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Abstract

Community detection is an effective approach to unveil social dynamics among individuals
in social networks. In the literature, quite a few algorithms have been proposed to conduct
community detection by exploiting the topology of social networks and the attributes of
social actors. In practice, community detection is usually conducted by third parties like
advertisement companies, hospitals, with access to social networks for different purposes,
which can easily lead to privacy breaches. In this paper, we investigate community detec-
tion in social networks aiming to protect the privacy of both the network topologies and
the users’ attributes. In particular, we propose a new scheme called differentially private
community detection (DPCD). DPCD detects communities in social networks via a proba-
bilistic generative model, which can be decomposed into subproblems solved by individual
users. The private social relationships and attributes of each user are protected by objective
perturbation with differential privacy guarantees. Through both theoretical analysis and
experimental validation using synthetic and real world social networks, we demonstrate
that the proposed DPCD scheme detects social communities under modest privacy budget.

Keywords: social networks, community detection, differential privacy, objective pertur-
bation

1. Introduction

Social media has been flourishing over the past few decades, and online social networks have
become a global game changer for individuals to build their connections and for businesses to
reach their potential customers. In an online social network, each entity, such as a Youtube
subscriber or a Tweeter user, is represented by a node, while the relationship between a pair
of nodes, such as subscription, retweet, or following, is characterized by an edge. Usually,
social networks are self-organizing, emergent and complex, and many analysis tools are
developed to discover their properties. Community detection serves as a fundamental tool
to mine the complex topologies of social networks and understand the social interactions
among individuals.
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Differentially Private Community Detection in Attributed Social Networks

To identify the underlying community structures in social networks, researchers have
developed many algorithms. Traditional community detection approaches usually focus on
network topologies only (Plantié and Crampes (2013)). In fact, social actors in social net-
works, such as individuals or organizations, have their own characteristics or attributes,
resulting in networks referred to as attributed networks (Huang et al. (2015)). In an at-
tributed social network, network topologies and individuals’ attributes jointly define com-
munities (Yang et al. (2013)). For example, friends in a social circle have similar attributes
such as interests, education background and interact frequently (Leskovec and Mcauley
(2012)). Recently, quite a few community detection algorithms attempt to exploit both the
topologies of social networks and the attributes of social actors (Li et al. (2018); He et al.
(2017); Perozzi and Akoglu (2018); Yang et al. (2013, 2009)).

In practice, community detection in social networks is usually conducted by third-party
agents (like data analyst, product provider or research organization) for different purposes.
Thus, it can result in significant privacy breaches, compromising not only the relation-
ships among users (through network topology) but also their sensitive personal information
(through node attributes). For example, in early April 2018, it was reported that up to 87
million Facebook users’ private personal information and their social relationships might
have been shared with a political consulting company called Cambridge Analytica without
their authorizations, which caused serious issues to Facebook. Obviously, it is critical to
protect the privacy of social networks.

Some previous works have attempted to address the aforementioned privacy issue in so-
cial networks, which can be categorized as anonymization based, cryptographic techniques
based, and differential privacy based schemes. Anonymization based schemes protect users’
privacy by anonymizing their identities (Hay et al. (2007)). However, users’ sensitive infor-
mation may still be inferred (Narayanan and Shmatikov (2009)), and network topology is
not protected. Cryptographic techniques based schemes usually incur expensive computa-
tions due to encryption and decryption operations (Dong et al. (2011); Jahid et al. (2011)),
which makes them impractical for large-scale social networks. Previous differential privacy
based schemes mostly try to protect the privacy of network topologies only, while ignoring
users’ sensitive information (Chen et al. (2014); Nguyen et al. (2015); Mülle et al. (2015);
Nguyen et al. (2016); Su et al. (2016); Pinot et al. (2018)). For example, Nguyen et al.
(2016) propose LouvainDP to apply input perturbation (Dwork and Roth (2014)) on Lou-
vain method to conduct community detection on a noisy graph. They also propose ModDiv
applying the exponential mechanism (Dwork and Roth (2014)) on community detection.
Mülle et al. (2015) propose differentially private mechanism to flip the edges in graph when
detecting communities. All these methods focus on the perturbation of graph structures
only. Therefore, how to protect both the topology and users’ attributes in social networks
at the same time is still a challenging and open problem.

