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Abstract

Nowadays, the top-k accuracy is a major performance criterion when benchmarking multi-
class classifier using datasets with a large number of categories. Top-k multiclass SVM has
been designed with the aim to minimize the empirical risk based on the top-k accuracy.
There already exist two SDCA-based algorithms to learn the top-k SVM, enjoying several
preferable properties for optimization, although both the algorithms suffer from two disad-
vantages. A weak point is that, since the design of the algorithms are specialized only to the
top-k hinge, their applicability to other variants is limited. The other disadvantage is that
both the two algorithms cannot attain the optimal solution in most cases due to their the-
oritical imperfections. In this study, a weighted extension of top-k SVM is considered, and
novel learning algorithms based on the Frank-Wolfe algorithm is devised. The new learning
algorithms possess all the favorable properties of SDCA as well as the applicability not only
to the original top-k SVM but also to the weighted extension. Geometrical convergence
is achieved by smoothing the loss functions. Numerical simulations demonstrate that only
the proposed Frank-Wolfe algorithms can converge to the optimum, in contrast with the
failure of the two existing SDCA-based algorithms. Finally, our analytical results for these
two studies are presented to shed light on the meaning of the solutions produced from their
algorithms.

Keywords: Top-k SVM, Empirical risk minimization, Convex optimization, Frank-Wolfe
algorithm, SDCA.

1. Introduction

Lapin et al. (2015) have devised a new loss function, named the top-k hinge loss, for multi-
category classification. They focus on the recent multi-category classification task in which
the number of categories is increasing. Top-k error ratio is often used as the performance
measure of such classifiers for the task with a large number of categories. The performance
measure is supposed to be used for the top-k outputs of a classifier. The top-k outputs
are k category labels with the k largest prediction scores for a testing example. The top-k
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hinge loss is designed to be suitable to the top-k error ratio. Nevertheless, another loss or
the top-k′ hinge loss with k′ ̸= k often yields a smaller top-k error ratio than the top-k
hinge loss, as reported by Lapin et al. (2015). This suggests that the top-k hinge loss is not
always the optimal choice for the top-k error, which motivates us to explore variants of the
top-k hinge loss.

In most of modern machine learning methods, the values of model parameters are de-
termined by empirical risk minimization (ERM). A shortcoming that many algorithms for
ERM suffer is that optimization often fails without careful manual tuning of parameters
for optimization. For example, the number of epochs and a step size are chosen carefully
by monitoring the learning curve in training deep neural networks. Meanwhile, the frame-
work of stochastic dual coordinate ascent (SDCA) algorithm (Shalev-Shwartz and Zhang,
2013) does not entail any manual tuning. At each iteration of SDCA, an upper bound of
the objective gap, which is the difference between the current primal objective value and
the minimum, can be computed, meaning that the accuracy of the solution is guaranteed
by stopping iterations when the upper bound is small enough. Furthermore, SDCA works
without a step size. In SDCA, a set of the model parameters is divided into many blocks. At
each iteration, one of the blocks is chosen randomly, the rest of the blocks are fixed whereas
the chosen block is optimized. Lapin et al. (2015) have employed SDCA to train the top-k
SVM. They have attempted to develop a projection algorithm to solve the sub-problem
for optimization of a block of variables in each iteration of SDCA. Chu et al. (2018) have
developed a Newton-based method for SDCA update, and demonstrated that their algo-
rithm was faster than the projection algorithm in their numerical experiments. Both the
algorithms are specialized to the top-k hinge loss, meaning that the applicability to variants
of top-k hinge is limited. This is one of reasons to develop a new optimization algorithm
that can also be applied to a wide class of extensions of the top-k hinge loss function.

Another motivation to devise a new algorithm for top-k SVM is due to another serious
limitation of the two existing algorithms. The feasible regions derived in the two studies are
narrower than the correct one. Lapin et al. (2015) have discovered a property of the convex
conjugate of a particular class of convex functions which they call compatible, and attempted
to use the property to derive the convex conjugate of the top-k hinge loss function. However,
in this study, we have found that the top-k hinge loss does not belong to a class of the com-
patible functions. From the incorrectness, it turns out that the effective domain (Bertsekas,
1999) used by Lapin et al is just a subset of the true effective domain(See the HTML file in
supplementary zip file.).Chu et al. (2018) have developed another optimization algorithm
which directly utilizes the dual problem discussed by Shalev-Shwartz and Zhang (2016). In
Chu et al. (2018)’s paper, it is asserted that a particular subset of the dual variables can
be frozen to zero, although there is no guarantee that, at least, one of the optimal solutions
satisfies the added constraints (See Figure 1). Hence, neither of the two algorithms can
attain the optimum in cases where the wrongly narrower feasible regions do not intersect
with the set of the optimal solutions.

In this paper, we consider a weighted variant of the top-k hinge loss, and refer to the
learning machine as the weighted top-k support vector machine. The weighted variant is a
special case of the robust top-k hinge loss presented by Chang et al. (2017) who have pro-
vided a difference of convex algorithm for learning the robust top-k SVM. Their algorithm
requires careful adjustment of step size and sometimes fails to converge to the optimum.
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Figure 1: Sketch describing what happens if trying to find an optimal solution over a subset
of the feasible region. In both panels, the true feasible region and its subset are
depicted with solid and broken ellipses, respectively. (a) An optimal solution
can be found if the subset has an intersection with the set of optimal solutions,
whereas (b) it is impossible to attain the optimum if no intersection exists. See
also the HTML file in the supplementary zip file.

The new optimization algorithm developed in this study is based on the Frank-Wolfe algo-
rithm (Frank and Wolfe, 1956) that requires no step size, enjoys the clear stopping criterion,
and is never solicitous for computational instability. Frank-Wolfe algorithm repeats the di-
rection finding step and the line search step. One of the discoveries in this study is that
both the steps can be given in a closed form, which shall be presented in Section 5. The
proposed algorithm can be applied not only to the original top-k SVM but also to the
weighted variant, in spite of a much more complicated effective domain than that for the
original top-k hinge loss (Section 4). By smoothing the loss function, the algorithm can
converge geometrically (Lacoste-Julien and Jaggi, 2015). The proposed algorithm can be
applied even when smoothing the weighted top-k hinge, which is described in Section 6.
Numerical simulations demonstrate that the proposed algorithm successfully converges to
the optimum, although the two existing SDCA algorithms (Lapin et al., 2015; Chu et al.,
2018) fail due to the aforementioned theoretical faults (Section 7). In Section 8, we shed
light on what the theories developed in the two existing studies bring in the world, followed
by the last section concluding this paper.

Notation We shall use the notation π(j ; s) ∈ [m] which is the index of the j-th largest
component in a vector s ∈ Rm. When using this notation, the vector s is omitted if there
is no danger of confusion. Namely, for a vector s ∈ Rm, we can write sπ(1) ≥ sπ(2) ≥ · · · ≥
sπ(m). Let us define π(s) := [π(1 ; s), . . . , π(m ; s)]⊤ and introduce a notation for a vector

with permutated components as sπ(s) :=
[
sπ(1), . . . , sπ(m)

]⊤
.

We use ei to denote a unit vector where i-th entry is one. The n-dimensional vector all
of whose entries are one is denoted by 1n. We use an operator ∥·∥F to denote the Frobenius
norm.
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2. Empirical Risk Minimization

The linear multi-class classifier discussed in this paper has a parameterW := [w1, . . . ,wm] ∈
Rd×m, where the number of categories is m, to predict the category label of an unknown
input x ∈ Rd by choosing the largest one from m prediction scores ⟨w1,x⟩ , . . . , ⟨wm,x⟩ .
In order to determine the value of the parameter W , suppose that we are given n training
examples, (x1, y1), . . . , (xn, yn) ∈ Rd×[m]. Typical approach is the empirical risk minimiza-
tion (ERM), in which the parameter W is set to the value that minimizes the regularized
empirical risk defined as

P (W ) :=
λ

2
∥W ∥2F +

1

n

n∑
i=1

Φ(W⊤xi ; yi) (1)

where λ > 0 is a regularization constant and Φ(· ; y) : Rm → R is a convex loss function
for a true class y ∈ [m].

