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Abstract

Generative adversarial network (GAN) has established itself as a promising model for den-
sity estimation, with its wide applications to various problems. Of particular interest in
this paper is the problem of anomaly detection which involves identifying events that do not
conform to expected patterns in data. Recent application of GANs to the task of anomaly
detection, resort to their ability for learning probability distributions of normal examples,
so that abnormal examples or outliers are detected when they reside in very low-probability
regimes. Existing GAN methods often suffer from the bad cycle-consistency problem, which
yields the large reconstruction error so that the anomaly detection performance is degraded.
In order to alleviate this, we present a model that consists of a forward GAN and backward
GAN, each of which has an individual discriminator, that are coupled by enforcing feature
matching in two discriminators. We show that our forward-backward GANs (FBGANSs)
better captures the data distribution so that the anomaly detection performance is im-
proved over existing GAN-based methods. Experiments on MNIST an KDD99 datasets
demonstrate that our method, FBGANS, outperforms existing state-of-the-art anomaly
detection methods, in terms of the area under precision recall curve (AUPR) and Fj-score.
Keywords: Generative Adversarial Networks, Anomaly Detection

1. Introduction

Anomaly detection is a problem of finding outliers that are largely different from inlier
samples. In perspective of density estimation, samples that have significantly low likelihood
can be regarded as outliers. Anomaly detection have many real-world applications such as
cybersecurity Tan et al. (2011), medical diagnosis Salem et al. (2013); Schlegl et al. (2017)
and surveillance video Sultani et al. (2018).

Traditional methods for anomaly detection are One-Class Support Vector Machine (OC-
SVM) Scholkopf et al. (2001) and Kernel Density Estimation (KDE) Parzen (1962) which
have difficulties in high-dimensional data. Recent methods Zhai et al. (2016); Zong et al.
(2018) have been proposed based on deep neural networks LeCun et al. (2015) that have
a strong representational power on high-dimensional data. In particular, some approaches
based on Generative Adversarial Networks (GANs) Goodfellow et al. (2014) shows promising
anomaly detection performance on some dataset Schlegl et al. (2017); Zenati et al. (2018).
Especially, Bidiretional GANs (BiGAN) Donahue et al. (2017); Dumoulin et al. (2017)
shows state-of-the-art results on some dataset in anomaly detection Zenati et al. (2018).
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BiGAN has encoder and decoder which can generate points in data and latent space
bidirectionally through adversarial training with a discriminator on inlier dataset. So they
can reconstruct samples like autoencoder. To identify anomalousness of a sample, BIGAN
uses reconstruction error as anomaly score. The optimal behaviour of BIGAN is to reproduce
inlier samples itself faithfully, while forcing outliers to be reproduced in inlier distributiuon,
which means giving poor reconstructions on outliers. Although BiGAN is good at the
latter, they also show unsatisfactory reproduction qualities on inlier samples, which gives
high reconstruction errors on Inliers, which can degrade anomaly detection performance
significantly Donahue et al. (2017); Dumoulin et al. (2017). This problem that a model
cannot reproduce sample itself faithfully and give large reconstruction error is called bad
cycle consistency Zhu et al. (2017).

In this paper, we proposed an alternative model called Forward-Backward GAN (FB-
GAN) to mitigate bad cycle consistency of BiGAN. First, we introduce some background
GAN-based anomaly detection methods (Section 2). And then, we describe bad cycle con-
sistency in BIGAN (Section 3.1). try to figure out what causes bad cycle consistency in
BiGAN (Section 3.2) and demonstrate that this can arise from ambiguity in discrimina-
tor’s objective (Section 5.5). To remove the ambiguity, we use separate training signals
for marginal distribution matching and coupling sample pairs between latent and data
space respectively (Section 3). Consequently, FBGANSs show significant improvements on
anomaly detection performance compared to the previous methods (Section 5). FBGANs
achieved state-of-the-art area under precision recall curve (AUPR) and Fj-score on MNIST
and KDD99 dataset respectively.