In this paper, we propose an effective community detection algorithm called differentially
private community detection (DPCD) that can protect the privacy of network topologies
and node attributes in attributed social networks. Our algorithm is built upon a generative
probabilistic model that conducts community detection by solving a maximum log-likelihood
problem, and the privacy is protected by applying objective perturbation (Chaudhuri et al.
(2011); Chaudhuri and Monteleoni (2009)) with differential privacy guarantees. In partic-
ular, we decompose the maximum log-likelihood problem into convex subproblems, each of
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which deals with the social relationships and attributes of one particular user. To protect
the private social relationships of each user, the objective function concerning his/her social
relationships is perturbed by injected noise with designed probability distribution. To pro-
tect the privacy of users’ attributes, each user is required to independently generate noise,
whereas the summation of these noise satisfies the designed distribution.

We summarize the main contributions of this work as follows:

• We develop a differentially private community detection algorithm called DPCD that
protects the privacy of both the social relationships and attributes of all users. Theo-
retical analysis shows that DPCD satisfies εG- and εX -differential privacy on network
topology and node attributes, respectively.

• DPCD is effective with modest privacy budget and can accommodate both binary and
continuous attributed social networks.

• Experiment results on both synthetic and real social networks demonstrate that the
proposed DPCD achieves community detection results that are close to 3 non-private
baselines and outperforms 7 other state-of-the-art privacy-preserving community de-
tection schemes.

The rest of the paper is organized as follows. In Section 2.1, we first recall an existing
community detection algorithm called CESNA, which is a building block of our DPCD
mechanism, and then introduce the privacy model in Section 2.2. After that, we integrate
differential privacy into CESNA to protect users’ relationship and attributes in Section 3.1
and 3.2, respectively, and extend CESNA to accommodate social network with continuous
attributed users in Section 3.3. In Section 4, we validate the proposed mechanism using
both synthetic and real-world social networks. Finally, we conclude the paper in Section 5.

2. Problem Formulation

2.1. Community Detection in Attributed Social Networks

We consider a social network G = (V,E), where V is the set of N nodes (users) and E is
the set of edges (social connections). We assume that each node has K binary attributes,
and that all the nodes in G can be clustered into C communities. To detect communities,
we consider a generative probabilistic model called CESNA (Yang et al. (2013)), which is
scalable and can detect communities even if some of them are overlapped. Specifically, we
assume that the network adjacency matrix A ∈ {0, 1}N×N and the binary node attributes
X ∈ {0, 1}N×K are generated from node community affiliation matrix F ∈ RN×C+ , i.e.,

Aij ∼ Bernoulli(pij), pij = 1− exp(−fif
T
j ), (1)

xik ∼ Bernoulli(Qik), Qik =
1

1 + exp(−fiwT
k )
, (2)

where Aij being 1 means that there is an edge between node i and j, and 0 otherwise, pij
is the probability of node i and j are connected in the social network, and fi (quantify the
affiliation of node i to all communities) is the i-th row of F, xik is the binary value of the
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k-th attribute of node i, Qik is the probability of xik equal to 1, and wk ∈ RC×1 is the
logistic parameter for the k-th attribute.

Then the optimal F̂ and Ŵ can be obtained by solving a maximum log-likelihood
problem with l1 regularization on W as:

F̂,Ŵ = argmax
F≥0,W

LG + LX − λ||W||1, (3)

where LG =
∑

(i,j)∈E log(1 − e−fif
T
j ) −

∑
(i,j)/∈E fif

T
j and LX =

∑
i,k(xiklogQik + (1 −

xik)log(1 − Qik)) are the log-likelihood of the network topology and node attributes, re-
spectively, and λ is the regularization hyper-parameter. To solve (3), we adopt the block
coordinate ascent approach. The basic idea is to first decompose (3) into a set of convex
subproblems that are easily solvable at each user, and then update F and W iteratively.
Specifically, by fixing W and F but fi, we have the subproblems:

f̂i = argmax
fi≥0

LG(fi) + LX(fi), i ∈ {1, 2, · · ·N}. (4)

Similarly, we fix the updated F and obtain W by solving the following subproblems:

ŵk = argmax LX(wk)− λ||wk||1, k ∈ {1, 2, · · ·K}. (5)

We apply gradient ascent to (4) and (5) to update fi (i ∈ {1, 2, · · ·N}) and wk (k ∈
{1, 2, · · ·K}) as follows:

fnewi ← max(0, foldi + α(
∂LG(fi)

∂fi
+
∂LX(fi)

∂fi
)) (6)

wnew
k ← wold

k + α(
∂LX(wk)

