtain training data that are sufficiently similar to the test data. To deal with this problem,
domain adaptation techniques have been proposed.

c© 2019 M. Ishii, T. Takenouchi & M. Sugiyama.
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(a) Video A (b) Video B

Figure 1: Example images of surveillance videos. Since the position and pose of the surveil-
lance camera is different, the appearance of the vehicle is somewhat different between two
videos.
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Figure 2: The situation we are considering in this work.

Given two datasets, called source and target data, domain adaptation aims to adapt
source domain data to the target domain data so that distributions of both datasets are
matched (Csurka, 2017). By applying domain adaptation, classifiers trained on the adapted
source data can achieve high accuracy on the target data. Since the discrepancy between
two distributions is measured based on observed data, we need a sufficient number of data
in each dataset to estimate the distributional discrepancy accurately. However, due to the
motivation of the domain adaptation, obtaining a large number of target data is often hard,
which limits the application of domain adaptation methods to practical cases.

In this work, we consider the most extreme case in which we cannot obtain any target
data, called zero-shot domain adaptation. A few recent studies (Yang and Hospedales,
2015; Peng et al.) have tackled this challenging problem, but they require additional data
such as multiple source datasets (Yang and Hospedales, 2015) or target data of another
task (Peng et al.) that are not easy to obtain in practice. In this paper, we propose a

474



Zero-shot Domain Adaptation Based on Attribute Information

novel method of zero-shot domain adaptation that would be more suitable for practical
cases. We assume that we have prior knowledge about what factor causes the difference in
distributions between source and target data. For example, in Fig. 1, the shooting angle
for vehicles can be considered as a major factor that causes the appearance change between
videos. Other examples include gender information in an age estimation task from facial
images and the azimuth of captured objects in an object recognition task, both of which
are examined in our experiments.

We call such a factor an attribute, and assume that we can only obtain attribute priors
at the target domain instead of the target data. We then reformulate the domain adaptation
problem so that we can conduct adaptation based only on attribute priors. In addition,
we clarify requirements for the attribute to be useful in domain adaptation, and reveal
that our method provides more precise estimation of sample-wise transferability than the
straightforward attribute-based reweighting approach. Experimental results with both toy
datasets and benchmark datasets validate the advantage of our method, even though it does
not use any target data.

We explain our setting by using vehicle recognition from surveillance videos as an ex-
ample shown in Fig. 2. In this task, input data and labels are cropped video frames and
vehicle types, respectively. Suppose that we have already constructed training datasets
from existing surveillance cameras and want to transfer those datasets to a classifier for a
new surveillance camera. If the new camera is not installed yet, we cannot obtain any tar-
get videos, therefore, we cannot apply a standard domain adaptation method nor evaluate
how much data can be transfered via domain adaptation. But, if where and how the new
camera will be installed have been already determined, we can estimate the shooting angle
for the target vehicle. Since the shooting angle is a major factor that causes the appearance
change of vehicles, we can consider the shooting angle as an attribute. In this case, we cal-
culate it for each sample at the source domain and also estimate how often the vehicle will
be captured with a certain shooting angle at the target domain by using the information
about the pose and position of a camera. As shown in the above example, the assumption
about attribute information in our method is sufficiently practical, and we believe that our
method can be applied in many practical applications, especially for computer vision tasks.

2. Problem formulation and related works

Recent domain adaptation methods (Ganin et al., 2016; Tzeng et al., 2017; Peng et al.)
often adopt deep neural networks (DNNs) to embed both-domain data into a common
feature space in which the distributions of both data are matched. But, due to the “data-
hungry” property of DNN, this approach requires a relatively large number of data. Since
we tackle the “zero-shot” scenario in which we cannot obtain any target data, we utilize a
different approach in this work, that is the instance-weight based approach (Huang et al.,
2007; Sugiyama et al., 2008; Kanamori et al., 2009). In this approach, domain adaptation
is achieved by assigning an instance weight for each sample in the source data.