2. Background
2.1. Generative Adversarial Networks

Generative adversarial networks Goodfellow et al. (2014) are a kind of implicit models to
approximate a true data distribution by generating samples as if these samples are drawn
from the distribution. GAN generally consists of two parts: a generator and a discriminator.
Let X = {x;}Y, be a dataset where x € R%. The generator G synthesizes samples G(z) €
R? where z € R™ is a random variable of some prior distribution. Popular choices are
an isotropic gaussian AN(0,I) or an uniform distribution #(0,1). The discriminator D
learns to distinguish real samples from fakes, while the generator learns to generate fakes
undistinguishable from reals. In this way, the discriminator and generator are trained
adversarially to approximate the true data distribution. The original GAN formulation is
defined as the following minimax game.

mGin m[z)LXE [log D(x) + log (1 — D(G(z)))] (1)

2.2. AnoGAN

Anomaly detection GAN (AnoGAN) Schlegl et al. (2017) tried to exploit GAN’s ability to
capture a data distribution. Let’s assume that GAN’s training is completed over a dataset
consisting of only inlier samples, then the generator will be more likely to generate samples
close to the inliers than outliers. In other words, if a sample x is an inlier, then a point z
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is likely to exist, from which a generated sample G(z) is almost identical to the original x:
G(z) =~ x. In contrast, if a sample x is outlier, such point z is less likely to exist. AnoGAN
used this difference between inlier and outlier samples for anomaly detection. To identify
anomalousness of sample x, an arbitrary point zg is drawn from the latent prior p(z) and
minimization of residual error ||x — G (z)||3 with respect to zj, is performed iteratively using
backpropagation as follows.

zii1 = 2k — NV, X — G(22) |3 (2)

where zj is k-th update of z and 7 is a learning rate. Updates go on up to predefined
terminal step 7" and an anomaly score function A(x) is defined as follows.

A(x) = (1 — XN)Sr(x) + ASp(x) (3)

where Sg(x) is a residual score, Sp(x) is a discrimination score and A is an score weight
hyperparameter that adjusts the proportion of each score; 0 < A < 1. A residual score Sr(x)
is defined as the Euclidean distance between a sample x and a generated sample G(zr):
|x — G(z7)||2- A discrimination score Sp(x) can be defined in 2 ways: (i) a negative log
probability that x is a real sample: —log(D(x)), (ii) a discriminative feature matching
error: ||D"(x) — D"(G(z7))||2 where D" is the last intermediate layer of the discriminator.
These discrimination scores are beneficial to detect anomalous samples in practice Schlegl
et al. (2017); Zenati et al. (2018).

2.3. Efficient GAN-based Anomaly Detection

Although AnoGAN is a competitive method, cumbersome backpropagation steps like (2)
are required to evaluate each sample’s anomalousness. Efficient GAN-based Anomaly De-
tection (EGBAD) Zenati et al. (2018) solved this problem by introducing Bidirectional GAN
(BiGAN) Donahue et al. (2017); Dumoulin et al. (2017) for anomaly detection.

In general, GANs learn a mapping from a latent space to a data space. In addition
to learning this forward mapping, BiGAN also learns the mapping from the data space to
the latent space bidirectionally through adversarial training. BiGAN consists of 3 parts:
a discriminator D, a generator G, and an encoder E. The discriminator’s input is a pair
of a sample x in a data space and a point z in a latent space: (x,z). The discriminator
learns to tell a pair synthesized by the generator: (G(z),z) from a pair synthesized by
the encoder: (x,FE(x)). The generator learns to make (G(z),z) undistinguishable from
(x, E(x)). Likewise, the encoder learns to make (x, F(x)) undistinguishable form (G(z), z).
This minimax game is defined as follows.

réliélmng[log D(x, E(x)) + log(1 — D(G(=), z))} (4)

If the encoder and generator are deterministic, when BiGAN’s objective (4) have reached
its optimal point, the encoder is equal to the inverse mapping of the generator: E =
G~!, and vice versa: G ~ E~! Donahue et al. (2017); Dumoulin et al. (2017). For this
reason, BiGAN can be used as like autoencoders and can be applied directly to evaluate
anomalousness of samples. The anomaly score function based on BiGAN is defined as
the same form as (3), but a residual score Sp(x) and a discrimination score Sp(x) is
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Figure 1: Conceptual images of cycle consistency. In each image, X is a data space and Z
is a latent space. The circle area in the data space is an inlier data distribution pp(x), and
the circle area in the latent space is a predefined latent distribution p(z) (a) The model with
good cycle consistency can reproduce original samples consistently (b) On the contrary, in
the model with bad cycle consistency, a point x; maps to z2 and reproduce X2, not the
original point x;.

slightly different from AnoGAN. Let x be a reconstructed sample of x: x = G(E(x)).
The residual score Sg(x) is defined as ||[x — x|2. The discrimination score Sp(x) can be
defined as: (i) a negative log probability over a pair from a encoder: —log D(x, E(x)), (ii) a
discriminative feature matching error between a original sample and a reconstructed sample:
| D" (x, E(x)) — D"(%, E(x))||2 where D" is an intermediate layer of the discriminator in
BiGAN. Consequently, an efficient evaluation can be achieved by using BiGAN, because
the residual score Sr(x) and the discrimination score Sp(x) can be computed efficiently
without costly backpropagation steps of (2) Zenati et al. (2018).