∂wk
− λSign(wold

k )) (7)

where the partial derivatives are calculated as:

∂LG(fi)

∂fi
=

∑
j∈N (i)

exp(−fif
T
j )

1− exp(−fifTj )
fj −

∑
j /∈N (i)

fj , (8)

∂LX(fi)

∂fi
=

K∑
k=1

(xik −Qik)wT
k , (9)

∂LX(wk)

∂wk
=

∑
i∈N

(xik −Qik)fTi . (10)

Here, N (i) = {j|(i, j) ∈ E} represents the set of neighboring nodes of node i. After the
update process terminates, we obtain F̂ and Ŵ. Then we assign node i to community c if

ˆF(ic) is larger than a predefined threshold δ.

2.2. Privacy Model

We consider differential privacy (Dwork and Roth (2014)) as the privacy model, because
it offers provable guarantees of privacy without making assumptions about an adversary’s
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prior knowledge. By injecting random noises into dataset, differential privacy mechanisms
can prevent the adversary from determining if any individual user is in the dataset. Roughly
speaking, differential privacy bounds the ratio between the probabilities of a randomized
algorithm returning identical outcomes on two neighboring datasets which differ in only
one record. To protect the privacy of network topology and node attributes, we define
ε-differential privacy, neighboring graph, and edge-differential privacy in the following:

Definition 1 ε-differential privacy (Dwork and Roth (2014)). A randomized algorithm M
with domain D satisfies ε-differential privacy if for any two neighboring datasets d, d′ ∈ D,
and for all S ⊆ Range(M) it holds that Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S].

Definition 1 has been adopted to protect private data by adding calibrated random noise.
It can be interpreted as indistinguishability of two neighboring datasets, i.e., d, d′, which
is measured in a probabilistic manner given in Definition 1, with ε being a small positive
constant. Thus, it ensures the probability of a statistical query producing a nearly same
result whenever it is conducted on the first or second dataset.

Definition 2 Neighboring graphs (Hay et al. (2009)). Given a graph G, a neighboring
graph G′ can be produced by either adding/removing an edge in E, or by adding/removing
an isolated node in V . Mathematically, it is |V ⊕ V ′| + |E ⊕ E′| = 1, where ⊕ stands for
the symmetric difference.

Note that in this paper we study community detection, where the output is the assignment
of nodes to communities. Thus, we consider neighboring graphs that are produced by
adding/removing of an edge.

Definition 3 Edge-differential privacy (Hay et al. (2009)). The adaption of differential
privacy to graphs is called edge-differential privacy.

An edge-differentially private algorithm protects any individual edge in a network from
disclosure.

3. A Differentially Private Community Detection Algorithm

In this section, we elaborate on the design of a differentially private community detection
algorithm in social networks called DPCD, which performs objective perturbation under
differential privacy.

3.1. Protection on Network Topology

In privacy-preserving community detection, one of the challenges is to enable a third-party
agent to conduct community detection while not compromising users’ sensitive social rela-
tionships, i.e., the social network topology. To protect the social relationships of node i, we
perturb the objective function in (4) so that the solution of fi is obfuscated. Particularly,
we rewrite (4) as:

f̂i = argmax
fi≥0

Lf (fi) = argmax
fi≥0

LG(fi) + LX(fi) + fin
T
i , (11)
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where nTi ∈ RC×1 is the injected noise vector. Then we obtain the following partial deriva-
tive:

∂Lf (fi)
∂fi

=
∂LG(fi)

∂fi
+
∂LX(fi)

∂fi
+ ni. (12)

In order to protect the social relationships of node i, the partial derivative is calculated
at node i so that the private social connection information, i.e., N (i), is kept locally and
protected from the third-party. Moreover, the injected noise needs to guarantee that the
derived fi satisfies edge-differential privacy. Notice that, although each element of fi is
positive, its norm should have an upper bound, since (3) is a variation of nonnegative
matrix factorization. We denote ||fi||2 ≤ ∆, ∀i ∈ V , and set ∆ = 1 according to (Yang and
Leskovec (2013)). Besides, if node i and j do not belong to any common community, then
fif

T
j = 0, which makes pij = 0. To account for the possibility that node i and j are actually

connected even if they do not share common communities, we let pij ≥ ρ, where the lower
bound ρ can be set as the network density in practice.