We briefly show the problem setting of the domain adaptation and how to solve it by
the instance-weight based approach. Let us consider a supervised classification task, and let
x ∈ Rm, y ∈ C and d ∈ {S,T} denote input data, labels, and domains, respectively. Here,
m is the dimensionality of the input data, C is the set of the class candidates, and {S,T}
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represent the source and target domains, respectively. Note that we treat d as a random
variable. We assume that the joint distributions of (x, y) are different between domains,
which means p(x, y|d = S) 6= p(x, y|d = T). Given labeled source data DS = {(xSi , ySi )} ∼
p(x, y|d = S) and unlabeled target data DT = {xTi } ∼ p(x|d = T), our goal is to train a
model f : Rm → C that can accurately predict labels for input data at the target domain.
More specifically, supposing f is parameterized by θ, we want to obtain the optimal θ that
minimizes the target risk defined as

RT(θ) =
∑
y∈C

∫
l(x, y, θ)p(x, y|d = T)dx, (1)

where l(x, y, θ) is a loss when y is predicted by f with θ at x.
Since the target data are not labeled, we cannot directly estimate the risk in Eq. (1) by

empirical approximation. Instead, we try to use the source data to estimate it. The target
risk can be related to the source risk with instance weights as:

RT(θ) =
∑
y∈C

∫
w(x, y)l(x, y, θ)p(x, y|d = S)dx, (2)

w(x, y) =
p(x, y|d = T)

p(x, y|d = S)
(3)

where w(x, y) is an instance weight for the corresponding data (x, y). By assuming covariate
shift (Shimodaira, 2000), that means p(y|x) is common in the source and target domains,
we can simplify the weight as follows

p(x, y|d = T)

p(x, y|d = S)
=
p(y|x, d = T)

p(y|x, d = S)

p(x|d = T)

p(x|d = S)
=
p(x|d = T)

p(x|d = S)
= w(x). (4)

The covariate shift assumption is intuitively reasonable in many pattern recognition tasks,
so it is often adopted not only explicitly in the instance-weight based methods but also
implicitly in the recent adversarial-training based methods (Ganin et al., 2016; Tzeng et al.,
2017) that aim to match p(x|d) instead of p(x, y|d) between the domains.

Equation (2) indicates that we can obtain the optimal θ by minimizing the weighted
source risk. Therefore, many existing instance-weight based methods (Huang et al., 2007;
Sugiyama et al., 2008; Kanamori et al., 2009) basically try to accurately estimate the weight
defined in Eq. (4). When we estimate the weight, we assume that the weight is always
finite. Once we obtain the weight for each sample in the source data, we can calculate the
empirically approximated risk R̂T(θ) as:

R̂T(θ) =
1

|DS |
∑

(xi,yi)∈DS

ŵ(xi)l(xi, yi, θ), (5)

where ŵ(xi) is the estimated weight for (xi, yi). By minimizing this empirical risk, we can
estimate the optimal θ.

In our zero-shot scenario, the standard instance-weight based approach cannot be di-
rectly adopted, because they require target data as well as source data to estimate the
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weight. Therefore, the main problem in our scenario is how to estimate the weight with-
out target data. We will show that it can be solved by utilizing the attribute information
instead of the unavailable target data.

In terms of utilizing attribute information, attribute-based zero-shot learning (Romera-
Paredes and Torr, 2015) or few-shot learning (Li et al., 2006) is somewhat related to our
work. However, there is a significant difference; the attribute information is utilized for
representing an unseen “class” in zero-shot learning while it is used for representing an
unseen “domain” in zero-shot domain adaptation. In this work, we establish the algorithm
specialized for zero-shot domain adaptation and theoretically clarify the condition required
for zero-shot domain adaptation.

3. Zero-shot domain adaptation based on attribute information

We assume that we can obtain attribute information at both the source and target domains
that is a major factor for the discrepancy between the data distributions. More specifically,
at the source domain, attribute z for each sample is also given in addition to (x, y), and at
the target domain, we cannot obtain any data or attributes as well, but only the probability
distribution of attributes p(z|d = T) is given. To make our formulation simple, we assume a
single categorical attribute, but our method can be extended to multivariate or continuous
attributes in a straightforward way.