Dual methods have been adopted by several studies to find the minimizer of the regular-
ized empirical risk (Shalev-Shwartz and Zhang, 2013; Hsieh et al., 2008; Lacoste-Julien et al.,
2013; Lapin et al., 2015; Chu et al., 2018). The dual methods attempt to find the maximizer
of the Fenchel dual function (Bertsekas, 1999) given by

D(A) := −λ

2
∥W (A)∥2F − 1

n

n∑
i=1

Φ∗(−αi ; yi) (2)

where αi is the i-th column in the m × n matrix A which is the dual variable; function
Φ∗(· ; yi) : Rm → R̄ is the convex conjugate of the loss function Φ(· ; yi) where R̄ :=
R ∪ {+∞}; function W (·) is defined as W (A) := 1

λnXA⊤ where X := [x1, . . . ,xn].
One of strong advantages of dual methods is that, during the iterations, the duality gap
P (W (A)) − D(A) can be monitored (In the literature of optimization, the term, duality
gap, is defined by the minimal gap between the primal and dual objective values, although
the gap at any possible primal and dual feasible solutions is referred to as the duality gap
in many of machine learning literature.). The duality gap vanishes at an optimum for most
of loss functions. When the duality gap is below a small positive threshold ϵ, the recovered
primal variable W (A) ensures the ϵ-accuracy, i.e. P (W )−minW ′∈Rd×m P (W ′) ≤ ϵ, which
allows us to decide when to stop the iterations.

3. Unweighted Top-k Hinge

The learning algorithm for top-k SVM developed by Lapin et al. (2015) attempts to mini-
mize the regularized empirical risk where the empirical risk is evaluated with the average of
the top-k hinge losses for training examples. The top-k hinge loss suffered for the prediction
score s = W⊤x is defined as

Φutk(s ; y) := max

0,
1

k

k∑
j=1

(1m − ey + s− sy1m)π(j)

 (3)

where W is a matrix of the model parameters. Then, how can we minimize the regularized
empirical risk? Lapin et al. (2015) have employed the stochastic dual coordinate ascent
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(SDCA) algorithm to find the minimizer in an iterative fashion. One column in A is selected
at random, and updated at each iteration of SDCA. Lapin et al. (2015) have developed an
algorithm for updating a column and plugged in it to the framework of SDCA.

To express the convex conjugate of the top-k loss function, Lapin et al. (2015) introduce
the following convex polytope

∆(k, r) :=

{
β ∈ Rm

+ | ⟨1,β⟩ ≤ r, β ≤ 1

k
11⊤β

}
(4)

and they call it the top-k simplex. Using the convex polytope, the top-k loss function can
be re-expressed as

Φutk(s ; y) = max
β∈∆(k,1)

⟨β,1m − ey + s− sy1m⟩ . (5)

From the equation (5), the convex conjugate can be derived as

Φ∗
utk(v ; y) = vy (6)

provided that the value of v satisfies

⟨v,1⟩ = 0, ∃by ∈ R, v + (by − vy)ey ∈ ∆(k, 1); (7)

otherwise, Φ∗
utk(v ; y) goes infinity.

4. Weighted Top-k Hinge

In this section, an extension of the top-k hinge loss function is described. We use m pre-
defined weights ρ := [ρ1, . . . , ρm]⊤ such that ρ1 ≥ · · · ≥ ρm ≥ 0. With these weights, we
introduce the following loss function:

Φwtk(s ; y) := max

0,

m∑
j=1

(1m − ey + s− sy1m)π(j) ρj

 (8)

This function is referred to as the weighted top-k hinge loss. This definition is a special
case of Chang et al. (2017)’s extensions. They use an upperbound of the loss value, say τ .
Their loss function is no more convex unless τ = +∞.

To exploit the duality gap for a stopping criterion, the convex conjugate of the weighted
top-k hinge loss is required. To derive the convex conjugate, we use the following lemma:

Lemma 1 Let y ∈ [m] and δ ∈ Rm such that δy = 0. With a non-empty convex
polyhedron B ⊆ Rm, define a function Φ : Rm → R as

Φ(s) := max
β∈B

⟨β, δ + s− 1msy⟩ . (9)
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The convex conjugate of Φ is then expressed as

Φ∗(v) =

{
−⟨v, δ⟩ if v ∈ dom(Φ∗),

+∞ otherwise,
(10)

where dom(Φ∗) is the effective domain of Φ∗ which is given by

dom(Φ∗) =
{
v ∈ Rm

∣∣∣ ⟨v,1⟩ = 0,

∃βy ∈ R, v + (βy − vy)ey ∈ B
}
.

(11)

See Subsection A.1 for the proof of Lemma 1. In the case of the unweighted top-k hinge
loss (3), the convex conjugate (6) and its effective domain (7) are indeed derived by setting
B := ∆(k, 1) and δ = 1− ey.

The convex conjugate of the weighted top-k hinge loss can also be derived with use of
Lemma 1 as follows. Preliminary to application of the lemma, we shall first observe that
the weighted top-k hinge loss can be re-expressed in the form of (9). There exist an index

set K :=
{
k1, . . . , k|K|

}
⊆ [m] and a transformed weights ρ′ :=

[
ρ′1, . . . , ρ

′
|K|

]⊤
such that

Φwtk(s ; y) = max

0,

|K|∑
ℓ=1

ρ′ℓgℓ(s)

 (12)

(See Subsection A.2 for the derivation of (12). )where

∀ℓ ∈ |K|, gℓ(s) :=

kℓ∑
j=1

(1m − ey + s− sy1m)π(j) . (13)

If defining a convex polyhedron Bwtk as

Bwtk :=
{
β ∈ Rm

∣∣∣∃ζ ∈ R, ∀ℓ ∈ [|K|], ∃λℓ ∈ ∆(kℓ, ρ
′
ℓkℓ),

ζ =
⟨1,λℓ⟩
kℓρ

′
ℓ

, β = λ1 + · · ·+ λ|K|

}
,

(14)

the loss function can be re-written as

Φwtk(s ; y) = max
β∈Bwtk

⟨β,1m − ey + s− sy1m⟩ . (15)

See Subsection A.3 for the derivation of (15). Thusly, it has been confirmed that the
weighted top-k hinge loss satisfies the assumption of Lemma 1, which leads to the following
result.
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Theorem 2 The convex conjugate of the weighted top-k hinge loss is expressed as

Φ∗
wtk(v ; y) =

{
vy if ⟨v,1⟩ = 0, ∃by ∈ R, v + (by − vy)ey ∈ Bwtk,

+∞ o.w.
(16)

Our goal is development of optimization algorithms for ERM based on the weighted top-
k hinge loss, in which no step size is required and the clear stopping criterion is provided
like SDCA. Lapin et al. (2015) and Chu et al. (2018) have tried to develop a key ingredient
of SDCA which optimizes a chosen column of the dual variable A for the unweighted top-
k hinge loss. For the weighted extension of the top-k hinge, a serious obstacle against
development of such an algorithm is a much more complicated effective domain of the dual
variables, −dom(Φ∗

wtk(· ; yi)). In the next section, we present a new optimization algorithm
to avoid facing the rather complicated problem directly for updating a column of A.

5. Learning Algorithm

In this section, a new optimization algorithm for learning weighted top-k SVM is presented.
The algorithm developed in this study is based on Frank-Wolfe framework (Frank and Wolfe,
1956) which iteratively maximizes a function over a convex polyhedron. In the dual problem
for ERM, the polyhedron is the effective domain of the negative dual objective

dom(−D) = (−domΦ∗(·; y1))× · · · × (−domΦ∗(·; yn)). (17)

Each iteration of Frank-Wolfe framework consists of two steps: direction finding step and
line search step.

In the direction finding step, the optimal solution that maximizes the linearized objective
function over the polyhedron is searched, where the linearized objective function is given
by ⟨

∇D(A(t−1)),U −A(t−1)
⟩
+D(A(t−1)) (18)

which is the first-order Taylor expansion of the dual objective D(·) around the previous
solutionA(t−1). If denoting the solution of this linear programming (LP) problem byU (t−1),
the new direction is determined as ∆A(t−1) := U (t−1) −A(t−1).

In the line search step, the optimal point is searched on the line segment between A(t−1)

and A(t−1) + ∆A(t−1). The optimal point is expressed as A(t) := A(t−1) + γ(t−1)∆A(t−1)

where
γ(t−1) := argmax

γ∈[0,1]
D
(
A(t−1) + γ∆A(t−1)

)
. (19)

The line search step can be expressed in a closed form so long as the convex conjugates
of the loss functions are an affine or quadratic function. For the weighted top-k SVM, this
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step can be written as γ(t−1) := max(0,min(1, γ̂(t−1))), where

γ̂(t−1) :=
λn
⟨
∆A(t−1),Ey −Z(A(t−1))

⟩⟨
∆A(t−1)K,∆A(t−1)

⟩ , K := X⊤X,

and Z(A) :=
1

λn
KA⊤, Ey := [ey1 , . . . , eyn ] .

