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Abstract

Alignment of two given sequences (i.e., computing correspondence between frames con-
sidering local time shifting) is a fundamental operation for various applications such as
computer vision and bioinformatics. To obtain an alignment between high-dimensional
sequences, several methods have been proposed, including canonical time warping (CTW).
However, the optimization problem for CTW, and its extensions, often fall into poor local
minima when the initial solution is far from the global optima. In this paper, we propose
canonical soft time warping (CSTW) in which an alignment is modeled as a probabilistic
variable that follows the Gibbs distribution with temperature γ. We also propose the an-
nealing CSTW (ACTW), a variant of CSTW that gradually decreases γ. ACTW is useful
when underlying applications require hard alignments. Using synthetic and real-world data,
we experimentally demonstrate that our proposed methods outperform previous methods,
including CTW, in estimating alignments. In particular, our method does not suffer from
poor local minima, as a consequence of the probabilistic treatment of alignments.

Keywords: sequence alignment, temporal alignment, dynamic time warping, soft dynamic
time warping, canonical correlation analysis

1. Introduction

Alignment of two given sequences (i.e., computing correspondence between frames con-
sidering local time shifting) is a fundamental operation in a wide range of applications
including computer vision (Chang et al., 2019), bioinformatics (Altschul et al., 1990; Aach
and Church, 2001), and human activity analysis (Sheikh et al., 2005; Gritai et al., 2009). An
important challenge in this area is dealing with high dimensional data, such as movies and
dynamic point clouds. To address this issue, Zhou and De la Torre (2009) proposed canon-
ical time warping (CTW), which combines canonical correlation analysis (CCA) (Hardoon
et al., 2004) with dynamic time warping (DTW) (Sakoe and Chiba, 1978).

CTW aligns two high dimensional sequences by (1) finding a low dimensional latent
representation and (2) applying DTW against those low dimensional sequences. The authors
of CTW proposed an optimization method that alternately applies CCA and DTW. One
problem of this alternating optimization is that CTW often converges to poor local minima,
especially when initial values of the optimization variables are far from global solutions. For
example, when the optimal alignment is far from the diagonal (i.e., the number of frames
aligned to each frame has large variance), CTW shows low performance if the optimization
starts from the diagonal alignment, as we will see experimentally in Section 5.2. It is
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noteworthy that extensions of CTW, such as Zhou and De la Torre (2012) and Trigeorgis
et al. (2016), also suffer from the same problem.

In this paper, we address this issue by considering the alignment as a random variable,
which differs from the deterministic alignment used in previous studies. In our model,
canonical soft time warping (CSTW), we can obtain the latent representation considering all
possible alignments with the assumption that the alignment follows the Gibbs distribution
with temperature γ. The benefits of CSTW are summarized as follows: (1) CSTW is proved
to be a generalization of CTW under some mild conditions. We can obtain a solution for
CTW by solving CSTW with γ annealing to 0. (2) By annealing γ, CSTW can mitigate
the poor local minima problem in CTW. The distribution of alignment is controlled from
the uniform distribution to a deterministic one during the optimization by controlling γ,
which makes the optimization less dependent on the inital value. (3) A solution of CSTW
can achieve better performance than that of CTW in terms of the latent representation
learning if γ is tuned properly.

CSTW is hard to solve directly, because the number of possible alignments can be
exponential. To avoid this issue, we consider an upper bound of the objective function of
CSTW. The upper bound is then optimized by our proposed two-stage algorithm similar to
the expectation-maximization (EM) algorithm (Dempster et al., 1977). Instead of dealing
with an exponential number of alignments directly, our algorithm only need to evaluate the
expectation of alignment in each optimization step, which can be efficiently computed by
using recently proposed soft-DTW (Cuturi and Blondel, 2017).

Our contributions are summarized as follows.

1. For high-dimensional sequences, we propose a novel alignment framework called CSTW,
which considers an alignment as a random variable. CSTW is proved to be a gener-
alization of CTW under mild conditions (Section 3.1).

2. We also propose an efficient optimization method for solving CSTW similar to the
EM-algorithm (Section 3.2).

3. We propose annealing CSTW (ACTW) as a variant of CSTW, which mitigates the
poor local minima problem in CTW (Section 3.4).

4. Experimentally, we demonstrate that CSTW and ACTW outperforms the existing
alignment methods in several scenarios using synthetic and real datasets (Section 5).

This paper is organized as follows. Section 2 introduces CTW and related methods. In
Section 3, we formulate CSTW and discuss its relationship to CTW. An efficient algorithm
to solve CSTW is also proposed in Section 3. Section 4 gives a literature review of related
work. We show our experimental results in Section 5 and conclude this paper in Section 6.