3.1. How to calculate instance weights

First, we transform the probability density ratio in Eq. (4). Since we do not have any
information about the domain prior p(d) especially for the target domain, we assumed a
uniform distribution (p(d = S) = p(d = T)) that is often used as a non-informative prior.
By using this assumption and Bayes’ theorem, we obtain the following equation:

w(x)=
p(x|d=T)

p(x|d=S)
=
p(d=T|x)

p(d=S|x)

p(d=S)

p(d=T)
=
p(d=T|x)

p(d=S|x)
. (6)

Then, based on the attribute information, we approximate p(d|x) as follows:

p(d|x) ≈
∑
z

p(d|z)p(z|x). (7)

We will discuss what condition is required for the approximation in Eq. (7) in the next
subsection. Substituting Eq. (7) into Eq. (6), we obtain

w(x) =

∑
z p(d = T|z)p(z|x)∑
z p(d = S|z)p(z|x)

. (8)

By adopting the approximation in Eq. (7), we can calculate w(x) by estimating p(d|z) and
p(z|x). It means that we do not need the target data, because p(d|z) can be estimated from
the given information about the attributes, and p(z|x) that does not depend on domains
can be estimated from the source data. This is the key trick of our method.

477



Ishii Takenouchi Sugiyama

Algorithm 1: Zero-shot domain adaptation

Require: Source data (x, y, z) ∼ p(x, y, z|d = S) are given
Require: Target attribute information p(z|d = T ) is given
Require: Equation (7) and p(d = S) = p(d = T ) hold

Calculate p(d|z) by Eq. (9) and (10)
Estimate p(z|x) with the source data (k-NN method is used in this paper)
Calculate w(x) by Eq. (8) using p(d|z) and p(z|x)
return w(x)

Since we assume that p(z|d) is given and p(d = S) = p(d = T), p(d|z) can be calculated
by using Bayes’ theorem as follows:

p(d = T|z) =
p(z|d = T)

p(z|d = S) + p(z|d = T)
, (9)

p(d = S|z) =
p(z|d = S)

p(z|d = S) + p(z|d = T)
. (10)

For the estimation of p(z|x), we adopt the k-nearest neighbor method which is the sim-
plest method for the posterior estimation: given x, we search k nearest samples from the
source data and extract the corresponding attributes. Since we assumed that the attributes
are categorical, we calculate the proportion of each attribute class within the extracted
attributes. If the attribute is continuous, we may use kernel density estimation.

3.2. Requirements for the attribute information

The most important assumption in our method is Eq. (7). In this subsection, we clarify
requirements for this approximation. Since p(d|x) equals

∑
z p(d|x, z)p(z|x), we need the

following approximation to have Eq. (7):

p(d|x, z) ≈ p(d|z). (11)

By multiplying p(x|z) to both sides of Eq. (11), we can obtain p(d, x|z) ≈ p(d|z)p(x|z).
Therefore, this approximation assumes that x and d are conditionally independent given z.

We show another aspect of this approximation. By using Bayes’ theorem, the left-hand
side of Eq. (11) can be transformed as follows:

p(d|x, z) =
p(x, z|d)p(d)

p(x, z)
=
p(x|z, d)p(z|d)p(d)

p(x|z)p(z)
=
p(x|z, d)

p(x|z)
p(d|z). (12)

By substituting Eq. (12) into Eq. (11), we obtain

p(x|z, d) ≈ p(x|z). (13)

This equation indicates that, given a certain z, the probability distribution of x is common
between domains. Since marginal probability density p(x|d) =

∑
z p(x|z, d)p(z|d) is different
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between the source and target domains while p(x|z) is common, only the attribute prior
given a domain p(z|d) is different between domains. Therefore, the approximation in Eq.
(7) corresponds to the latent prior change assumption that is adopted in some existing
works (Storkey and Sugiyama, 2007; Hu et al., 2018).