Consequently, to achieve edge-differential privacy in the course of updating fi, we require

user i to generate ni whose element is distributed as Lap(∆
√
C

ρεG
), where εG is the privacy

budget in network topology protection. Theorem 1 demonstrates that under this condition
the third-party cannot infer whether user i is connected to any other user j or not in a
given social network. Therefore, the privacy of the social network topology is protected.

Theorem 1 If each element in ni is independently and randomly selected from Lap(∆
√
C

ρεG
),

then the proposed DPCD is εG-edge-differentially private.

Proof Suppose G1 and G2 are neighboring graphs differing by one edge as in Definition 2.
When Algorithm 1 converges, we have ∂Lf (fi|G1)

∂fi
= ∂Lf (fi|G2)

∂fi
= 0, i.e.,

∑
j∈N1(i)

exp(−fif
T
j )

1− exp(−fifTj )
fj −

∑
j /∈N1(i)

fj +
K∑
k=1

(xik −Qik)wT
k + nTi

=
∑

j∈N2(i)

exp(−fif
T
j )

1− exp(−fifTj )
fj −

∑
j /∈N2(i)

fj +
K∑
k=1

(xik −Qik)wT
k + n′

T
i

(13)

If node i is not associated with the differing edge between G1 and G2, we have ||ni||2 =
||n′i||2. If the differing edge between G1 and G2 involves user i and another user k due to
the adding or removing the edge between them, then we have ||ni − n′i||2 = 1

pik
||fk||2 ≤ ∆

ρ ,
where the inequality follows that the norm of each affiliation vector is upper bounded by ∆
and the connection probability between any pair of nodes is practically lower bounded by
ρ. Then for any pair of neighboring G1 and G2, we have:

Pr(f̂∗ = f̂i|G1)

Pr(f̂∗ = f̂i|G2)
=

∏
c∈{1,2,··· ,C} Pr(nic)∏
c∈{1,2,··· ,C} Pr(n′ic)

= exp(
ρεG

∆
√
C

∑
c

(|n′ic | − |nic |))

≤ exp(
ρεG

∆
√
C
||n′i − ni||1) ≤ exp(

ρεG

∆
√
C

√
C||ni − n′i||2) ≤ eεG .

Therefore, we conclude the proof.
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Moreover, the computation of (9) involves only xi and W, and does not require any
information related to network topology. The logistic parameter W can be shared in the
social network, because it does not contain any users’ information. Besides, each user also
keeps his attribute vector, i.e., xi, to himself, thus ∂LX(fi)

∂fi
can be computed locally by each

user without privacy breach. The steps to update F with differential privacy guarantee are
summarized in the first for-loop in Algorithm 1.

Algorithm 1 Differentially private community detection (DPCD) algorithm

Input: Privacy budget: εG, εX . Each user i holds his private attributes, i.e., xi and
private social connections, i.e., Ni.

Output: F̂, Ŵ
while the value of objective function in (3) still increases do

for user i ∈ {1, 2, · · · , N} do
query fj from other users

generate ni ∼ Lap(2∆
√
C

ρεG
)

compute ∂Lf (fi)
∂fi

in (12)

fnewi ← max(0, foldi + α∂Lf (fi)
∂fi

)

end
for k ∈ {1, 2, · · · , C} do

agent sends hk ∼ Exp(1) to all users
for user i ∈ {1, 2, · · · , N} do

generate ui ∼ N (0, 1/N)

compute nki = ∆
√
C+1
εX

√
2hk ◦ ui

send (xik −Qik)fTi + nki to the agent
end
agent calculates cumulative sum of (xik −Qik)fTi + nki and subtracts λSign(wk) to

get ∂Lw(wk)
∂wk

in (15)

wnew
k ← wold

k + α∂Lw(wk)
∂wk

end

end

Return F̂, Ŵ

3.2. Protection on Users’ Attributes

Users’ attributes in social networks contain their sensitive information, such as interests,
education background, relationship and sexual orientation, etc. Thus, protecting the privacy
of users’ attributes during community detection is of great importance.

Recall that W is shared in the social network, and wk is updated by the agent. The
partial derivative of LX w.r.t. wk in (10) requires each user i to send (xik −Qik)fTi to the
agent. Since fi is known to the agent and xik is either 0 or 1, the agent can easily recover
xik based on xik −Qik. Particularly, if xik −Qik > 0, then xik = 1, otherwise xik = 0.
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To prevent the information leakage of users’ attributes, we perturb the objective function
concerning all node attributes in (5) as follows:

ŵk = argmax
wk

Lw(wk) = argmax
wk

LX(wk)− λ||wk||1 + nTkwk, (14)

where nk ∈ R1×C is the injected noise.
Then, we have

∂Lw(wk)

∂wk
=
∂LX(wk)

∂wk
− λ Sign(wk) + nk. (15)

We further decompose nk =
∑

i nki , where nki is the noise vector generated by each user.
In other words, each user adds nki to (xik −Qik)fTi before submitting it to the agent.