2. Preliminaries

2.1. Notations

Given a matrix A, we denote its (i, j)-th element and i-th row vector by [A]i,j and [A]i,
respectively. For x ∈ RT , diag(x) is the T×T matrix with diagonal x and zero otherwise. We
denote a vector of ones as 1N = [1, . . . , 1]> ∈ RN and a vector of zeros as 0N = [0, . . . , 0]> ∈
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RN . We also denote a matrix of zeros as 0N×M = [[0, . . . 0]>, . . . , [0, . . . 0]>] ∈ RN×M . Let
Id be an identity matrix of size d× d, and let Dd be a set of diagonal matrices of size d× d.
The Frobenius inner-product of two matrices of the same size A and B is 〈A,B〉 = tr(A>B).

2.2. CCA

Here, we briefly introduce CCA (Hardoon et al., 2004). Given a set ofN pairs of multivariate
data denoted by D := {(xi, yi) ∈ Rdx × Rdy | i = 1, · · · , N}, CCA extracts a latent
representation that maximizes the correlation between the latent vectors of xi and yi. Let
X = [x1, . . . , xN ] ∈ Rdx×N and Y = [y1, . . . , yN ] ∈ Rdy×N be data matrices corresponding
to D. Mathematically, CCA calculates projection matrices U ∈ Rdx×d and V ∈ Rdy×d by
solving the following optimization problem:

(CCA) min
U,V

‖U>X − V >Y ‖2F ,

s.t. X1N = 0dx , Y 1N = 0dy (zero mean),

U>ΣxxU = Id, V >ΣyyV = Id (identity),

U>ΣxyV ∈ Dd (orthogonality),

where Σxx = XX>,Σyy = Y Y > and Σxy = XY > are variance-covariance matrices with
the first two constraints. The last three constraints are imposed for the scale and rotation
invariance of projection matrices. These constraints avoid meaningless solutions such as
both U and V being zeros matrices. It is well known that the above problem can be
reformulated into the generalized eigenvalue problem to be solved efficiently.

2.3. DTW

DTW is a discrepancy between two sequences X = [x(1), . . . , x(Tx)] ∈ Rd×Tx and Y =
[y(1), . . . , y(Ty)] ∈ Rd×Ty . Comparing two sequences with different lengths, DTW finds
the best alignment, which has the lowest cumulative cost of pair-wise costs. Pair-wise
costs are denoted as a cost matrix ∆(X,Y ) ∈ RTx×Ty , where [∆(X,Y )]i,j = ‖x(i) − y(j)‖22.
An alignment matrix A ∈ {0, 1}Tx×Ty satisfies the following constraints: (1) boundary
conditions ([A]1,1 = [A]Tx,Ty = 1) and (2) monotonicity and continuity ([A]i+1,j + [A]i,j+1 ≤
1, ∀i, j and if [A]i,j = 1 then 0 < [A]i+1,j + [A]i,j+1 + [A]i+1,j+1 ≤ 2). We denote a set of
alignment matrices that satisfy the constraints as A (i.e., A ∈ A). Here, we can represent
the optimization problem for DTW as

(DTW) min
A∈A
〈A,∆(X,Y )〉 .

It is well known that the solution can be obtained via dynamic programming (Sakoe and
Chiba, 1978). We show an example of two uni-dimensional sequencesX and Y in Figure 1(a)
and their cost matrix in Figure 1(b). Figure 1(c) shows an example of an alignment matrix
in which the alignment path is shown by white cells. An alignment path starts from the
top-left cell and ends at the bottom-right cell, where three types of moves are allowed at
each cell (going right, going down, and going down-right), corresponding to the constraints
of the alignment matrix.
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(a) Input sequences (X,Y )

1 2 3 4 5 6 7 8 9
X

1
2

3
4

5
6

7
8

Y

0 1 0 3 0 3 0 1 0
1 0 1 2 1 2 1 0 1
0 1 0 3 0 3 0 1 0
3 2 3 0 3 0 3 2 3
3 2 3 0 3 0 3 2 3
0 1 0 3 0 3 0 1 0
1 0 1 2 1 2 1 0 1
0 1 0 3 0 3 0 1 0

Cost matrix

(b) Cost matrix (∆(X,Y ))

1 2 3 4 5 6 7 8 9
X

1
2

3
4

5
6

7
8

Y

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

A

(c) Alignment matrix (A)

Figure 1: An example of DTW

DTW with warping matrices. Given an alignment matrix A, we can obtain warping
paths px(A) ∈ {1 : Tx}lw(A) and py(A) ∈ {1 : Ty}lw(A) uniquely, which store the x and
y coordinates of A, respectively. lw(A) =

∑
i,j [A]i,j represents a length of the warping

path. For the example in Figure 1(c), the warping paths are px(A) = [1, 2, 3, 4, 5, 6, 7, 8, 9]
and py(A) = [1, 2, 3, 4, 4, 5, 6, 7, 8]. Here, we can reformulate the alignment problem with
warping matrices Wx(A) ∈ {0, 1}lw(A)×Tx and Wy(A) ∈ {0, 1}lw(A)×Ty defined as follows:

[Wx(A)]i,j =

{
1 if j = px(A)(i),

0 otherwise,

[Wy(A)]i,j =

{
1 if j = py(A)(i),

0 otherwise.