Let us explain this assumption by using vehicle recognition from surveillance videos that
is the example shown at the end of Section 1. Here, x, d, and z correspond to a cropped
video, camera ID, and shooting angle to the target object, respectively. The assumption
described in Eq. (13) means that the appearance of the target object from a certain shoot-
ing angle does not depend on which camera captures the object, which is reasonable if
the environment of the captured area is sufficiently similar among different cameras. The
discrepancy between the source and target domains stems only from the change of the
frequency of the shooting angle.

3.3. Characteristics of the proposed method

We clarify some characteristics of our method. First, we take two special cases to explain
how our method works, and after that we show how our method is different from the
straightforward attribute-based instance weighting.

If the attribute prior is identical between the source and target domains, that means
p(z|d=S)=p(z|d=T), p(d|z) in Eqs. (9) and (10) are always 0.5 regardless of the value of
z. This results in w(x)=1, which indicates that the source data have been already adapted
to the target data and we do not need to conduct domain adaptation. This is natural
behavior, because we assumed that only the attribute prior changes between domains as
noted in the previous subsection.

If p(z|x) is the delta function δ(z = z∗) where z∗ is the attribute value that corresponds
to given sample x, w(x) in Eq. (8) can be simplified as follows:

w(x) =
p(d = T|z = z∗)

p(d = S|z = z∗)
=
p(z = z∗|d = T)

p(z = z∗|d = S)
. (14)

This means that the weight is determined based on only attribute information and not on
data. It corresponds to the straightforward approach for attribute-based instance weighting.
If we define the weight as w(x, y, z) = p(x,y,z|d=T)

p(x,y,z|d=S) and assume p(x, y|z, d = S) = p(x, y|z, d =

T) that is somewhat a stronger assumption in Eq. (13), we can derive the above instance
weight as follows:

w(x, y, z) =
p(x, y, z|d = T)

p(x, y, z|d = S)
=
p(x, y|z, d = T)p(z|d = T)

p(x, y|z, d = S)p(z|d = S)
=
p(z|d = T)

p(z|d = S)
. (15)

As shown above, our method includes the straightforward attribute-based method as a
special case. In other cases, that mean p(z|x) is not a delta function, our method behaves
differently compared with the straightforward method.

Let us illustrate the behavior of our method using a simple example. Suppose there are
only two attribute classes z ∈ {0, 1} that have one-dimensional Gaussian distributions with
different means as shown in Fig. 3a. At the source domain, [p(z= 0|d= S), p(z= 1|d= S)]
is set to [0.5, 0.5], while it is set to [1.0, 0.0] at the target domain. In this case, the weight
estimated in the straightforward method (Eq. (15)) leads to a simple delta function, that is
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Figure 3: One-dimensional example when the overlap between p(x|z = 0) and p(x|z = 1) is
small.
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Figure 4: One-dimensional example when the overlap between p(x|z = 0) and p(x|z = 1) is
large.

w(x, y, z)=2 · δ(z=0). In contrast, the weight in our method (Eq. (8)) behaves differently
according to the amount of overlap between p(x|z= 0) and p(x|z= 1). Figure 3 shows the
case in which the overlap is quite small. The weight function w(x) becomes almost the
same as a step function over x as shown in Fig. 3a. As a result, the weight over z becomes
the delta function that is the same as that in the straightforward method as shown in Fig.
3b. In contrast, when the overlap is large, our method shows somewhat different behavior
as presented in Fig. 4. In this case, w(x) becomes a smoother function compared with the
previous case as shown in Fig. 4a. It leads to non-zero weights for the samples with z=1 as
shown in Fig. 4b, which means that we can transfer these samples even though the samples
with z= 1 do not appear at the target domain. This characteristic is not available in the
straightforward method, because it focuses only on the attribute to estimate the weight.
On the other hand, our method utilizes the information of p(z|x), which results in smoother
weights that can transfer the source data more efficiently.
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Figure 5: Generation of toy datasets.