How to generate the noise vector at each user is very critical. We propose the following
procedure to help users generate noises: first, the agent generates hk ∈ RC×1, the elements
of which are i.i.d. sampled from Exp(1), and send it to all users. Then, each user generates
ui ∈ RC×1, the elements of which are i.i.d. sampled from N (0, 1/N). At last, each user

computes its noise vector nki = ∆
√
C

εX

√
2hk ◦ ui, where ◦ is the Hadamard product, and εX

is the privacy budget in attributes protection. This procedure is summarized in the second
for-loop in Algorithm 1.

The Laplace noise generation process is motivated by the following lemma.

Lemma 2 For random numbers h ∼ Exp(1), u ∼ N (0, 1), and λ > 0, we have λ
√

2hu ∼
Lap(λ) Kotz et al. (2012).

Proposition 1 Let nk =
∑

i nki. Then, each element of nk follows the distribution of

Lap(∆
√
C

εX
).

Proof

nk =
∑
i

nki =
∆
√
C

εX

∑
i

√
2hk ◦ ui

∗
=

∆
√
C

εX

√
2hi ◦ u,

where each element in u =
∑

i ui is distributed as N (0, 1) and * follows that the summa-
tion of Gaussian distributed variables is still distributed as Gaussian. Thus, according to

Lemma 2, each element of nk is distributed as Lap(∆
√
C

εX
).

Next, we prove that any third-party agent cannot infer the value of the attributes of an
arbitrary user, and the privacy of node attributes is protected with privacy budget εX.

Theorem 3 If each element of nk is independently and randomly selected from Lap(∆
√
C

εX
),

then the proposed DPCD is εX-differentially private on binary users’ attributes.

Proof Given two attributed social networks whose neighboring attribute matrices X1 and
X2 are different in one record, e.g., xuv for X1 and x′uv for X2. After the convergence of

Algorithm 1, we have ∂Lw(wk|X1)
∂wk

= ∂Lw(wk|X2)
∂wk

= 0. Thereby,∑
i

(xik −Qik)fTi − λ Sign(wk) + nk =
∑
i

(xik −Qik)fTi − λ Sign(wk) + n′k.
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If v 6= k, then we have ||nk −n′k||2 = 0. If v = k, then ||nk −n′k||2 = ||(xuv − x′uv)fTi ||2 ≤ ∆
since the attributes are binary. Thus, for the two neighboring attribute matrix X1 and X2

we have:

Pr(ŵ∗k = ŵk|X1)

Pr(ŵ∗k = ŵk|X2)
=

∏
c∈{1,2,··· ,C} Pr(nkc)∏
c∈{1,2,··· ,C} Pr(n′kc)

= exp(
εX

∑C
c=1(|n′kc | − |nkc |)

∆
√
C

)

≤ exp(
εX
√
C||n′k − nk||2

∆
√
C

) ≤ eεX .

Thus, we conclude the proof.

Up to now, we have described the differentially private community detection (DPCD)
algorithm for protecting network topology and user attributes in binary attributed social
networks. We summarize the DPCD algorithm in Algorithm 1, where each user holds its
own attributes vector, i.e., xi, and social relationships, i.e., N (i). The inputs to DPCD are
the privacy budget (εG and εX), and the outputs are differentially private affiliation matrix
F̂, and logistic parameter Ŵ. Since we employ block-coordinate ascent method, then the
computational complexity for all nodes at one iteration in Algorithm 1 is O(|E| + NK),
which means the proposed DPCD is efficient and scalable.

3.3. Extension to Social Networks with Continuous Attributes

In real social networks, besides binary attributes, users can also have continuous attributes,
e.g., ratings in recommendation systems or posts in social platforms. Therefore, we extend
the proposed DPCD to accommodate nodes with continuous attributes which are normalized
to 1.