We can easily check that A = Wx(A)>Wy(A). Thus, the optimization problem for DTW
can be rewritten as

min
A∈A
‖XWx(A)> − YWy(A)>‖2F .

Note that every row of the warping matrices is a one-hot vector.

2.4. Canonical Time Warping

DTW is not directly applicable when comparing two sequences that have different fea-
ture dimensions. CTW allows us to align high-dimensional sequences by integrating CCA
and DTW. Here, we consider two sequences X = [x(1), . . . , x(Tx)] ∈ Rdx×Tx and Y =
[y(1), . . . , y(Ty)] ∈ Rdy×Ty , even if dx 6= dy. Intuitively, CTW applies DTW for the two
latent sequences that are embedded by CCA. Formally, CTW solves the following opti-
mization problem to obtain the projection matrices U ∈ Rdx×d, V ∈ Rdy×d as well as the
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alignment matrix A.

(CTW) min
U,V,A

‖U>XWx(A)> − V >YWy(A)>‖2F
s.t. Xw̃x = 0dx , Y w̃y = 0dy , (zero mean)

U>Σ̃xxU = Id, (identity)

V >Σ̃yyV = Id, (identity)

U>Σ̃xyV ∈ Dd, (orthogonality)

where w̃x = Wx(A)>1lw(A) and w̃y = Wy(A)>1lw(A). Σ̃xx := XWx(A)>Wx(A)X>, Σ̃y :=

YWy(A)>Wy(A)Y >, and Σ̃xy := XWx(A)>Wy(A)Y > are variance-covariance matrices for
warped sequences. The objective function above can be written as

min
U,V,A

〈
A,∆(U>X,V >Y )

〉
from the discussion in the previous subsection. Note that the objective function for CCA
can be written in a similar form as minU,V

〈
IN ,∆(U>X,V >Y )

〉
,where N denotes the

number of data points.
To solve the optimization problem in CTW, a method that alternately solves CCA and

DTW was proposed by Zhou and De la Torre (2009). In the CCA-phase, the projection
matrices U and V are updated by solving the CCA with the alignment matrix A to be fixed.
In the DTW-phase, A is updated by solving the DTW with U and V to be fixed. Several
initialization methods are proposed for solving CTW, including the identity initialization
(Zhou and De la Torre, 2009) and the uniform time warping (UTW) initialization (Zhou and
De la Torre, 2012). In the identity initialization, U and V are initialized using an identity
matrix and a matrix of zeros (i.e., U (1) = [Idx ,0dx×(d−dx)]

>, V (1) = [Idy ,0dy×(d−dy)]
>).

Especially when Tx = Ty, UTW setting initializes A with an identity matrix in RTx×Ty

2.5. Soft-DTW

Soft-DTW is a smoothed version of DTW, which computes a soft-minimum of all alignment
costs (Cuturi and Blondel, 2017). The soft-DTW is defined as follows:

dtwγ(X,Y ) = min
A∈A

γ 〈A,∆(X,Y )〉 ,

where γ ≥ 0 is a temperature parameter and minγ is the soft-minimum function

min
A∈A

γf(A) :=

{
minA∈A f(A) γ = 0,

−γ log
∑

A∈A exp(−f(A)/γ) γ > 0.

Note that when γ = 0, the soft-DTW is equal to the standard DTW.
With the assumption that the alignment matrixA follows the Gibbs distribution Pγ(A) ∝

exp(−〈A,∆(X,Y )〉 /γ), it is shown in (Cuturi and Blondel, 2017) that the expectation
EA∼Pγ(A)[A] can be obtained as a gradient of soft-DTW w.r.t. the cost matrix ∆(X,Y ) as

EA∼Pγ(A)[A] = ∇∆(X,Y )dtwγ(X,Y ).
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3. Proposed method: Canonical Soft Time Warping

Experimentally, we found that CTW and its extensions converge to poor local minima when
initial alignments are far from the global optima, e.g., when the ground truth alignment
matrix is far from a diagonal matrix. One possible reason for this is the deterministic imple-
mentation of the alignments in the alternating optimization. In each step of the alternation,
the accuracy of the projection matrices U ∈ Rdx×d and V ∈ Rdy×d heavily depends on the
alignment. Therefore, when the alignment is far from the ground truth (which can happen
especially in the earlier stage of the optimization), the projection matrices also fall into
poor solutions and cannot get out of them.