4. Experiments

In this section, we show the experimental results with both toy datasets and benchmark
datasets.

4.1. Experiments with toy datasets

We conducted experiments with a 2-dimensional toy dataset for binary classification, In this
dataset, the first feature x0 stemmed from a Gaussian mixture model (GMM) that has five
centroids (−0.75π, −0.5π, 0.0, 0.5π, 0.75π) with common standard deviation σ = 0.2π,
and the second feature x1 stemmed from the uniform distribution from −2.0 to 2.0. For each
sample, the index of the corresponding centroid was treated as attribute z ∈ {0, 1, 2, 3, 4}.
The mixing ratio of GMM was set differently for the source and target domains as shown in
Table 1. Note that Eq. (13) exactly holds in this dataset, since the Gaussian distribution for
each centroid is common among domains. To change the difficulty of domain adaptation,
we constructed three datasets (Datasets A–C) by changing the discrepancy of the ratios
between the domains. The posterior p(y|x) is determined by p(y|x) = 1

1+exp(−5.0(x1−sinx0))
.

To make the dataset, first, we generated the sample (x, z) according to the data distri-
bution that is previously described, then, we determined its label by randomly sampling
according to the above posterior. Figure 5 shows a brief flow of how to generate the toy
datasets. We generated 600 samples as source and target data, respectively. Note that we
can obtain ground-truth w(x) by calculating Eq. (4) with true probability density functions
p(x|d).

First, we evaluated the accuracy of the weights estimated by our method by comparing
them with the ground-truth weights. To quantitatively evaluate the accuracy, we compared
our method with unconstrained Least-Squares Importance Fitting (uLSIF) (Kanamori et al.,
2009) that is one of the representative methods to estimate a probability density ratio. Using
the target data, we estimated the weight by uLSIF, and compared its estimation error with
that of our method. We measured the error by the root mean squared error. The results
are shown in Table 2. Although our method does not use any target data, it shows better
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Figure 6: Instance weights estimated by our method.

(a) Without instance weights (b) With estimated weights

Figure 7: Visualization of instance weights and the trained classifier (◦: positive-class
instances, •: negative-class instances).

performance than uLSIF. This indicates that attribute information can be more useful to
estimate the probability density ratio. Figure 6 shows the results for each dataset, in which
the horizontal and vertical axises represent the ground-truth weight and the estimated
weight, respectively. We can see that many samples are close to the diagonal line, which
means that our method successfully estimates the weights accurately.

We also evaluate the performance of our method as domain adaptation. We trained a
classifier with weighted source data and tested it with the target data. To train a classi-

Table 1: The mixing ratios of GMM for toy datasets.

Dataset Centroid
-0.75π -0.5π 0.0 0.5π 0.75π

A d = S 0.1 0.1 0.2 0.4 0.2
d = T 0.2 0.4 0.2 0.1 0.1

B d = S 0.05 0.05 0.1 0.5 0.3
d = T 0.3 0.5 0.1 0.05 0.05

C d = S 0.05 0.05 0.1 0.1 0.7
d = T 0.7 0.1 0.1 0.05 0.05
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Table 2: The estimation error of weights.

Dataset
A B C

The proposed method 0.179 0.573 0.679
uLSIF 0.291 0.664 0.743

Table 3: The accuracy of the trained SVM.

Dataset
A B C

w/o weights 91.3± 1.1% 90.4± 1.0 % 88.1± 1.3 %
w/ estimated weights 92.4± 0.4% 91.0± 0.5 % 90.2± 0.8 %