(20)

This step requires O(mnmin(d, n)) computation.
Then, how to compute the LP solution required in the direction finding step? Does

the LP problem for this step entail use of a general-purpose solver in every iteration? The
answer is no. This study has discovered that the direction finding step can be given in a
closed form and takes only O(nm logm) computation. Below we shall derive the algorithm.
From the expressions of the linearization approximation and the effective domain of the dual
objective, it is seen that the linear programming problem can be divided into n independent
and smaller LP problems: for i = 1, . . . , n,

max

⟨
∂D(A(t−1))

∂αi
,ui

⟩
wrt ui ∈ −dom(Φ∗

wtk(·; yi)). (21)

The LP solution for the direction finding step U (t−1) is obtained by solving each of n

smaller LP problems and concatenating these n optimal solutions u
(t−1)
i as U (t−1) :=[

u
(t−1)
1 , . . . ,u

(t−1)
n

]
. The gradient with respect to the i-th column in A is expressed as

∂D(A)

∂αi
=

1

n
(zi(A)− eyi) (22)

where zi(A) is the i-th column of Z(A).

A näıve way to finding the optimal solution u
(t−1)
i to each of n LPs is use of a general-

purpose LP solvers. The variables to be determined in each LP problem are ui ∈ Rm as
well as βy, ζ ∈ R and λ1, . . . ,λ|K| ∈ Rm in its LP form. The computational time for solving
each LP with a general-purpose solver is prohibitive if the number of classes is large. In
this study, the following lemma has been found, which brings an O(m logm) algorithm for
solving each LP.

Lemma 3 Let ϕ : Rm → R be a convex function whose convex conjugate ϕ∗ is given
by −ϕ∗(−α) = ⟨f ,α⟩ for α ∈ −domϕ∗, where f ∈ Rm is a constant vector. Then, it
holds that

∀η ∈ R++, argmax
α∈−dom(ϕ∗)

⟨g,α⟩ = −∂ϕ(f − ηg) (23)

where ∂ϕ(x) is the sub-differential of ϕ at x ∈ Rm.

See Subsection A.4for the proof of Lemma 3. By substituting f := eyi , g := (eyi −
zi(A

(t−1)))/n and η := n into the result of Lemma 3, a solution optimal to the LP (21) can
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be expressed in a closed form as

u
(t−1)
i := −∇Φwtk(zi(A

(t−1))) (24)

where ∇Φwtk(zi(A
(t−1))) is a sub-gradient of the weighted top-k hinge at zi(A

(t−1)). The-
ories are established even if any of sub-gradient in the sub-differential is taken. On

computing Z(A(t−1)), it takes O(m logm) time to compute u
(t−1)
i . These results can be

summarized in the following theorem.

Theorem 4 Consider the Frank-Wolfe algorithm for maximizing D(A) with Φ∗(·; yi) =
Φ∗
wtk(·; yi) for i = 1, . . . , n. Every iteration consisting of the direction finding step and

the line search step can be done in O(nm(min(d, n) + logm)) computational time.

The techniques presented in this section make efficient every iteration not only of the
classical Frank-Wolfe but also of its variants such as away-step Frank-Wolfe (AFW) and
pairwise Frank-Wolfe (PFW) algorithms. Recently Lacoste-Julien and Jaggi (2015) have
proved the global linear convergence for the standard Frank-Wolfe algorithm and these
variants. When employing the standard Frank-Wolfe algorithm, the upper bound of the
objective gap dgap(A) := minWP (W ) − D(A) is guaranteed to geometrically decrease
as dgap(A(t)) ≤ exp (−ζt) where ζ is a constant dependent on the optimization problem
(Lacoste-Julien and Jaggi, 2015). Their theories are based on an assumption that the ob-
jective function must be smooth and strongly convex (Nesterov, 2014), although −D(·) does
not possess the strongly convex property in the setting discussed so far. In the next section,
we introduce the technique of Moreau envelope (Rockafellar, 1970) to the weighted top-k
hinge, which endows the objective with the strong convexity.

6. Optimization for Smoothed Top-k Hinge

The two aforementioned top-k hinge losses, (3) and (8), suffer from the discontinuity in the
derivatives. Several studies (Rennie and Srebro, 2005; Shalev-Shwartz and Zhang, 2013;
Lapin et al., 2016) have considered smoothing loss functions to obtain a better property
for optimization. Following Lapin et al. (2016), the Moreau envelope, which is a typical
approach to smoothing, is introduced for the weighted top-k hinge loss in this study. The
smoothed weighted top-k hinge loss is given by

Φstk(s ; y) := min
z∈Rm

(
Φwtk(z ; y) +

1

2γ
∥s− z∥2

)
(25)

where γ > 0 is a smoothing constant. Here we discuss how to findW ∈ Rd×n that minimizes
the regularized empirical risk based on the smoothed loss, denoted by Pstk : Rd×m → R,
which is given in (1) with Φ(·; yi) = Φstk(· ; yi) for i = 1, . . . , n. To use dual methods for
learning with this smoothed loss function, the dual objective, denoted by Dstk : Rm×n →
−R̄, must be maximized with respect to the dual variables A ∈ Rm×n. It can be seen that
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the dual objective −Dstk is strongly convex with coefficient γ/n which is proportional to
the constant ζ. It is not straightforward to develop an efficient Frank-Wolfe iteration again
to solve this dual problem, because the convex conjugate of the smoothed loss is no longer
a linear function which violates the assumption of Lemma 3. Nonetheless, Frank-Wolfe
framework is re-used in this study, with the help of the following proposition.

Proposition 5 Let x̃i :=
[
x⊤
i ,

√
γλne⊤i

]⊤ ∈ Rd+n for i = 1, . . . , n. Then, the opti-
mization problem for maximizing Dstk(A) is not only dual to the minimization problem
with the primal objective Pstk : Rd×m → R but also dual to the minimization problem
with the objective function P̃wtk : R(d+n)×m → R defind as

P̃wtk(W̃ ) :=
λ

2

∥∥∥W̃∥∥∥2
F
+

1

n

n∑
i=1

Φwtk(W̃
⊤x̃i ; yi). (26)

See Subsection A.5 for the proof of Proposition 5. This proposition suggests that the
learning problem for the smoothed loss can be transformed back to that for the non-
smoothed loss. This enables us to re-use the algorithm presented in Section 5 — the
trick for direction finding step, in particular — with the kernel matrix K replaced to
K̃ := X⊤X+γλnI. The iterations can be stopped when the following duality gap is small
enough:

Gapstk(A) := P̃wtk(W̃ (A))−Dstk(A)

=
γ

n
∥A∥2F +

1

λn2
⟨AK − λnEy,A⟩+ 1

n

n∑
i=1

Φwtk(zi(A) + γαi).
(27)

The above observations suggest that neither the (d + n)-dimensional vectors x̃1, . . . , x̃n

nor the model parameters W̃ ∈ R(d+n)×m do not have to be unfolded in the computational
memory to implement the Frank-Wolfe algorithm for minimizing P̃utk(W̃ ) and to monitor
the duality gap.

7. Experiments

We shall demonstrate the convergence behaviors of the proposed Frank-Wolfe algorithms for
the top-k SVM learning, followed by reporting the pattern recognition performances with
top-k accuracies on several datasets for benchmarking multi-class classifiers. The proposed
Frank-Wolfe algorithms were implemented in Python. The Python code will be available
at https://github.com/hirohashi/wtopk

7.1. Convergence Behavior for Non-Smooth Unweighted Top-k SVM

The proposed Frank-Wolfe algorithms were compared with three existing SDCA-based al-
gorithms for learning the unweighted top-k SVM. Two of the three existing algorithms,
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denoted by Chu I and Chu II, were proposed by Chu et al. (2018). Chu I always uses a
Newton method for SDCA update, whereas Chu II switches the SDCA update method
from the Newton method to the variable fixing method (Kiwiel, 2007) under some condi-
tion. The remaining one, denoted by Lapin, was Lapin et al. (2015)’s SDCA algorithm.
Implementations published in the authors’ GitHub repositories 1 were utilized to run the
three existing SDCA algorithms. In their codes, different loss functions, which shall be
shown in (31), were implemented. In our experiments, the corresponding code was replaced
to the correct one for comparison.