In order to mitigate the problems of CTW, we propose CSTW that regards the alignment
as a random variable and estimates its probabilistic distribution. The expectation of the
alignment over all possible alignments is considered in the optimization of CSTW, whereas
only the deterministic alignment is considered in CTW. This is the key to avoid the poor
local minima problem. To solve CSTW, we propose an EM-like alternating optimization,
by which the expectation of the alignment matrix is naturally introduced.

3.1. Formulation of CSTW

Given two sequences X and Y , the objective function of CSTW is defined by

min
A∈A

γ
〈
A,∆(U>X,V >Y )

〉
,

where γ > 0 is a temperature parameter. From the following inequality:

min
A∈A

{〈
A,∆(U>X,V >Y )

〉}
≤ min

A∈A
γ
〈
A,∆(U>X,V >Y )

〉
+ log ‖A‖,

where ‖A‖ is the number of possible alignment paths, which is a constant value, we can
decrease the objective function of CTW by decreasing that of CSTW.

Since CSTW regards the alignment matrix as a random variable, the constraints in
CTW, such as zero mean, cannot directly be applied to CSTW. Therefore, we introduce
novel constraints for CSTW that involves the expectation of the alignment matrix. The
overall optimization problem for CSTW is given as follows:

(CSTW) min
U,V

min
A∈A

γ
〈
A,∆(U>X,V >Y )

〉
(1)

s.t. XEA∼Pγ(A;U,V ) [w̃x] = 0dx , (zero mean)

Y EA∼Pγ(A;U,V ) [w̃y] = 0dy , (zero mean)

U>EA∼Pγ(A;U,V )

[
Σ̃xx

]
U = Id, (identity)

V >EA∼Pγ(A;U,V )

[
Σ̃yy

]
V = Id, (identity)

U>EA∼Pγ(A;U,V )

[
Σ̃xy

]
V ∈ Dd, (orthogonality)

where

Pγ(A;U, V ) ∝ exp
{
−
〈
A,∆(U>X,V >Y )

〉
/γ
}
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is the Gibbs distribution, w̃x = Wx(A)>1lw(A), and w̃y = Wy(A)>1lw(A). Σ̃xx, Σ̃yy, and

Σ̃xy are variance-covariance matrices for warped sequences, which are defined in CTW.
When γ → 0, a solution of CSTW is also a solution of CTW under some mild conditions
(supplementary). This indicates that CSTW is a generalization of CTW. A usual way to
solve constraints minimization is Lagrangian-based optimization, however, we cannot obtain
the differentials of the Lagrangian w.r.t. the parameters U and V in closed forms. In the
following subsection, we propose an efficient optimization algorithm.

3.2. Optimization algorithm for CSTW

In order to minimize the objective function of CSTW with respect to U and V efficiently, we
consider an upper bound of the objective function using the Jensen’s inequality as follows:

min
A∈A

γ
〈
A,∆(U>X,V >Y )

〉
≤ −γ

∑
A∈A

q(A) log
exp

{
−
〈
A,∆(U>X,V >Y )

〉
/γ
}

q(A)
(2)

=
〈
EA∼q(A)[A],∆(U>X,V >Y )

〉
+ γ

∑
A∈A

q(A) log q(A), (3)

where q(A) is an arbitrary distribution of A. The equality holds in (2) if and only if

DKL [q(A)||Pγ(A;U, V )] = 0. (4)

Then, we can minimize the upper bound of the objective function for CSTW via two-stage
alternating updates similar to the EM algorithm (Dempster et al., 1977). Here, we denote
the projection matrices in step t as U (t) and V (t). In the E-step, we update q(A) such that
Eq. (4) holds with the assumption that U and V are fixed to U (t) and V (t), respectively,
i.e., q(A) ← Pγ(A;U (t), V (t)). Then, in the M-step, U and V are updated to minimize
the upper bound (3) with the current q(A). An important point is that we only need
to evaluate EA∼q(A)[A] in (3) to update U and V in the M-step, which can be efficiently
obtained via soft-DTW as follows:

EA∼q(A) [A] = ∇∆((U(t))>X,(V (t))>Y )dtwγ((U (t))>X, (V (t))>Y )) (5)

In addition, we employ the following constraints at each M-step to obtain feasible solutions:

XEA∼Pγ(A;U(t),V (t))[Wx(A)>1lw(A)] = 0dx , (zero mean)

Y EA∼Pγ(A;U(t),V (t))[Wy(A)>1lw(A)] = 0dy , (zero mean)

U>XEA∼Pγ(A;U(t),V (t))

[
Wx(A)>Wx(A)

]
X>U = Id, (identity) (6)

V >Y EA∼Pγ(A;U(t),V (t))