First, we consider a multivariate regression model for each user’s attributes as xi =
fiW + b, where W ∈ RC×K is the weight for the multivariate regression, and b ∈ R1×K

is the bias vector. Usually, for a multivariate regression model, its residual of the fitting
result, i.e., ei = fiW + b− xi, is assumed to be a multivariate Gaussian error vector (Var
(1998)). This means that ei is i.i.d. sampled from distribution N (0,Σ). Hence, according
to (Tabachnick et al. (2007)) the likelihood of the node attributes is:

Pr(vec(X)|F,W) ∼ N ([WT ⊗ IN×N ]vec(F),Σ⊗ IN×N ),

where vec(·) denotes the vectorization operator that stacks all columns of a matrix into a
vector. As a result, we can rewrite (3) as:

F̂,Ŵ = argmax
F≥0,W

LG + LX − λ||W||1

= argmax
F≥0,W

∑
(i,j)∈E

log(1− e−fif
T
j )−

∑
(i,j)/∈E

fif
T
j − ||X− FW||2F − λ||W||1

Compared to (3), we can see that LX is replaced by −||X − FW||2F . This is because
the least-square regression corresponds to finding the maximum likelihood estimation of
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parameters in a Gaussian distribution. Then we can obtain the partial derivatives of LX
w.r.t. fi and wk as follows:

∂LX(fi)

∂fi
= −2(fiW − xi)W

T, (16)

∂LX(wk)

∂wk
= −2

∑
i

fTi (fiwk − xik). (17)

Note that (16) can be computed locally by individual users. Therefore, similar to that
in Section 3.1, we can add perturbation noises to (4) to protect the privacy of network
topology using the same procedure in Algorithm 1. Thus we have the following theorem.

Theorem 4 If each element in ni is independently and randomly selected from Lap(∆
√
C

ρεG′
),

where εG′ is the privacy budget, then the proposed DPCD is εG′-edge-differentially private
on continuous attributed social networks.

Proof The proof follows a similar approach to that for Theorem 1. Thus, we omit the
proof here.

Moreover, similar to that in Section 3.2, we add perturbation noises to (5) so as to
protect the privacy of user’ attributes, i.e.,

ŵk = argmax
wk

L′w(wk) = argmax
wk

LX(wk)− λ||wk||1 + nTkwk, (18)

∂L′w(wk)

∂wk
= −2

∑
i

fTi (fiwk − xik)− λ Sign(wk) +
∑
i

nki . (19)

Subsequently, we have the theorem below about the differential privacy of the continuous
user attributes.

Theorem 5 If each element of nk =
∑

i nki is independently and randomly selected from

Lap(2∆
√
C

εX′
), where εX′ is the privacy budget, then the proposed DPCD scheme is εX′-

differentially private on continuous users’ attributes.

Proof The proof follows a similar approach to that for Theorem 3 and is omitted here.

4. Experiments

In this section, we evaluate the performance of the proposed DPCD using both synthetic
and real attributed social networks. In all experiments, 100 trials are carried out and the
averages are reported. In what follows, we present the dataset, the evaluation metric, the
effectiveness of the proposed algorithm, and the effect of the privacy budgets, respectively.
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4.1. Dataset Description

We synthesize two social networks using two different approaches. The first social network,
referred to as Gen, is generated by the CESNA model (Yang et al. (2013)). Specifically, we
first initialize F ∈ RN×C+ , F(ic) ∈ [0, 1], keep its element only if it is larger than 0.95 quantile
of F, and then generate the network topology (A) and node attributes (X) according to
(1) and (2), respectively. To generate the ground truth communities, we assign node i to
community c, if F(ic) is kept. The second synthetic social network, referred to as SBM, is
generated by employing the stochastic block model (Airoldi et al. (2008)). Specifically, this
model assumes that the network contains C blocks. It establishes an edge inside a block
with probability pintra, and between two blocks with probability pinter. The attributes of
nodes in a community c are generated by drawing i.i.d. samples from Bernoulli(pc). The C
blocks are then considered to be the ground truth communities during evaluation.

On the other hand, we also collect data from real-world social networks. For a social
network with binary attributes, we consider a published Facebook dataset, which is a set
of 10 ego-networks (Yang and Leskovec (2013)). The attributes come from the profile of
Facebook users, such as education, gender, job description. Each ego-network contains
manually labeled social circles, while merging the 10 ego-networks gives a total of 193 social
circles. In the experiments, we detect both 10 ego-networks and 193 social circles, and
call them FB1 and FB2, respectively. We use the ego-circles, each of which is a cluster
of connections between a user and his friends, as ground-truth communities in Facebook
dataset for two reasons. First, it is commonly adopted by many other community detection
works, such as CESNA (Yang and Leskovec (2013)) and CDE (Li et al. (2018)). To make fair
comparisons, we choose the same set of ground-truth communities. Second, the available
Facebook dataset is incomplete, since the data was collected from survey participants using
an App and the network is built by merging the ego-circles. In this case, using the original
ego-circles as ground-truth is straightforward and intuitive.