Panels (a) and (b) in Figure 2 show the duality gap P (W (A)) − D(A) against the
CPU times on two datasets, FMD and News20. Each algorithm was terminated at 1,000th
epoch. FMD contains n = 1, 000 training examples divided into m = 10 categories and each
feature vector xi is d = 4, 096 dimensional; for News20, n = 15, 935, d = 1, 024, and m = 20.
In this experiment, k = 3 and λ = 1/n. On the two datasets, the standard Frank-Wolfe
algorithm, denoted by Std FW attained the duality gap of 10−3 for the shortest times
compared to the two variants, AFW and PFW. The running times were 5.23 and 62.17
seconds, respectively, to make the duality gap below 10−3 on FMD and News20, and those
were 53.42 and 1102.35 seconds to get 10−5-accurate solutions. PFW took 172.56 seconds
for News20 to obtain 10−3-accurate solutions, but AFW could not attain 10−3-accurate
solutions within 1,000 iterations.

The three algorithms, Chu I, Chu II, and Lapin, converge to the almost same value.
Therefore, the curves of Chu I and Chu II look overlapped with Lapin’s. The three
existing SDCA methods could reduce the duality gap to 5.12 · 10−2 and 1.34 · 10−2 quickly
on FMD and News20 (0.44 and 156.99 seconds, at minimum), respectively. However, the
duality gaps could not be decreased further, and eventually remain over 10−2 at 1,000th
epoch. If comparing the values of the primal objective, the regularized empirical risk, at

1,000th epoch, the differences from that of Std FW, P (W (A(1000))) − P (W (A
(1000)
FW )), —

where A
(1000)
FW was the solution generated with Std FW at 1,000th epoch — were seriously

large (Minimums among three SDCA were 4.51 · 10−2 and 4.17 · 10−3 for the two datasets,
respectively), indicating that any of existing SDCA algorithms could not reach accurate
solutions for the two datasets. In the next section, what prevents the existing methods
from converging to the optimum shall be analyzed.

7.2. How Does Smoothing Affect Convergence?

We next investigated how the smoothing technique affected the convergence. In Section 6,
the smoothed weighted top-k SVM can be trained again with the Frank-Wolfe algorithm for
non-smooth weighted top-k SVM presented in Section 5. Theoretically, a faster convergence
rate can be achieved if the coefficient of strong convexity is larger, and the larger coefficient
can be generated with a larger smoothing coefficient γ. In the experiments presented here,
the smoothing coefficient γ is varied with 0, 10−3, 10−2, and 10−1, where the value γ = 0
does not change the non-smooth loss function. Figure 3 plots the duality gaps against
the number of iterations. The duality gaps produced with Std FW, AFW, and PFW,
respectively, are shown in Figure 3(a),(b),(c). The dataset used here is News20. When using

1. https://github.com/djchu/topkmsvm with 8d17418 and https://github.com/mlapin/libsdca with
fd5c1f1

11



Kato Hirohashi

(a) FMD (b) News20

Figure 2: Convergence behavior for the unweighted top-k hinge loss. In (a) and (b), the con-
vergences of the proposed Frank-Wolfe algorithms, Std FW, AFW, and PFW, are
compared to those of the three SDCA-based algorithms, Chu I, Chu II, and Lapin
for learning the unweighted top-k SVM with two datasets, FMD and News20.
The horizontal and vertical axes, respectively, indicate the CPU time and the
duality gap which vanishes at the optimum. The classical Frank-Wolfe algorithm
quickly converged to the optimum on both the datasets, in contradistinction to
the failures of the existing SDCA-based algorithms.

γ = 10−1, the duality gap felt below 10−3 within only eight iterations. For γ = 10−3 and
γ = 10−2, the dual gaps are decreased quickly for the first several iterations, although the
convergence speeds slowed down suddenly. This might be the zigzag phenomena discussed
in Lacoste-Julien and Jaggi (2015). Meanwhile, such slowdown was not observed when
using AFW and PFW with γ = 10−2. The duality gaps for γ = 10−3 were decreased almost
linearly on the log-log plots, although, due to the mild slopes, the number of iterations to
attain 10−3 of the duality gap was did not differ largely from the ones of non-smooth loss.

7.3. Convergence Behavior for Weighted Top-k SVM

One advantage of the proposed algorithms is that dual variables can be optimized within the
feasible region that has a much more complicated shape by having weights for differences
in the prediction scores, as defined in (8). In the experiments reported here, three types
of the weights, called flat, linear and exp, were examined. The flat, linear and exp

weights, respectively, were designed as ρflatj = 1
k , ρ

linear
j = 2(k + 1 − j)/((k + 1)k), ρexpj =

exp(−j/k)/
(∑k

j′=1 exp(−j′/k)
)
for j ≤ k, and the remaining weights were zero. The flat

recover the unweighted top-k hinge, whereas the linear and exp weights, respectively,
decrease the coefficient ρj linearly and exponentially as j goes larger. The convergence
behaviors for the three weight types on FMD and News20 were plotted in Figure 4. No
significant differences amongst the three weight types were observed despite the effective
domains complicated by weighting.

7.4. Pattern Recognition Performance

Finally, the pattern recognition performances of the proposed learning methods were inves-
tigated. We used the top-k accuracy for the performance measure for multi-class classifiers,
where the top-k accuracy is the ratio of testing examples each of which the prediction score

12
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of the correct category is in the top-k outputs. We chose k = 1, 3, 5, 10. For weighted top-k
SVM, three types of weights, ρflat, ρlinear, and ρexp, were examined, denoted by UTk (ours),
WTk (linear), and WTk (exp), where UTk (ours) was equivalent to the unweighted top-k
SVM. These three multi-class SVMs were trained with the standard Frank-Wolfe algorithms
presented in Section 5. Each algorithm was terminated when the difference between the
primal and dual objective values reached 10−3. The regularization parameter was chosen
by λ = 1/nC where C = 10−3, 10−2, . . . , 10+3. The smoothing parameter was chosen from
γ = 0, 10−3, 10−2, 10−1. Three-fold cross-validation within training dataset was performed
to determine the values of these hyper-parameters. These proposed methods were compared
with Lapin et al. (2015)’s and Chu et al. (2018)’s methods for learning the unweighted top-k
SVM.

In Table 1, the top-k accuracies are reported on six benchmarking datasets, ALOI
(n = 10, 800, d = 128, m = 1, 000), Caltech101 (n = 6, 339, d = 256, m = 101), CUB
(n = 6, 033, d = 4, 096, m = 200), Indoor67 (n = 15, 607, d = 4, 096, m = 67), Letter
(n = 15, 000, d = 16, m = 26), and News20 (n = 15, 935, d = 1, 024, m = 20). For CUB
and Indoor67, feature vectors were extracted by the fc7 layer in the deep structure VGG16
trained on ImageNet. Our methods achieved the highest accuracies except Letter. The
differences in top-k accuracies might cause due to the success of convergence to the optimum.
As demonstrated in Subsection 7.1, the two existing methods always fail to minimize the
regularized empirical risk for top-k SVM. This is due to wrongly smaller feasible regions,
which shall be analyzed in the next section. These results empirically suggest that solutions
more accurate in optimality are of benefit to better pattern recognition performance.

8. Discussions

In this section, we discuss why the existing methods fail to converge to the optimum. The
reason is due to their defective theories. The dual objective functions derived by Lapin et al.
(2015) and Chu et al. (2018) are correct, although their feasible regions are smaller than
the true ones. The results reported in Subsection 7.1, in which large duality gaps have
remained, suggest that the set of optimal solutions are out of the wrongly derived feasible
regions. It may not be simple to modify their algorithms with the correct feasible regions
because their theories are founded on the wrongly smaller feasible regions. In what follows,
we shall elucidate what the solutions derived from their theories mean.

Lapin et al. (2015) have introduced a new concept named y-compatible in Definition 2
of their paper for y ∈ [m]. For simplicity, we here assume that y = m. Lapin et al. (2015)
have defined a convex function ϕ(· ; y) : Rm → R to be y-compatible if

∀v\y ∈ Rm−1, sup
s\y∈Rm−1

(⟨
v\y, s\y

⟩
− ϕ

([
(s\y)⊤, 0

]⊤
; y

))
= ϕ∗

([
(v\y)⊤, 0

]⊤
; y

)
.

(28)
where we have used the notation x\y ∈ Rm−1 to denote the (m − 1)-dimensional vector
generated by excluding the y-th entry from a vector x ∈ Rm. In Proposition 3 in Lapin et al.
(2015)’s paper, it is stated that the function

ϕutk(s ; y) := max

0,
1

k

k∑
j=1

(1m − ey + s)π(j)

 (29)
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is y-compatible, and the convex conjugate of the unweighted top-k hinge loss has been
derived with dependence on their Proposition 3. However, in this study, we have found a
result that contradicts with Lapin et al. (2015)’s Proposition 3.