w/ ground-truth weights 92.4± 0.4% 90.9± 0.6 % 90.4± 0.7 %

fier, we used C-support vector machine (C-SVM) with the Gaussian kernel. To tune its
hyper-parameters that are regularization coefficient C and kernel width σ, we conducted
importance-weighted cross validation, which requires only source data for model selection.
First, we split the source data into the training and validation datasets. We trained the
instance weight estimator and the classifier with the training dataset, and the classifier is
tested with the validation dataset that is weighted by the weight estimator. We compared
three methods: training without weights, training with estimated weights, and training with
the ground-truth weights. Table 3 shows the accuracy of the SVM trained by each method.
Our method achieved higher accuracy than that without importance weights and almost
reached the same performance as that with ground-truth weights, though our method does
not utilize ground-truth weights or any target data. Figure 7 visualizes the instance weights
and the trained classifier. The size of circles corresponds to the value of the instance weight,
and contour lines represent the output of the decision function of SVM. Note that the true
decision boundary is a sinusoidal curve as shown in Fig. 5. Since only few source data
are distributed at the left-hand side while many target data are at that side, large weights
are assigned to those source data in our method, which results in a more accurate classifier
especially at the left-hand side.

4.2. Experiments with benchmark datasets

To evaluate our method in a more practical scenario, we conducted experiments with pop-
ular benchmark datasets on computer vision tasks.

4.2.1. MNIST dataset

For the first experiment, we used the MNIST dataset (LeCun et al., 1998) that contains
handwritten digit images. The task is to classify these images into ten classes that corre-
spond to digit numbers. We randomly chose 10,000 samples from the training data, and
used them as source data, while the test data that includes 10,000 samples were used as
target data. To make the source and target data have different data distributions, we
clockwisely rotated each image with a randomly determined angle, where we set different
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Table 4: The probability distributions of the rotation angle used in the experiment with
the MNIST dataset.

Rotation angle
−1

3π −1
6π 0 +1

6π +1
3π

Source 0.05 0.05 0.1 0.5 0.3
Target 0.3 0.5 0.1 0.05 0.05

Table 5: The network architectures used in the experiments. MP2, BN, and FC denote
2× 2 max-pooling, batch normalization, and a fully-connected layer, respectively.

(a) MNIST

Layer type
Size / num.

of filters

conv. + ReLU 5×5 / 20

MP2 + BN 2×2 / 20

conv. + ReLU 5×5 / 50

MP2 + BN 2×2 / 50

FC + ReLU 1 / 200

FC + softmax 1 / 10

(b) Adience and VisDA2017

Layer type
Size / num.

of filters

conv. + ReLU 3×3 / 16

MP2 + BN 2×2 / 16

conv. + ReLU 3×3 / 24

MP2 + BN 2×2 / 24

conv. + ReLU 3×3 / 32

MP2 + BN 2×2 / 32

FC + ReLU 1 / 500

FC + softmax 1 / 2 or 12

probability distributions of the rotation angle for source and target data as shown in Table
4. We measured the performance of our method by the accuracy of the classifier trained
with weighted source data similarly to the previous experiments. Instead of SVM, we used
a deep neural network in this experiment. Table 5a shows its network architecture that is
loosely based on LeNet (LeCun et al., 1998) but is modified by adding batch normalization
layers. We trained the network by stochastic gradient descent with momentum, and the
number of total update iterations was 10,000. To calculate the weight in our method, we
estimated p(z|x) by the k-nearest neighbor method with the features at the last hidden
layer of the network. Since the calculation cost of the weight estimation is not small com-
pared with that of the training network, we calculated the weights after each 100 iterations,
and fixed them for the next 100 iterations. We used the weights to calculate the sampling
probability of each sample when making a mini-batch.

Table 6 shows the accuracy of the trained classifier on the MNIST dataset. Without
instance weights, the accuracy decreased from 97.1% to 93.8% when shifting from the source
to target domains. On the other hand, our method suppressed this degradation of the classi-
fication performance, and achieved 94.9% at the target domain. Interestingly, the accuracy
at the source domain remains almost unchanged while adopting the instance weights.

4.2.2. Adience dataset

For the second experiment, we used the Adience dataset (Eidinger et al., 2014) that contains
facial images with age and gender annotations. In this experiment, we conducted age

484



Zero-shot Domain Adaptation Based on Attribute Information

Table 6: Accuracy of the trained DNN on the MNIST dataset.