[
Wy(A)>Wy(A)

]
Y >V = Id, (identity)

U>XEA∼Pγ(A;U(t),V (t)) [A]Y >V ∈ Dd. (orthogonality)

When the updates of U (t) and V (t) converge, the projection matrices satisfy the constraints
of CSTW. The above constraints include five terms that require the calculation of expec-
tation over the distribution of A. We can efficiently evaluate these terms by applying the
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alignment kernel trick to be explained in the next subsection. Once these terms are com-
puted, we can update U and V in the M-step very efficiently by solving the generalized
eigenvalue problem in the same way as solving CCA. The algorithm for solving CSTW is
summarized in Algorithm 1, in which the identity initialization is utilized. It is also possible
to employ the UTW initialization in CSTW. However, as will be shown in our experiment,
the convergence of CSTW is less affected by the initialization when the annealing method
(described in Section 3.4) is used.

Algorithm 1: CSTW (identity initialization)

Input: X,Y, γ, d
Output: U, V

Initialize U, V by U ← [Idx ,0dx×(d−dx)]
> and V ← [Idy ,0dy×(d−dy)]

>.

while J does not converge do
[E-step] Update E[A] according to Eq. (5) with U and V fixed.
[M-step] Update U and V to minimize Eq. (3) s.t. constraints (6) with E[A] fixed.

J ←
〈
E[A],∆(U>X,V >Y )

〉
end

3.3. Alignment Kernel Tricks

We propose techniques called the alignment kernel tricks for computing expectation val-
ues in the constraints in the M-step. Note that we cannot obtain the expectations of
warping matrices EA∼q(A)[Wx] and EA∼q(A)[Wy] directly by using soft-DTW. The following
proposition enables us to compute expectation values in the constraints by using only the
expectation of A that can be computed via soft-DTW.

Proposition 1 For any probabilistic density function q(A), the following equations hold.

EA∼q(A)[Wx(A)>1lw(A)] = EA∼q(A)[A]1Ty ,

EA∼q(A)[Wy(A)>1lw(A)] = EA∼q(A)[A]>1Tx ,

EA∼q(A)[Wx(A)>Wx(A)] = diag
(
1>TyEA∼q(A)[A]>

)
,

EA∼q(A)[Wy(A)>Wy(A)] = diag
(
1>TxEA∼q(A)[A]

)
.

Proof As mentioned in Section 2.3, [Wy]k is an one-hot vector for all k = 1, . . . , lw(A).
Therefore, we can obtain the first equation as

EA∼q(A)[Wx(A)>1lw(A)] = EA∼q(A)[Wx(A)>Wy(A)1Ty ]

= EA∼q(A)[A]1Ty .

We can obtain the second one in a similar manner to the first one. Next, we show the third
one. If i 6= j, [Wx(A)]k,i[Wx(A)]k,j = 0 since [Wx(A)]k is an one-hot vector. When i = j,∑

k

[Wx(A)]k,i[Wx(A)]k,j =
∑
k

[Wx(A)]k,i = [Wx(A)>1lw(A)]i =
[
A1Ty

]
i
.
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Therefore,

EA∼q(A)[Wx(A)Wx(A)>]i,j =

{[
EA∼q(A)[A]1Ty

]
i

i = j,

0 i 6= j.

The fourth equation can be obtained in a similar way.

3.4. Annealing CSTW

In some applications, deterministic alignment needs to be obtained, while CSTW provides
a probabilistic one. In this situation, by annealing the temperature parameter γ from a
large value to zero in the alternation, we can obtain deterministic alignments because, with
γ → 0, the soft min converges to the hard min function in soft-DTW. Compared with
the standard CTW, this approach mitigates the poor local minima problem because of
the following reasons. For sufficiently large γ, the minγ function returns a constant value
regardless of the input alignment A ∈ A. Therefore, the objective function does not depend
on the initial alignment thus we can focus on optimizing the projection matrices in the
early stage of the optimization. As γ decreases, the optimization process gradually begins
focusing on the alignment. This approach weakens the dependence on the initial alignment
and mitigates the poor local minima problem as shown in our experiments. We call this
method annealing CSTW (ACTW).