For social networks with continuous attributes, we build two retweet networks from
crawled tweets posted on August 8th 2016, 2nd day of Rio Summer Olympics. The node
attributes are vectors converted from the comments of the original tweets by the sentence
embedding technique (Pennington et al. (2014)). We define the ground truth communities
to be topics (shared hashtags in tweets). That is, if two tweets share the same set of
hashtags, they belong to the same community. In the experiments, we define two different
hashtag sets 1 of size 2 and 3, and the resulting retweet networks are referred as ReT1 and
ReT2, respectively. The statistics of all the aforementioned social networks are summarized
in the left panel of Table 1.

4.2. Evaluation Metrics

To evaluate the performance of our proposed algorithm, we adopt the average F1 score (Yang
and Leskovec (2013)) as the evaluation metric. Given the detected communities, each com-
munity is matched with the most similar one in the ground-truth communities, and the F1

score of the two matched sets c1 and c2 are computed as F1(c1, c2) = 2prec(c1,c2)×recall(c1,c2)
prec(c1,c2)+recall(c1,c2) ,

1. For example, for hashtag sets of size 2, we choose {#Rio2016, #TeamUSA}, {#Rio2016, #swim-
ming}, {#Rio2016, #weightlifting}, {#Rio2016, #waterpolo}, {#Rio2016, #Basketball}, {#Rio2016,
#Hockey} to define 6 communities as ground truth.
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Dataset N E C K D CESNA SCI CDE DPCD

Gen 1,000 11,450 30 15 0.023 0.519 0.399 0.412 0.336
SBM 3,000 62,717 30 20 0.014 0.806 0.639 0.734 0.694
FB1 4,039 88,234 10 10 0.011 0.594 0.504 0.650 0.412
FB2 4,039 88,234 193 10 0.011 0.365 0.077 0.360 0.311
ReT1 15,743 123,921 6 100 0.001 0.300 0.179 0.229 0.239
ReT2 172,821 11,677,129 47 100 0.001 0.561 0.183 0.499 0.452

Table 1: Left panel: statistics of social networks. N: node number, E: edge number, C: com-
munity number, K: attribute number, D: network density. Right panel: average F1

score of detected communities. CESNA, SCI and CDE are the community detec-
tion algorithms without taking privacy into consideration; DPCD is our proposed
differentially private algorithm.

where prec(c1, c2) = |c1∩c2|
|c1| , and recall(c1, c2) = |c1∩c2|

|c2| . Furthermore, we can have the av-

erage F1 score of two sets of communities C and C∗ as F̄1(C,C∗) = 1
2|C|

∑
ci∈C F1(ci, C

∗) +
1

2|C∗|
∑

c∗i∈C∗
F1(c∗i , C), where F1(ci, C

∗) = max
cj∈C∗

F1(ci, cj).

4.3. The Effectiveness of the Proposed Algorithm

To show the effectiveness of DPCD, we compare the average F1 score achieved by DPCD
with that of other 3 state-of-the-art community detection algorithms without the consid-
eration of the privacy protection. These algorithms are CESNA (Yang et al. (2013)), SCI
(Wang et al. (2016)) and CDE (Li et al. (2018)). In the experiments, we set the threshold
δ = 0.01, and the privacy budget on network topology and node attributes as εG = εX = 0.1.
We show the comparison results in the right panel of Table 1. From this table, we can see
that our proposed algorithm can achieve the average F1 score close to that of non-private
baselines. For example, for the ReT1 dataset, the F1 score are 0.239, 0300, 0.179 and 0.229
for DPCD, CESNA, SCI and CDE, respectively. It means that our algorithm achieves high
utility of community detection results even under limited privacy budget.