Target data Source data

w/o weights 93.8% 97.1%
Our method 94.9% 97.0%

Table 7: Accuracy of the trained DNN on Adience dataset.

[male, female] at target data
[0.5, 0.5] [0.7, 0.3] [0.9, 0.1]

w/o weights 39.8± 0.5% 40.0± 0.9% 39.7± 0.5%

The straightforward
attribute-based weight

39.3± 0.3% 39.7± 0.5% 39.9± 0.3%

Our method 39.9± 0.4% 40.8± 0.7% 41.4± 0.3%

estimation while considering gender as an attribute. Since eight age groups are defined
in this dataset, age estimation can be formulated as an eight-class classification problem.
There are five sub-datasets in this dataset, and we used the fifth sub-dataset as target data
and the other sub-datasets as source data. While gender in this dataset is almost balanced,
we artificially made it imbalanced in the target data to change the data distribution. We
varied this imbalance, and evaluated our method for each setting. The network architecture
for this experiment is shown in Table 5b. The number of total update iterations was 5,000.
The other setting is the same as that in the previous experiment.

Table 7 shows the accuracy of the trained classifier on the Adience dataset. When the
ratio between male and female samples in the target data is set to [0.5, 0.5], the accuracy
of our method is almost the same as that of the other methods. This is because the ratio
in the source data is also balanced and the data distribution is almost the same between
the source and target data. In contrast, when the ratio became imbalanced, our method
achieved better performance. It indicates that the effectiveness of our method gets more
significant as the discrepancy between the source and target data distributions becomes
larger. The straightforward attribute-based weight did not lead to better performance,
because it could not effectively utilize female samples in heavily imbalanced case. For
example, when the ratio was set to [0.9, 0.1], the average weight of female examples was
9 times smaller than that of male examples in the straightforward method, while, in the
proposed method, it became 2.2 times smaller, which is substantially more smooth weight
than the straightforward method.

4.2.3. VisDA2017 dataset

For more large-scale experiment, we used the VisDA2017 classification dataset (Peng et al.,
2017). This dataset contains object images with twelve categories, and the task is to
discriminate the object category from the given image. Since the azimuth of the captured
object is also provided in this dataset, we discretized the azimuth into five classes and
used it as an attribute. We constructed the source and target data as shown in Table 8.
Intuitively, the source domain is biased to “front-view” images, while the target domain is
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Table 8: The number of data used in the experiment with the VisDA2017 dataset. M
was set to 24,000, and r was varied in the experiment to control the discrepancy between
domains.

Azimuth of the captured objects
10-61 78-129 146-197 214-265 282-333

Source M M/r M/r M/r2 M/r
Target M/r2 M/r M/r M M/r

Table 9: Accuracy of the trained DNN on VisDA2017 dataset. Standard errors are omitted,
because they are very small (≤ 0.1) in this experiment.

Dataset
r = 2 r = 3 r = 4

w/o weights 95.6% 93.7% 91.5%

The straightforward
attribute-based weight

95.6% 93.7% 92.1%

Our method 95.6% 94.0% 92.5%

biased to “rear-view” images. We varied these bias by changing r in Table 8. The network
architecture and the setting for training the network are same as in the previous experiment.

Table 9 shows the experimental result with VisDA2017 dataset. When r is small, the
discrepancy between the source and target domain is not large, which results in almost the
same accuracy of all methods. As r increases, the advantage of our method becomes large
as same with the result of the previous experiment.

5. Conclusion

In this paper, we proposed a zero-shot domain adaptation method based on attribute infor-
mation. We showed how to estimate instance weights for source data by using the attribute
information, and also clarified requirements for the attribute information to be useful, which
is actually the same assumption adopted in some existing works. In addition, we revealed
that our method can provide more precise estimation of sample-wise transferability than a
straightforward attribute-based reweighting approach. Experimental results with both toy
datasets and benchmark datasets showed that our method can accurately estimate the in-
stance weights and performed well as domain adaptation. Future works include integration
of our method with other recent domain adaptation methods and extension to the case in
which the attribute information is partially available.
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