FBGANS also use an encoder for an efficient evaluation, but FBGANSs is different from
BiGAN in that FBGANs couples an encoder and a generator by discriminative feature
matching, not adversarial training. The experimental results (Section 5.5) shows that using
a discriminative feature matching loss for coupling the encoder and generator is helpful for
a bad cycle consistency problem of BIGAN which will be described in the next section.

3. Proposed Model

3.1. Bad Cycle Consistency Ploblem of BiGAN

The BiGAN based anomaly detection method resort to a reconstruction ability, and the
basic assumption in these methods is that the models should reproduce a sample itself
faithfully from given inlier samples and force outlier samples to be reproduced within an
inlier distribution.

Although BiGAN forces outlier samples to be reproduced within an inlier distribution,
they both suffer from a poor reconstruction problem on inlier samples Donahue et al. (2017);
Dumoulin et al. (2017). This problem makes it difficult for the GAN-based method to
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detect outlier samples precisely. We can describe this poor reconstruction problem by using
a concept of cycle-consistency Zhu et al. (2017). Cycle-consistency is the very desirable
property that all auto-encoding models must have. Cycle consistency allows a model to
encode a sample and reproduce itself over and over consistently. For example, let z; and
zo be latent points drawn from a predefined latent distribution p(z), and x; and x2 be
data points from a true data distribution pp(x), where z; # z and x; # x2. In the
model with cycle consistency, when x; is fed into an encoder E and the encoder produces
z1: E(x1) = z1, a generator produces x; from z;: G(z1) = x;. Also, when E(x2) = z9,
G(z2) = x2 (Fig. 1 (a)). In the model with bad cycle consistency, when z; or z is fed into
the generator, the generator can produce a sample from pp(x). Likewise, when x; or xg is
fed into the encoder, the encoder can produce a sample from p(z), but the generator and
encoder have difficulties coupling the samples. For example, when the encoder produces z{
from x;, the generator produces x3 from z;: E(x;) = z; and G(z1) = x2. In other words,
the model cannot reproduce a sample itself consistently (Fig. 1 (b)).

This bad cycle consistency of BIGAN degrades anomaly detection performance, because
the poor reconstruction ability increases anomaly scores of inlier samples.

3.2. On Training Signals from Discriminator in BiIGAN

Theoretically, in BiGAN, bad cycle consistency cannot occur at the optimal point over (4),
but in practice BIGAN fails to reach the optima and shows a poor reconstruction ability.
Before we investigate what causes the cycle consistency problem in BiGAN, it is essential
to know how the discriminator works for the adversarial training. As aforementioned, a
discriminator of BIGAN learns to predict where a pair (x,z) comes from: an encoder or a
generator. To achieve this objective the discriminator should take care of the following three
missions: (i) the discriminator should be able to judge whether x is real or fake, (ii) the
discriminator should be able to judge whether z is real or fake, (iii) the discriminator should
consider the relation between x and z. Note that (i) and (ii) are important for the model
to generate realistic points in both data and latent spaces, and (iii) is important for the
cycle consistency. In BiGAN, the encoder and generator take training signals only through
the discriminator. For these reasons, the role of the discriminator is critical to the entire
training of BIGAN. In this respect, bad cycle consistency can be caused by the discriminator,
because in practice the discriminator can achieve the original objective by concentrating
just one of the 3 missions. More specifically, given a pair (x, z), the discriminator can decide
the identity of the pair by inspecting only x without taking into consideration (ii) and (iii).
Note that if the discriminator do not use the relation between x and z for its training
goal, then the generator and encoder would not be coupled properly. This can cause bad
cycle consistency which can be called a poor reconstruction problem. In section 5.5, our
experiment shows unreliability of a learned discriminator in BiIGAN empirically to support
our assumption.