Proposition 6 The function ϕutk(· ; y) : Rm → R defined in (29) is not y-compatible
for 2 ≤ k < m.

See Subsection A.6for the proof of Proposition 6. Their imperfection leads to an incorrect
convex conjugate function Φ∗

ptk(v ; y) = vy with the effective domain

domΦ∗
ptk(· | y) = {v ∈ Rm | ⟨v,1⟩ = 0, v − vyey ∈ ∆(k, 1)} (30)

which is a subset of the correct one, domΦ∗
utk(· ; y), when 2 ≤ k < m. In fact, the above

function Φ∗
ptk(· ; y) is the convex conjugate of the following function (See Subsection A.7

for the derivation):

Φptk (s ; y) = max

0,
1

k

k∑
j=1

(
(1− sy)1m−1 + s\y

)
π(j)

 (31)

which is no more the unweighted top-k hinge loss function. We refer to Φptk (· ; y) as the
pseudo top-k hinge loss below. Let us denote by Pptk and Putk, the regularized empirical risk
(1) with Φ(·; yi) = Φptk(·; yi) and Φ(·; yi) = Φutk(·; yi) for i = 1, . . . , n, respectively. It can
be observed that, ∀y ∈ [m], ∀s ∈ Rm, Φptk (s ; y) ≤ Φutk (s ; y), implying that ∀W ∈ Rd×m,
Pptk(W ) ≤ Putk(W ). Therefore, the duality gap derived from the true top-k hinge loss can
remain positive even when the duality gap from the pseudo top-k hinge loss vanishes.

Chu et al. (2018) have employed another formulation for the Fenchel dual function of
the regularized empirical risk, which is given by

dutk(A) := − 1

2λn2

∥∥∥∥∥
n∑

i=1

(
H⊤

yi ⊗ xi

)
αi

∥∥∥∥∥
2

− 1

n

n∑
i=1

ϕ∗
utk(−αi ; yi), (32)

where Hy := I−1e⊤y and the operator ⊗ denotes the Kronecker product. This formulation
is similar to the one presented in Shalev-Shwartz and Zhang (2016). In maximizing dutk(A),
no feasibility condition but A ∈ dom(−dutk) must be given to the dual variable A ∈ Rm×n.
Nonetheless, Chu et al. (2018) insist that the (yi, i)-th entries in A, say αyi,i, for i ∈ [n] can
be fixed to zero, and their algorithm has been developed on the basis of this fixation. Their
constraints inevitably make the feasible region narrower than the true one. Fixing these n
entries to zero would not be harmful only when the set of the optimal solutions contained a
matrix with αyi,i = 0 for ∀i ∈ [n], although unfortunately the empirical results in this study
suggest that such a case is very rare. The observation for their failure of the convergence
has prompted us to analyze their theories, which has brought the following proposition.
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Proposition 7 The maximization problem with objective dutk(A) subject to a constraint
Ey ⊙ A = O, where ⊙ is the operator of the entrywise product, is dual to the ERM
problem for minimizing Pptk(W ).

See Subsection A.9 for the proof of Proposition 7. From the above discussions, this
study has unraveled a new fact that the two existing theories developed by Lapin et al.
(2015) and Chu et al. (2018) are not for learning the unweighted top-k SVM, but for ERM
with the pseudo top-k hinge (31).

9. Conclusions

In this paper, a novel approach to answering the question of how to solve the dual problem
for learning the top-k multiclass SVM was presented. Due to the theoretical incompleteness
in the previous studies (Lapin et al., 2015; Chu et al., 2018) tackling the same question, this
study turned out the first to provide a correct answer. The experimental results demon-
strated that the proposed algorithms work well even if the loss functions are weighted and
smoothed.

Besides the proposed Frank-Wolfe algorithm, there remain substantial choices for learn-
ing the weighted top-k SVM. One might employ the stochastic sub-gradient method, in
which a sub-linear convergence is guaranteed (e.g. Shalev-Shwartz et al. (2011)). Several
variants such as SAG (Roux et al., 2012) and SVRG (Johnson and Zhang, 2013) converge
geometrically when smoothed loss is employed. Disadvantage of these approaches is lack of
clear stopping criterion. Another choice for learning the weighted top-k SVM may be the
block coordinate Frank-Wolfe (BCFW) algorithm (Lacoste-Julien et al., 2013; Osokin et al.,
2016). Interestingly, it can be shown that BCFW applied to the dual problem for the
weighted top-k SVM is exactly same as ProxSDCA Option II (Shalev-Shwartz and Zhang,
2016) which updates the solution in the same direction, and performs the exact line search
in a closed form. Numerical comparison with these methods is left to future work.
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Appendix A. Proofs and Derivations

A.1. Proof for Lemma 1

Without loss of generality, we assume y = m in this proof. We can then write x =[
(x\y)⊤, xy

]⊤
. Fixing v ∈ Rm in Lemma 1, let us define a function J1 : Rm → R̄ as

J1(β) := max
s\y∈Rm−1

⟨
s\y,v\y − β\y

⟩
+max

sy∈R

(
vy +

⟨
β\y,1

⟩)
sy, (33)

to express the convex conjugate of Φ as

Φ⋆(v) = max
s∈Rm

(⟨s,v⟩ − Φ(s))

= max
s∈Rm

(
⟨s,v⟩ −max

β∈B
⟨β, δ + s− sy1⟩

)
= min

β∈B

(
−⟨β, δ⟩+ max

s∈Rm
(⟨s,v − β⟩+ sy ⟨β,1⟩)

)
= min

β∈B

(
−⟨β, δ⟩+ max

s\m∈Rm

⟨
s\y,v\y − β\y

⟩
+max

sy∈R

(
vy +

⟨
β\y,1

⟩)
sy

)
= min

β∈B
(J1(β)− ⟨β, δ⟩) .

(34)

In case that β\y ̸= v\y, then J1(β) = +∞; otherwise, i.e. in case of β\y = v\y,

vy +
⟨
β\y,1

⟩
= vy +

⟨
v\y,1

⟩
= ⟨v,1⟩ (35)

implying that J1(β) goes to infinity if ⟨v,1⟩ ̸= 0. Combining the two cases yields

J1(β) =

{
0 if ⟨v,1⟩ = 0 and β\m = v\m,

+∞ o.w.
(36)

We now look back at Φ∗(v). Provided that v satisfies ⟨v,1⟩ = 0 and there exists β ∈ B
such that β\y = v\y, we have

Φ∗(v) = min
β∈B

(J1(β)− ⟨β, δ⟩) = −⟨v, δ⟩ ; (37)

otherwise, Φ∗(v) = +∞. Therein, the last equality in (37) follows from the assumption
that δy = 0. Hence, we have

Φ∗(v) :=

−⟨v, δ⟩ if ⟨v,1⟩ = 0 and ∃βy s.t.

[
v\y

βy

]
∈ B

+∞ o.w.

(38)

concluding the proof.
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A.2. Derivation of (12)

Recall that {ρk}k is non-negative and (non-strictly) monotonically descreasing. Letting
ρm+1 = 0, the set K can be found by

K := {k | ρk > ρk+1} (39)

and we can write the entries in K as K = {k1, . . . , k|K|} with k1 ≥ · · · ≥ k|K|. Let

ρ′ℓ := ρkℓ − ρkℓ+1 (40)

for ℓ ∈ [|K|] to have

∀x ∈ Rm,

m∑
j=1

ρjxπ(j) =

|K|∑
ℓ=1

ρ′ℓ

kℓ∑
j=1

xπ(j). (41)

Setting x := 1− ey + s− sy1, we get

m∑
j=1

(1m − ey + s− sy1m)π(j) ρj =

|K|∑
ℓ=1

ρ′ℓgℓ(s) (42)

which immediately yields the equality (12).