4. Related Work

Time Series Alignment. Here, we give a brief overview of time series alignment meth-
ods. The most fundamental approach for time series alignment is DTW (Sakoe and Chiba,
1978), which has been extended in various ways. One of the extensions of DTW is deriva-
tive DTW (DDTW) (Keogh and Pazzani, 2001) using differences of derivatives instead of
Euclidean distances as the frame-wise distance in order to align shapes of input sequences.
In order to align high-dimensional sequences, various machine learning-based methods have
been proposed. These methods can be divided into two categories according to their training
data types: supervised methods and unsupervised methods. Supervised methods, includ-
ing neural network-based models (Dogan et al., 2018), require true alignment paths (i.e.,
frame-by-frame mappings), while unsupervised alignment methods provide alignments only
from pairs of sequences. A common solution for unsupervised alignment methods is alter-
nating two-stage optimization: (1) learning discrepancy between frames and (2) optimizing
alignment path using the discrepancy. Iterative motion warping (IMW) also employs DTW
to obtain alignments by setting a linear projection for each frame in order to align mo-
tion capture data (Hsu et al., 2005). In order to reduce the computational cost in DTW,
generalized time warping (GTW) estimates a warping path as a linear combination of pre-
defined monotonic functions (Zhou and De la Torre, 2012). For non-linear projection, Vu
et al. (2012) proposed manifold warping (MW), which employed an extension of Laplacian
eigenmaps to find a low dimensional manifold of high-dimensional sequences (Belkin and
Niyogi, 2003). More recently, Trigeorgis et al. (2016) proposed deep CTW, which employs
a neural network for the non-linear projection instead of the linear projection in CTW.
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CSTW mainly differs from these methods by considering alignments as a random variable
and estimating the parameters with the expectation of the alignment matrix.

Annealing method for the EM algorithm. The EM algorithm is the most common
approach to maximum likelihood estimation for a probabilistic model with latent variables,
but it often falls into poor local minima. The poor local minima problem often happens in
the EM algorithm because of unreliable posterior in the early steps of the alternations (Ueda
and Nakano, 1998). In order to mitigate the problem, the deterministic annealing EM al-
gorithm (DAEM) (Ueda and Nakano, 1998) introduces a new posterior with an inverse
temperature parameter β, which controls the smoothness of the posterior. DAEM algo-
rithm anneals the new posterior from the uniform distribution (0 < β � 1) to the original
posterior (β = 1). DAEM algorithm can be applied to CSTW, while ACTW anneals γ → 0
(i.e., β →∞) to obtain a deterministic alignment instead of the posterior distribution (i.e.,
γ → 1) during the alternations. Note that DAEM algorithm is not directory applicable to
CTW, because the posterior distribution of alignment in CTW is the Dirac delta, which is
not affected by the inverse temperature when β > 0.

5. Experiments

In this section, we demonstrate the benefit of CSTW against the following methods:
DTW (Sakoe and Chiba, 1978), soft-DTW (Cuturi and Blondel, 2017), DDTW (Keogh and
Pazzani, 2001), IMW (Hsu et al., 2005), MW (Vu et al., 2012), CTW (Zhou and De la
Torre, 2009), GTW (Zhou and De la Torre, 2012), and DCTW (Trigeorgis et al., 2016).

To implement CTW, we employed python implementations for DTW and CCA1. For
DDTW, IMW, and GTW, we adopted a MATLAB implementation2 provided by Zhou and
De la Torre (2012), and for MW, a python implementation3 was used. In order to reproduce
the result (Trigeorgis et al., 2016) for DCTW, we built two fully connected neural networks
based on an official implementation of DCTW4. The two networks have three layer 200-
100-100 topology (large network: DCTW L) and two layer 50-50 topology (small network:
DCTW S) with LReLU (α = 0.03) (Maas et al., 2013). We utilized full-batch optimization
with Adam (Kingma and Ba, 2015) (learning rate: 0.0005)5. We implemented CSTW
and ACTW based on PyTorch (Paszke et al., 2017). For CSTW, we set γ to 1. For
ACTW, we initialized γ to 100 and multiplied by 0.9 in each step. In order to compare
dependencies of initializations of CTW, CSTW and ACTW, we employed two settings:
identity initialization (Zhou and De la Torre, 2009) and UTW initialization (Zhou and
De la Torre, 2012) (Section 2.4). In the following experiments, we set the dimension of the
latent representation to d = 2, convergence tolerance to ε = 10−5, and 1teAn alignment
algorithm finishes when the change of the objective function is less than the convergence

1. DTW: https://github.com/pierre-rouanet/dtw (accessed: 2018-12), CCA: scikit-learn (Pedregosa
et al., 2011)

2. https://github.com/LaikinasAkauntas/ctw (accessed: 2019-1)
3. https://github.com/all-umass/ManifoldWarping (accessed: 2018-2)
4. https://github.com/trigeorgis/DCTW (accessed: 2018-9)
5. We attempted to reproduce the score in (Trigeorgis et al., 2016), but because of the lack of information

(e.g., learning rate), we could not. One possible reason is a difference of evaluation method, i.e., in the
implementation of DCTW; their models were evaluated during the training, while we split the training
and evaluation phases.
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tolerance or the number of iterations becomes more than the maximum number.. In the
first two experiments, we do not consider DCTW because the ground truths are sufficiently
represented by linear models.