3.3. Forward & Backward GANs

We assumed that bad cycle consistency comes from training signals of the discriminator,
thus we distribute the three missions of the BiGAN discriminators to each component of
FBGANS to give explicit training signals for each misssion to the generator and encoder.
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Figure 2: Forward-Backward GANs for Anomaly Detection. A forward GAN (G and Dy)
learns to approximate a true data distribution pp(x). In contrast, A backward GAN (E and
Dy) learns to approximate a predefined latent prior p(z). FBGANs uses a feature matching
loss between Dy and Dy, to couple the forward and backward GAN.

FBGANS consists of forward and backward GANs. The forward GAN learns the mapping
from a latent space to a data space, and the backward GAN learns the mapping from the
data space to the latent space. The objective function of the forward GAN is exactly the
same as that of standard GANs.

Vi(Dy, G) = E[log Dy(x) +log(1 — D(G(z)))] ()

where Dy is a discriminator and G is a generator of the forward GAN. In contrast, the
backward GAN learns to produce realistic latent points from real data points.

Vo(Dy, E) = E [log Dy(2) + log(1 — Dy(E(x)))] (6)

where Dj(x) is a discriminator and E is a generator of the backward GAN. The foward
and backward GANs force the generated samples into a true data distribution pp(x) and
a latent prior p(z) respectively. Consequently, not only inlier samples but also outlier
samples are forced to be reproduced within a true data distribution pp(x). Note that
FBGANS distributes mission (i, ii) of BiIGAN’s discriminator to a forward discriminator Dy
and a backward discriminator Dj. This distiribution of missions replace embiguous training
signals from BiGAN discriminator and can help the generator and encoder to capture the
forward and backward mapping respectively. Note that the forward and backward GANs
also need to be coupled. The coupling loss will be described in the next section.

3.4. Coupling Forward and Backward GANs

We do not use an adversarial loss for coupling the generator and encoder as in BiGAN,
because the logistic sigmoid score from the discriminator is an ambiguous training signal for
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tight coupling and results in a bad cycle consistency problem (Section 5.5). Thus, FBGANs
distribute mission (iii) of BiIGAN discriminator to a discriminative feature matching loss
for coupling the forward and backward GANs tightly. The idea is very simple. A latent
point z and a generated sample G(z) must have the same discrimination score both in
forward and backward discriminators: Dy(z) = D¢(G(z)). Likewise, a data sample x and
an encoded sample E(x) must have the same discrimination score both in forward and
backward discriminator: Dy(E(x)) = Df(x). However, the discrimination scores do not
give enough information for coupling the forward and backward GANs properly. Thus, we
define two discriminative feature matching losses as follows.

Lgen = EZNp(z)HD?(G(Z» — Dy (2)]I3 (7)

Lene = ExwpD(x)HD]}(X) - DZL(E(X))”% (8)

where D? is the last hidden layer of the discriminator of the forward GAN, and DgL is

that of the backward GAN. D? and DI'} should have the same dimensionality. Lgen is
an expected Euclidean distance between discriminative features of a latent point z and
a generated sample G(z). Lenc is that of a data point x and an encoded sample E(x).
For latent samples, the backward discriminator Dy learns to match itself with the forward
discriminator Dy by minimizing Lge,. For the pairs from the encoder, the encoder learns a
reverse mapping of the generator by minimizing Le,.. Total optimization of FBGANSs is as
follows.

D} = argDI;laX V¢(Dy, G) 9)

G* = argGmin V¢(Dy, Q) (10)

Dy = argDmin(be(Db, E) + wiLyen) (11)
b

E* = argénin(vb(Db, E) + walene) (12)

where w; and wsq are feature matching weight hyperparameters. When the feature matching
losses Lgen and Lep reach a global minimum, the generator G' can reproduce a sample itself
from a latent point that are produced by the encoder E (Fig. 2). Using more explicit
training signals than sigmoid output from BiGAN’s discriminator results in mitigation of
the bad cycle consistency problem significantly (Section 5.5).

4. Related Works

DAGMM Zong et al. (2018) proposed an end-to-end learning method for density estimation
with Gaussian mixture model and autoencoder. DAGMM uses negative log likelihood as
anomaly score function. DADGT Golan and El-Yaniv (2018) introduced self-supervised
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learning for anomaly detection. DADGT detects outliers depending on how well the model
identify geometric transformations applied to a sample. Deep SVDD Rulff et al. (2018) learns
to encode inlier samples into a latent space and to minimize volume of the hypersphere
including encodings of those inliers. Deep SVDD uses the distance from center of the
hypersphere to the encoding of a sample to detect outliers. AnoGAN Schlegl et al. (2017)
shows that GANs can be one of the most promising way for anomaly detection. EGBAD
Zenati et al. (2018) significantly improves AnoGAN by both detection ability and speed
using BiGAN. In this paper, we focused on drawbacks in existing GAN-based methods and
proposed novel way to mitigate these drawbacks.