A.3. Derivation of (15)

Following Lapin et al. (2015)’s paper, we use the following lemma:

Lemma 8 (Lemma 1 in Lapin et al. (2015))⟨
1,xπ(1:k)

⟩
= min

t∈R
(kt+ ⟨1,max(0,x− t1)⟩) . (43)

Let x := 1− ey + s− sy1 and denote its subvector containing the largest k entries by

xπ(1:k) :=
[
xπ(1), . . . , xπ(k)

]⊤
. (44)

It then suffices to show that

max

0,

|K|∑
ℓ=1

ρ′ℓ
⟨
1,xπ(1:kℓ)

⟩ = max
β∈Bwtk

⟨β,x⟩ . (45)
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We define k :=
[
k1, . . . , k|K|

]⊤
and ρ′ :=

[
ρ′1, . . . , ρ

′
|K|

]⊤
, to rearrange the left hand side of

(45) as

LHS of (45) = min
s∈R+

{
s
∣∣∣ s ≥ |K|∑

ℓ=1

ρ′ℓ
⟨
1,xπ(1:kℓ)

⟩}

= min
s∈R+,t∈R|K|

{
s
∣∣∣ s ≥ |K|∑

ℓ=1

(kℓtℓ + ⟨1,max(0,x− tℓ1)⟩) ρ′ℓ
}

= min
s+∈R,t∈R|K|,Ξ∈Rm×|K|

+

{
s
∣∣∣ s ≥ ⟨k ⊙ t+Ξ⊤1,ρ′

⟩
, Ξ ≥ x1⊤ − 1t⊤

}
= max

ζ,η∈R+,Λ,M∈Rm×|K|
+

(
min

s∈R+,t∈R|K|,Ξ∈Rm×|K|
+

L(s, t,Ξ, ζ, η,Λ,M)

)
(46)

where L(·, ·, ·, ·, ·, ·, ·) is the Lagrangian function for the linear program with the primal vari-

ables, s ∈ R+, t ∈ R|K|, and Ξ =
[
ξ1, . . . , ξ|K|

]
∈ Rm×|K|

+ , and the Lagrangian multipliers,

ζ, η ∈ R+, Λ :=
[
λ1, . . . ,λ|K|

]
, M :=

[
µ1, . . . ,µ|K|

]
∈ Rm×|K|

+ , defined as

L(s, t,Ξ, ζ, η,Λ,M)

:= s+
(
−s+

⟨
k ⊙ t+Ξ⊤1,ρ′

⟩)
ζ +

⟨
x1⊤ − 1t⊤ −Ξ,Λ

⟩
− sη − ⟨Ξ,M⟩

= (1− ζ − η)s+
⟨
ζ · k ⊙ ρ′ −Λ⊤1, t

⟩
+
⟨
ζ · 1

(
ρ′)⊤ −Λ−M ,Ξ

⟩
+ ⟨Λ1,x⟩ .

(47)

At the saddle point, it holds that

1− ζ − η = 0, ζ · k ⊙ ρ′ −Λ⊤1 = 0, (48)

ζ · 1
(
ρ′)⊤ −Λ−M = O. (49)

From these equations and the non-negativity of dual variables, we get, ∀ℓ ∈ [|K|],

1 ≥ ζ =
⟨1,λℓ⟩
kℓρ

′
ℓ

, λℓ ≤ ζρ′ℓ1 =
1

kℓ
11⊤λℓ, (50)

equivalently,

∀ℓ ∈ [|K|], λℓ ∈ ∆(kℓ, kℓρ
′
ℓ), ζ =

⟨1,λℓ⟩
kℓρ

′
ℓ

. (51)

If introducing a vector
β := λ1 + · · ·+ λ|K| = Λ1, (52)

the saddle point condition is that, for any (ζ,Λ) ∈ R+×Rm×|K|
+ , satisfying (51), the vector

β is in the set Bwtk. Hence, we obtain

max
ζ,η∈R+,Λ,M∈Rm×|K|

+

(
min

s∈R+,t∈R|K|,Ξ∈Rm×|K|
+

L(s, t,Ξ, ζ, η,Λ,M)

)
= max

β∈Bwtk

⟨x,β⟩ (53)

which proves the equation (45).

19



Kato Hirohashi

A.4. Proof for Lemma 3

Observe that, ∀α ∈ −domϕ∗,

⟨α, g⟩ = ⟨−α,f − g⟩+ ⟨α,f⟩ = ⟨−α,f − g⟩ − ϕ∗(−α) (54)

which leads to

argmaxα∈−domϕ∗ ⟨α, g⟩ = argmaxα∈−domϕ∗ ⟨−α,f − g⟩ − ϕ∗(−α)

= −argmaxv∈domϕ∗ ⟨v,f − g⟩ − ϕ∗(v)

= −∂ϕ(f − g).

(55)

Hence, we have

−∂ϕ(f − ηg) = argmaxα∈−domϕ∗ ⟨α, ηg⟩
= argmaxα∈−domϕ∗η ⟨α, g⟩ = argmaxα∈−domϕ∗ ⟨α, g⟩

(56)

where the last equality follows since the set of the optimal solutions is unchanged even if
the objective function is divided by a positive value η.

A.5. Proof for Proposition 5

We shall show that the problem

max Dstk(A) wrt A ∈ Rm×n (57)

is dual to the problem

min P̃wtk(W̃ ) wrt W̃ ∈ R(d+n)×m. (58)

Let

X̃ := [x̃1, . . . , x̃n] =

[
X√
γλnIn

]
. (59)

It can be seen immediately that the following problem is dual to (58):

max D̃wtk(A) wrt A ∈ Rm×n

where D̃wtk(A) := −λ

2

∥∥∥∥∥X̃A⊤

λn

∥∥∥∥∥
2

F

− 1

n

n∑
i=1

Φ∗
wtk(−αi ; yi),

(60)

We decompose the first term of D̃wtk(A) as∥∥∥∥∥X̃A⊤

λn

∥∥∥∥∥
2

F

=

∥∥∥∥XA⊤

λn

∥∥∥∥2
F

+
γλn

2λ2n2
∥A∥2F = ∥W (A)∥2F +

γ

2λn

n∑
i=1

∥αi∥2 (61)

to obtain

D̃wtk(A) = −λ

2
∥W (A)∥2F − 1

n

n∑
i=1

(
Φ∗
wtk(−αi ; yi) +

γ

2
∥αi∥2

)
= −λ

2
∥W (A)∥2F − 1

n

n∑
i=1

Φ∗
stk(−αi ; yi) = Dstk(A).

(62)

Therefore, the problem (57) is dual to the problem (58).
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A.6. Proof for Proposition 6

We can set y = m without loss of generality. From Proposition 2 of Lapin et al. (2015)’s
paper, the convex conjugate of ϕutk(· ; y) is given by:

ϕ∗
utk (v ; y) =

{
−⟨v,1− ey⟩ if v ∈ ∆(k, 1),

+∞ o.w.
(63)

which allows us to rewrite RHS of (28) as

RHS of (28) = ϕ∗
utk

([
v\y

0

]
; y

)
=

{
−
⟨
v\y,1

⟩
if v\y ∈ Brhs,

+∞ o.w.
(64)

where we have defined

Brhs :=

{
v\y ∈ Rm−1

∣∣∣∣ [v\y

0

]
∈ ∆(k, 1)

}
. (65)

By the way, the unweighted top-k hinge loss has another equivalent expression:

ϕutk

([
s\y

sy

]
; y

)
= max

λ∈∆(k,1)

⟨
λ,

[
s\y + 1

sy

]⟩
. (66)

The derivation for the above equality can be found in the proof for Proposition 2 of
Lapin et al. (2015)’s paper. We exploit the above equality to rearrange LHS of (28) as

LHS of (28) = max
s\y∈Rm−1

{⟨
s\y,v\y

⟩
− ϕutk

([
s\y

0

])}
= max

s\y∈Rm−1

{⟨
s\y,v\y

⟩
− max

λ∈∆(k,1)

⟨
λ\y, s\y + 1

⟩}
= min

λ∈∆(k,1)

{
−
⟨
λ\y,1

⟩
+ max

s\y∈Rm−1

⟨
s\y,v\y − λ\y

⟩}
=

{
−
⟨
v\y,1

⟩
if v\y ∈ Blhs,

+∞ o.w.

(67)

where we have defined

Blhs :=

{
v\y ∈ Rm−1

∣∣∣∣ ∃β ∈ R,
[
v\y

β

]
∈ ∆(k, 1)

}
. (68)

Setting the entries in the vector v\y to

vm−1 :=
1

k
, ∀h ∈ [m− 2], vh :=

(m− 1)k −m

(m− 2)mk
, (69)

it can be readily seen that v\y ∈ Blhs \ Brhs implying Blhs ̸= Brhs, which concludes that the
unweighted top-k hinge is not y-compatible if 2 ≤ k < m.
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A.7. Convex Conjugate of Pseudo Top-k Hinge

Define ϕptk (· ; y) : Rm → R as

ϕptk (s ; y) := max

0, 1 +
1

k

k∑
j=1

(
s\y
)
π(j;s\y)

 . (70)

Its convex conjugate is given by:

ϕ∗
ptk (v ; y) =

{
−
⟨
v\y,1

⟩
if vm = 0 and v\y ∈ ∆k,m−1,

+∞ o.w.
(71)

where ∆k,m−1 is the top-k simplex in (m− 1)-dimensional space:

∆k,m−1 :=

{
β ∈ Rm−1

+ | ⟨1,β⟩ ≤ 1, β ≤ 1

k
11⊤β

}
. (72)

Equation (71) implies that ϕptk(·; y) is y-compatible. Combining the fact of Φptk (s ; y) =
ϕptk (Hys ; y) with Lemma 2 in Lapin et al. (2015)’s paper, we obtain the convex conjugate
of Φptk (· ; y) as

Φ∗
ptk (v ; y) =

{
ϕ∗
ptk (v − vyey ; y) if ⟨v,1⟩ = 0,

+∞ o.w.