5.1. Synthetic data

In the first experiment, we synthesized two multi-dimensional sequences (X ∈ R3×Tx , Y ∈
R3×Ty) according to the procedure in (Zhou and De la Torre, 2009, 2012). In the following,
we briefly explain the procedure of the input signal generation6.

X =

[
V >x (Z + bx)M>x
ex

]
, Y =

[
V >y (Z + by)M

>
y

ey

]
,

where Z ∈ R2×T was a generated curve signal, ex ∈ R1×Tx and ey ∈ R1×Ty were zero-mean
Gaussian noise, bx and by were randomly generated translation vectors, and Vx ∈ R2×2 and
Vy ∈ R2×2 were randomly generated projection matrices. In order to generate the binary
selection matrices Mx ∈ {0, 1}Tx×T and My ∈ {0, 1}Ty×T , T > max(Tx, Ty), we first set the
identity matrix IT , and then we uniformly randomly picked Tx and Ty columns, respectively.
We set T = 300, Tx = round(αxT ), and Ty = round(αyT ), where αx and αy are random
numbers from 0.1 to 0.5. We show an example of synthesized data in Figure 2(a).

In order to measure the alignment performances, we employed cosine similarity between
alignment matrices. We call this measure alignment similarity (Salign) obtained as

Salign(Aalg, Atrue) =
1

‖Aalg‖F ‖Atrue‖F
〈Aalg, Atrue〉 ,

where Aalg and Atrue ∈ A are alignment matrices of algorithm output and ground truth,
respectively. We computed Atrue in the same manner as in (Zhou and De la Torre, 2012).

For a statistical comparison, we synthesized data 10 times with different random seeds.
In Figure 2(b), we show a bar plot of the mean alignment similarities with 90% bootstrapping
confidence intervals. The result shows that our methods outperform the previous methods,
and in particular, CSTW (identity initialization) obtains the best performance in this task.
In Figure 2(c), we show the dependency of the alignment similarity on γ values in CSTW
(UTW initialization). CSTW demonstrated poor performance for γ values close to 0 (i.e.,
CTW), as well as γ values over 10 (considering all warping paths uniformly). This result
indicates that the soft-alignment with an appropriate γ value gains better performance than
CTW.

5.2. Alignments Far from Diagonal

In this subsection, we demonstrate the superiority of CSTW and ACTW for a more difficult
task, where true alignment matrices are far from diagonal matrices. For the experiment, we
generated data using the same procedure as in the previous subsection, except Mx and My,
which were generated by non-uniform random choice. We split the original sequence Z into
three intervals and randomly generated their weights with a uniform distribution from 0.1

6. In order to generate the input sequences, we utilized the author’s MATLAB implementation, which can
be obtained at https://github.com/LaikinasAkauntas/ctw (accessed: 2019-1).
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Figure 2: (a) The synthesized sequences X and Y and their source sequence Z. (b) Com-
parison of the mean alignment similarities for several methods with 90% boot-
strapping confidence intervals in the task using synthetic data (Section 5.1). The
suffixes i and u denote the initialization method: identity initialization and UTW
initialization, respectively. (c) The average alignment similarities for CSTW
(UTW initialization) for different γ values, together with the 90% bootstrapping
confidence intervals.

to 1. Then, we randomly chose Tx and Ty columns from the identity matrix IT according
to the weights. Figure 3(a) depicts examples of the loss values of CTW and ACTW during
100 updates. In order to compare them, we employ the loss function of CTW even when
we evaluate ACTW using projection matrices U and V in each step. This result indicates
that ACTW avoids the poor local minima problem regardless of the initialization methods.
In Figure 3(b), we show a bar plot of the mean alignment similarities for 10 time trials with
different random seeds. Figure 3(b) indicates that ACTW and CSTW outperformed the
other methods regardless of the initialization, even in the situation where the true alignment
matrices are far from diagonals. The projected sequences are illustrated in Figure 4, which
show that the other methods, including CTW and GTW, are highly affected by the noise
signals, while CSTW is insensitive to noise.

5.3. Alignment of Facial Action Units

In this subsection, we demonstrate the alignment performance of CSTW and ACTW using
real-world data. We employed a dataset used by Trigeorgis et al. (2016), which was a
subset of the MMI Facial Expression Dataset (Pantic et al., 2005). The dataset contains
10 movies of people smiling. Each face starts from a neutral face, then smiles, and then
returns to a neutral face. Each frame of the dataset has one of four labels: neutral, onset,
apex, and offset. The neutral label is corresponding to a face whose muscles related
to smiling are inactive. The apex label is assigned to a face which has a peak intensity
of the muscles. The onset label and offset label are transient states corresponding to
neutral → apex and apex → neutral, respectively. For the inputs of the alignment
methods, we employed the same preprocessing (Trigeorgis et al., 2016), which converts
each frame to grayscale and crops 40×40 pixels in order to center the face. For example,
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Figure 3: (a) Comparison of CTW and ACTW in terms of the CTW loss. (b) Comparison of
the mean alignment similarities for several methods with 90% bootstrapping con-
fidence intervals in the task where alignments are far from diagonal (Section 5.2).
The suffixes i and u denote the initialization method, identity initialization, and
UTW initialization, respectively.
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Figure 4: The projection results when true alignments are far from diagonal (Section 5.2)