On the other hand, we also compare the proposed algorithm with other 7 state-of-
the-art algorithms that protects edge privacy only. They are 1K-Series (Wang and Wu
(2013)), MCMC (Xiao et al. (2014)), EdgeFlip (Mülle et al. (2015)), LouvainDP, ModDiv
(Nguyen et al. (2016)), LNPP (Wang et al. (2013)) and DPMF (Hua et al. (2015)). Among
them 1K-Series and MCMC are the best known algorithms for graph structure release
under differential privacy, which can be applied first on the social networks before running
any off the shelf community detection algorithms. LNPP is a Laplace based mechanism
that calibrates Laplace noise on the eigenvalues and preserves the spectral decomposition of
matrices. DPMF performs matrix factorization with differentially private guarantee, so that
we can adopt a nonnegative matrix factorization approach to conduct community detection
(Yang and Leskovec (2013)).

In the experiment, we run 1K-Series, MCMC and LNPP followed by CESNA. Because,
CESNA is known to be one of the best community detection algorithms considering both
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edge structure and node attributes, 1K-Series, MCMC and LNPP can get better results
when working with CESNA. Besides, CESNA serves as a building block of our mechanism
and we are making fair comparison by letting 1K-Series, MCMC and LNPP work with
CESNA. We set the privacy budget εG = εX = 0.1, and use the average F1 score to measure
their performance. The comparison results are summarized in Table 2. We can see that
under the same privacy budget, our proposed algorithm outperforms the other algorithms on
all datasets with significant improvements. The main reason is that DPCD uses objective
perturbation, whereas the other methods use input perturbation and do not take users’
attributes into account. In differential privacy, objective perturbation is superior to the
previous state-of-the-art, such as input and output perturbation, in managing the inherent
tradeoff between privacy and learning performance (Chaudhuri et al. (2011)).

Dataset 1K-Series MCMC EdgeFlip ModDiv LouvainDP LNPP DPMF DPCD

Gen 0.111 0.279 0.288 0.176 0.174 0.168 0.298 0.336

SBM 0.104 0.344 0.415 0.246 0.307 0.300 0.532 0.694

FB1 0.049 0.189 0.202 0.182 0.109 0.156 0.371 0.412
FB2 0.088 0.132 0.191 0.109 0.002 0.123 0.267 0.311
ReT1 0.008 0.034 0.105 0.174 0.038 0.073 0.214 0.239
ReT2 0.060 0.093 0.098 0.134 0.014 0.142 0.316 0.452

Table 2: Average F1 score of detected communities by algorithms with differential privacy.
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Figure 1: Average F1 score versus privacy budget on all social networks.

4.4. The Effect of the Privacy Budget

To show the impact of the privacy budget on the performance of the proposed DPCD
algorithm, we vary the privacy budget from 10−3 to 10−1 and calculate the corresponding
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average F1 scores. We compare our proposed algorithm with other algorithms with privacy
protection (i.e., 1K-Series, MCMC, EdgeFlip, ModDiv, LouvainDP, LNPP and DPMF).
100 trials are carried out for all algorithms and the averages are reported. The comparison
results are shown in Figure 1. We find that our proposed algorithm can achieve the highest
F1 score on all the datasets, which demonstrates that DPCD has the best performance.
For example, in FB1 and ReT2 social networks, we achieve the highest average F1 score
with the lowest privacy budget (ε = 10−3). Actually, for 1K-Series, MCMC, EdgeFlip,
ModDiv and LouvainDP to have decent community detection results, they usually require
ε = 0.5 ln(N) (Nguyen et al. (2016)), which makes their privacy budget much higher than
DPCD. On the other hand, these baseline algorithms can only protect the privacy of social
network topology, whereas DPCD offers protection on both the network topology and users
attributes, which is one of our main contributions. Moreover, we can see that in Figure 1,
the average F1 score grows as the privacy budget increases. This is consistent with the
theoretical analysis.

5. Conclusions

In this paper, we have studied the problem of protecting the sensitive information when
community detection is conducted in attributed social networks. In particular, we propose
the DPCD algorithm to protect the privacy of both network topology and node attributes.
Specifically, the community detection problem is formulated as a maximum log-likelihood
problem that is decomposed into a set of convex subproblems. To protect the privacy of
social networks, we add carefully generated noises to the objective function of these subprob-
lems with differential privacy guarantees. Particularly, we theoretically prove that DPCD
can achieve εG-edge-differential privacy on network topology and εX -differential privacy
on node attributes. We implement the proposed algorithm and some existing algorithms,
and evaluate the performance by considering both synthetic and real-world social networks.
The experiment results show that the proposed DPCD achieves significant performance
improvement compared to existing privacy-preserving community detection schemes.
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