=

vm if ⟨v,1⟩ = 0 and

[
v\y

0

]
∈ ∆(k, 1),

+∞ o.w.

(73)

A.8. Derivation of (71): Convex Conjugate of ϕptk (· ; y)

Here we describe how the convex conjugate of ϕptk (· ; y) : Rm → R defined in (70) is
derived. With help of Lemma 8, the function ϕptk (· ; y) can be rewritten as

ϕptk (s ; y) = max
λ\y∈∆k,m−1

⟨
λ\y, s\y + 1

⟩
. (74)

Using this, the convex conjugate of this function can be obtained as

ϕ∗
ptk (v ; y) = max

s∈Rm

(
⟨s,v⟩ − max

λ\y∈∆k,m−1

⟨
λ\y,1+ s\y

⟩)

= min
λ\y∈∆k,m−1

(
−
⟨
λ\y,1

⟩
+ max

s\y∈Rm

⟨
s\y,v\y − λ\y

⟩
+max

s∈R
vmsm

)
=

{
−
⟨
v\y,1

⟩
if vm = 0 and v\y ∈ ∆k,m−1,

+∞ o.w.

(75)

Thus, (71) is derived.
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A.9. Proof for Proposition 7

Let us introduce dptk : Rm×n → R as

dptk(A) := − 1

2λn2

∥∥∥∥∥
n∑

i=1

(
H⊤

yi ⊗ xi

)
αi

∥∥∥∥∥
2

F

− 1

n

n∑
i=1

ϕ∗
ptk(−αi ; yi). (76)

This function dptk is the Fenchel dual of

pptk(w) :=
λ

2
∥w∥2 + 1

n

n∑
i=1

ϕptk

(
(x⊤

i ⊗Hyi)w ; yi

)
. (77)

It can be seen that ∀W ∈ Rd×m, Pptk(W ) = pptk(vec(W )). The Fenchel dual of pptk :
Rmd → R has the following property:

∀A ∈ Rm×n, dptk(A) = dptk(A− (A⊙Ey)) = dutk(A− (A⊙Ey)) (78)

which implies that

max
A∈Rm×n

{dptk(A)} = max
A∈Rm×n

{dutk(A) |A⊙Ey = O} . (79)

Therefore, it is concluded that the problem of maximizing dutk(A) subject to A⊙Ey = O
is equivalent to the unconstrained problem of maximizing dptk(A), which is dual to the
problem of minimizing the regularized empirical risk based on the pseudo top-k hinge.

Appendix B. Additional Experimental Results

B.1. Convergence Speeds to the Optimum

Here, additional plots of the duality gaps against the number of iterations are shown in
Figures 3 and 4.

B.2. Top-k Accuracies

The unweighted top-k hinge is a convex surrogate of the top-k 0/1 loss, and has a hyper-
parameter k. The three weighting schemes for the weighted top-k hinge, used in our ex-
periments, also has a hyper-parameter k. Table 4 reports the best one amongst for top-k
accuracies with k = 1, 3, 5, 10 on six datasets due to space limitation. The individual top-k
accuracies on the six datasets are shown in Tables 2, 3, 4, 5, 6, and 7.
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(a) Std FW (b) AFW (c) PFW

Figure 3: Convergence behavior for smooth unweighted top-k hinge. The duality gaps
against the number of iterations with three Frank-Wolfe algorithms, Std FW,
AFW, and PFW, are plotted in (a), (b), and (c), respectively. The smoothing
parameter γ was varied with 0, 10−3, 10−2, and 10−1. Larger γ yields smoother
loss. The unweighted top-k hinge smoothed with γ = 0 is still non-smooth.
Convergence was faster with larger γ.

(a) FMD (b) News20

Figure 4: Comparisons of the weighted and unweighted top-k hinges. The flat indicates
the unweighted top-k hinge, whereas the linear and exp represent two types
of weighted top-k hinges with the weights decreasing linearly and exponentially,
respectively. In spite of the complicated effective domains, the convergence behav-
iors of the weighted top-k hinges resemble those of the unweighted top-k hinges.
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Table 1: Top-k accuracies of the proposed weighted top-k SVMs and the unweighted top-
k SVMs trained with different optimization algorithms. WTk (linear) and WTk

(exp), respectively, indicate the weighted top-k SVMs with weight coefficients de-
creasing linearly and exponentially. UTk (ours), UTk (lapin), and UTk (chu)

are the unweighted top-k SVMs obtained with the proposed Frank-Wolfe algo-
rithm, Lapin et al. (2015)’s algorithm, and Chu et al. (2018)’s algorithm. In most
cases, the weighted top-k SVMs and the unweighted one learnt by our algorithm
achieved better pattern recognition performances than the existing learning meth-
ods.

(a) ALOI (b) Caltech101

Method Top-1 Top-3 Top-5 Top-10

UTk (ours) 0.841 0.929 0.948 0.973
WTk (linear) 0.842 0.929 0.949 0.973
WTk (exp) 0.841 0.930 0.949 0.974
UTk (Lapin) 0.834 0.929 0.949 0.965
UTk (Chu) 0.825 0.920 0.949 0.972

Method Top-1 Top-3 Top-5 Top-10

UTk (ours) 0.548 0.719 0.777 0.844
WTk (linear) 0.550 0.723 0.774 0.843
WTk (exp) 0.547 0.722 0.775 0.844
UTk (Lapin) 0.544 0.723 0.767 0.827
UTk (Chu) 0.535 0.718 0.773 0.829

(c) CUB (d) Indoor67

Method Top-1 Top-3 Top-5 Top-10

UTk (ours) 0.592 0.777 0.847 0.908
WTk (linear) 0.592 0.780 0.844 0.908
WTk (exp) 0.592 0.778 0.843 0.908
UTk (Lapin) 0.580 0.770 0.834 0.901
UTk (Chu) 0.579 0.768 0.842 0.903

Method Top-1 Top-3 Top-5 Top-10

UTk (ours) 0.697 0.878 0.925 0.969
WTk (linear) 0.697 0.881 0.930 0.968
WTk (exp) 0.697 0.879 0.931 0.968
UTk (Lapin) 0.688 0.877 0.927 0.966
UTk (Chu) 0.683 0.875 0.924 0.968

(e) Letter (f) News20

Method Top-1 Top-3 Top-5 Top-10

UTk (ours) 0.759 0.910 0.961 0.994
WTk (linear) 0.766 0.909 0.955 0.991
WTk (exp) 0.765 0.908 0.957 0.991
UTk (Lapin) 0.761 0.907 0.951 0.988
UTk (Chu) 0.761 0.910 0.960 0.995

Method Top-1 Top-3 Top-5 Top-10

UTk (ours) 0.666 0.876 0.929 0.975
WTk (linear) 0.666 0.872 0.929 0.976
WTk (exp) 0.666 0.875 0.929 0.976
UTk (Lapin) 0.657 0.875 0.926 0.972
UTk (Chu) 0.662 0.865 0.922 0.975
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Table 2: Top-k accuracies on ALOI.
Method Top-1 Top-3 Top-5 Top-10

UTk (ours, k = 1) 0.841 0.928 0.948 0.971
UTk (ours, k = 3) 0.837 0.927 0.946 0.971
UTk (ours, k = 5) 0.837 0.929 0.948 0.970
UTk (ours, k = 10) 0.826 0.924 0.946 0.973
WTk (linear, k = 1) 0.841 0.928 0.948 0.971
WTk (linear, k = 3) 0.842 0.928 0.949 0.971
WTk (linear, k = 5) 0.839 0.929 0.947 0.970
WTk (linear, k = 10) 0.836 0.927 0.947 0.973
WTk (exp, k = 1) 0.841 0.928 0.948 0.971
WTk (exp, k = 3) 0.839 0.929 0.948 0.971
WTk (exp, k = 5) 0.838 0.930 0.947 0.972
WTk (exp, k = 10) 0.833 0.925 0.949 0.974
UTk (Lapin, k = 1) 0.826 0.913 0.935 0.962
UTk (Lapin, k = 3) 0.819 0.915 0.940 0.965
UTk (Lapin, k = 5) 0.831 0.915 0.941 0.964
UTk (Lapin, k = 10) 0.834 0.929 0.949 0.962
UTk (Chu, k = 1) 0.825 0.909 0.937 0.964
UTk (Chu, k = 3) 0.817 0.913 0.941 0.964
UTk (Chu, k = 5) 0.808 0.920 0.949 0.970
UTk (Chu, k = 10) 0.783 0.904 0.936 0.972
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Table 3: Top-k accuracies on Caltech101.
Method Top-1 Top-3 Top-5 Top-10