we show some frames of the preprocessed inputs in Figure 5. Furthermore, we reduced
the dimensionality of each frame preserving 99% of the contribution (68 dimensions) using
principal component analysis for the movies. In this task, we aligned 45 pairs of movies
using the alignment methods, including the batch settings of CSTW and ACTW, which
assume a pair of projection matrices for all movies. We employed the UTW initialization
for initialization of CTW, CSTW, and ACTW because CTW works better with the UTW
initialization from Figure 2(b). For DCTW, we conducted the evaluation ten times using
different random seeds because they were randomly initialized, unlike the other methods.

In order to evaluate the alignment similarity (Salign), true alignment paths are nec-
essary; however, they are unknown in this experiment. For the evaluation, we employed
two criteria: label-matching-ratio and DCTW-score. Similar to the alignment similarity,
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0 20 40 60 80 100 0 15 30 45 60 75

Figure 5: Examples of preprocessed movies that record smiling faces. The numbers dis-
played on the images are frame numbers, which indicate that the timings of the
smiling are different according to the person.

we define label-matching-ratio, which counts number of same labels in aligned frames, as
Rmatch(Aalg, Amatch) := 1

‖Aalg‖2F
〈Aalg, Amatch〉 . Amatch ∈ {0, 1}Tx,Ty is a label matching ma-

trix, which is defined below.

[Amatch]t,s :=

{
1 if φ

(t)
x = φ

(s)
y ,

0 otherwise,

where φx ∈ {1 : K}Tx and φy ∈ {1 : K}Ty are two label sequences. K is the number of
labels (K = 4 in this task). DCTW-score (Trigeorgis et al., 2016) is defined as follows.

RDCTW :=
1

K

K∑
k=1

∣∣{t | (φxWx(A)>)(t) = k} ∩ {s | (φyWy(A)>)(s) = k}
∣∣∣∣{t | (φxWx(A)>)(t) = k} ∪ {s | (φyWy(A)>)(s) = k}
∣∣

DCTW-score can be regarded as a mean value of label-matching-ratios calculated for each of
the labels. In order to evaluate DCTW-score for CSTW (or ACTW), which do not provide
warping matrices explicitly, we employed DTW with the input U>X and V >Y , where U, V
are solutions of CSTW (or ACTW). The label-matching-ratio and DCTW-score are shown
in Table 1. The results show that our methods, including batch CSTW and batch ACTW,
outperform the existing methods, especially batch CSTW, which obtains the best scores in
both label-matching-ratio and DCTW-score.

6. Conclusion

In this paper, we proposed CSTW as an unsupervised alignment framework for high-
dimensional sequences. To avoid poor local minima, we treat an alignment as a random
variable instead of deterministically, as in previous studies. More concretely, CSTW models
the expectation of the alignment matrix instead of considering only the deterministic align-
ment in each step of the two-stage optimization. We also proposed an efficient and tractable
optimization for CSTW, which utilizes soft-DTW with the alignment kernel tricks. CSTW
controls the uniformness of the expectation of the alignment matrix by the temperature
parameter and allows us to obtain a deterministic alignment by the annealing method,
avoiding poor local minima. We demonstrated the advantages of CSTW over the exist-
ing works in the alignment of synthesized data and facial expressions. The results showed
that CSTW outperforms the current state-of-the-art in terms of alignment similarities and
label-matching-ratio regardless of how the parameters are initialized.
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Table 1: Comparison of the label-matching ratio for several methods for the alignment of
facial action units (Section 5.3). The suffixes L and S) denote a large network
and small network, respectively. We present means and standard deviations of ten
trials for DCTW L and DCTW S, which are randomly initialized.

Rmatch RDCTW

DTW 0.617 0.505
soft-DTW 0.631 0.505
DDTW 0.600 0.486
IMW 0.611 0.493
CTW 0.611 0.496
GTW 0.622 0.504
MW 0.535 0.426
ACTW 0.634 0.530
CSTW 0.627 0.519

DCTW L (batch) 0.534 (± 0.032) 0.427 (± 0.031)
DCTW S (batch) 0.531 (± 0.082) 0.433 (± 0.065)
ACTW (batch) 0.638 0.529
CSTW (batch) 0.666 0.554
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