UTk (ours, k = 1) 0.547 0.710 0.763 0.827
UTk (ours, k = 3) 0.548 0.711 0.765 0.827
UTk (ours, k = 5) 0.542 0.718 0.773 0.842
UTk (ours, k = 10) 0.539 0.719 0.777 0.844
WTk (linear, k = 1) 0.547 0.710 0.763 0.827
WTk (linear, k = 3) 0.550 0.712 0.761 0.827
WTk (linear, k = 5) 0.549 0.714 0.767 0.840
WTk (linear, k = 10) 0.545 0.723 0.774 0.843
WTk (exp, k = 1) 0.547 0.710 0.763 0.827
WTk (exp, k = 3) 0.546 0.709 0.763 0.826
WTk (exp, k = 5) 0.536 0.717 0.769 0.828
WTk (exp, k = 10) 0.542 0.722 0.775 0.844
UTk (Lapin, k = 1) 0.527 0.675 0.725 0.803
UTk (Lapin, k = 3) 0.537 0.699 0.748 0.817
UTk (Lapin, k = 5) 0.541 0.703 0.757 0.821
UTk (Lapin, k = 10) 0.544 0.723 0.767 0.827
UTk (Chu, k = 1) 0.528 0.675 0.725 0.804
UTk (Chu, k = 3) 0.532 0.699 0.753 0.823
UTk (Chu, k = 5) 0.535 0.709 0.768 0.825
UTk (Chu, k = 10) 0.508 0.718 0.773 0.829
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Table 4: Top-k accuracies on CUB.
Method Top-1 Top-3 Top-5 Top-10

UTk (ours, k = 1) 0.592 0.771 0.831 0.902
UTk (ours, k = 3) 0.591 0.775 0.841 0.908
UTk (ours, k = 5) 0.584 0.777 0.847 0.904
UTk (ours, k = 10) 0.576 0.767 0.845 0.903
WTk (linear, k = 1) 0.592 0.771 0.831 0.902
WTk (linear, k = 3) 0.588 0.775 0.831 0.908
WTk (linear, k = 5) 0.586 0.780 0.843 0.907
WTk (linear, k = 10) 0.580 0.765 0.844 0.908
WTk (exp, k = 1) 0.592 0.771 0.831 0.902
WTk (exp, k = 3) 0.586 0.778 0.838 0.903
WTk (exp, k = 5) 0.588 0.773 0.843 0.908
WTk (exp, k = 10) 0.578 0.773 0.843 0.907
UTk (Lapin, k = 1) 0.580 0.762 0.824 0.890
UTk (Lapin, k = 3) 0.578 0.762 0.824 0.891
UTk (Lapin, k = 5) 0.579 0.766 0.823 0.899
UTk (Lapin, k = 10) 0.579 0.770 0.834 0.901
UTk (Chu, k = 1) 0.579 0.762 0.824 0.888
UTk (Chu, k = 3) 0.578 0.761 0.826 0.896
UTk (Chu, k = 5) 0.575 0.766 0.836 0.899
UTk (Chu, k = 10) 0.555 0.768 0.842 0.903

28



Weighted Top-k SVM

Table 5: Top-k accuracies on Indoor67.
Method Top-1 Top-3 Top-5 Top-10

UTk (ours, k = 1) 0.697 0.873 0.924 0.963
UTk (ours, k = 3) 0.693 0.873 0.923 0.963
UTk (ours, k = 5) 0.673 0.878 0.925 0.966
UTk (ours, k = 10) 0.645 0.878 0.924 0.969
WTk (linear, k = 1) 0.697 0.873 0.924 0.963
WTk (linear, k = 3) 0.697 0.873 0.923 0.963
WTk (linear, k = 5) 0.688 0.876 0.924 0.964
WTk (linear, k = 10) 0.669 0.881 0.930 0.968
WTk (exp, k = 1) 0.697 0.873 0.924 0.963
WTk (exp, k = 3) 0.697 0.874 0.924 0.963
WTk (exp, k = 5) 0.685 0.877 0.925 0.966
WTk (exp, k = 10) 0.662 0.879 0.931 0.968
UTk (Lapin, k = 1) 0.683 0.857 0.905 0.953
UTk (Lapin, k = 3) 0.686 0.868 0.917 0.958
UTk (Lapin, k = 5) 0.688 0.873 0.923 0.961
UTk (Lapin, k = 10) 0.683 0.877 0.927 0.966
UTk (Chu, k = 1) 0.683 0.857 0.905 0.953
UTk (Chu, k = 3) 0.672 0.874 0.920 0.963
UTk (Chu, k = 5) 0.666 0.875 0.924 0.965
UTk (Chu, k = 10) 0.632 0.870 0.924 0.968
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Table 6: Top-k accuracies on Letter.
Method Top-1 Top-3 Top-5 Top-10

UTk (ours, k = 1) 0.756 0.892 0.937 0.984
UTk (ours, k = 3) 0.759 0.900 0.944 0.984
UTk (ours, k = 5) 0.725 0.910 0.951 0.987
UTk (ours, k = 10) 0.650 0.898 0.961 0.994
WTk (linear, k = 1) 0.756 0.892 0.937 0.984
WTk (linear, k = 3) 0.766 0.891 0.941 0.983
WTk (linear, k = 5) 0.756 0.857 0.934 0.985
WTk (linear, k = 10) 0.713 0.909 0.955 0.991
WTk (exp, k = 1) 0.756 0.892 0.937 0.984
WTk (exp, k = 3) 0.765 0.884 0.943 0.984
WTk (exp, k = 5) 0.744 0.905 0.947 0.986
WTk (exp, k = 10) 0.688 0.908 0.957 0.991
UTk (Lapin, k = 1) 0.760 0.887 0.925 0.973
UTk (Lapin, k = 3) 0.761 0.901 0.940 0.978
UTk (Lapin, k = 5) 0.747 0.906 0.945 0.981
UTk (Lapin, k = 10) 0.735 0.907 0.951 0.988
UTk (Chu, k = 1) 0.761 0.881 0.923 0.973
UTk (Chu, k = 3) 0.748 0.905 0.940 0.976
UTk (Chu, k = 5) 0.712 0.910 0.949 0.986
UTk (Chu, k = 10) 0.605 0.890 0.960 0.995
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Table 7: Top-k accuracies on News20.
Method Top-1 Top-3 Top-5 Top-10

UTk (ours, k = 1) 0.666 0.870 0.921 0.973
UTk (ours, k = 3) 0.664 0.874 0.926 0.972
UTk (ours, k = 5) 0.656 0.876 0.927 0.975
UTk (ours, k = 10) 0.621 0.867 0.929 0.975
WTk (linear, k = 1) 0.666 0.870 0.921 0.973
WTk (linear, k = 3) 0.665 0.871 0.925 0.972
WTk (linear, k = 5) 0.665 0.872 0.925 0.973
WTk (linear, k = 10) 0.650 0.872 0.929 0.976
WTk (exp, k = 1) 0.666 0.870 0.921 0.973
WTk (exp, k = 3) 0.666 0.872 0.924 0.973
WTk (exp, k = 5) 0.662 0.875 0.926 0.974
WTk (exp, k = 10) 0.641 0.873 0.929 0.976
UTk (Lapin, k = 1) 0.656 0.837 0.900 0.964
UTk (Lapin, k = 3) 0.653 0.860 0.911 0.969
UTk (Lapin, k = 5) 0.657 0.867 0.920 0.970
UTk (Lapin, k = 10) 0.655 0.875 0.926 0.972
UTk (Chu, k = 1) 0.656 0.838 0.900 0.964
UTk (Chu, k = 3) 0.662 0.863 0.917 0.969
UTk (Chu, k = 5) 0.644 0.865 0.922 0.972
UTk (Chu, k = 10) 0.612 0.863 0.920 0.975
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