5. Experiments

5.1. Datasets

To evaluate anomaly detection capability of FBGANs, we executed experiments on two
benchmark datasets: MNIST and KDD99 10 percent dataset.

MNIST This is a hand-written digit dataset that consists of 10 kind of digits from 0 to
9. We synthesized 10 datasets from original MNIST for anomaly detection. To build each
dataset, we selected one digit class as an outlier class, and samples of the other classes are
regarded as an inlier samples. The 80% samples of all inlier samples is used as a train set,
and the other 20% samples and all samples of the outlier class compose a test set. In ohter
words, a train set consists of only inlier samples and a test set includes both inlier and
outlier samples.

KDD99 10 percent The KDD99 10 percent dataset is a representative benchmark
dataset for anomaly detection Dheeru and Karra Taniskidou (2017). In this paper, we
call this dataset KDD99 for brevity. KDD99 consists of samples that have 41 dimensions:
34 of them are continuous and 7 is categorical. We preprocessed the categorical attributes
by using one-hot encoding so that samples have 120 dimensions. KDD99 has two classes:
the one is “normal” and the other is “attack”. We defined “normal” as an outlier class
because “attack” class is a majority group. The whole dataset is randomly divided into 2
datasets at the same size. The one dataset in which outlier samples are removed is used as
a train set, and the other dataset is used as a test set. As a result, a train set only includes
inlier samples and a test set consists of both inlier and outlier samples.

5.2. Baseline

In this paper, we mainly target to present an improved GAN-based anomaly detection
method, so our baselines include AnoGAN and BiGAN. In addition to the previous GAN-
based methods, comparing FBGANSs to other anomaly detection methods is necessary. In
this section, we briefly introduce other baselines in our experiments.

OC-SVM  One-class support vector machine Schélkopf et al. (2001) is a traditional kernel-
based methods for anomaly detection. Residual basis kernel is used.
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(c) FBGANs (d) Autoencoder

Figure 3: Reconstructions in MNIST dataset when an anomaly digit is “2”. (a) Real samples
in test set. (b) Although BiGAN gives poor reconstructions on anomalous samples (1st row),
BiGAN gives reconstructions which are similar but largely different from the original inlier
samples in detail (2nd and 3rd rows). (¢) FBGANSs reproduces outlier samples to be inlier
samples (1st row) and gives almost identical reconstructions from the orignal inlier samples
(2nd and 3rd rows). (d) In contrast, autoencoder gives good reconstructions on both inlier
and outlier samples, which is harmful to anomaly detection performance.

DSEBM A deep structured energy based model for anomaly detection has been proposed
by Zhai et al. (2016). DSEBM-r uses reconstruction error as an anomaly score and DSEBM-
e uses sample energy as an anomaly score.

DAGMM Deep auto-encoding Gaussian mixture model Zong et al. (2018) learns both
dimensionality reduction and density estimation in an end-to-end manner by using an au-
toencoder and a Gaussian mixture model.

For AnoGAN and BiGAN, we implemented these models based on a public implemen-
tation given by Zenati et al. (2018) and followed the same evaluation protocols proposed
in Zenati et al. (2018). For OC-SVM, DSEBM-r, DSEBM-e and DAGMM, we use results
presented by Zong et al. (2018).
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5.3. Training

Architecture In MNIST, our forward GAN follows in split of Deep Convolutional GANs
(DCGANSs) Radford and Metz (2016). We used strided convolution instead of pooling
layer for the discriminator, and used strided transposed convolution for the generator. In
the backward GAN, the encoder also used strided convolutions and the discriminator is
a Multilayer Perceptron (MLP). In KDD99, all component are MLPs. In all experiments,
FBGANS used some regularization techniques: batch normalization Ioffe and Szegedy (2015)
and dropout Srivastava et al. (2014). For fair comparison, we used the same architecture for
all generators and encoders in BIGAN and FBGANs and minimized architectural differences
between discriminators of each model as possible as we can.

Hyperparameter Setting We used ADAM optimizer Kingma and Ba (2015) for training
FBGANS and all baseline models. In FBGANS, learning rates are selected as 10~2 and 10~°
and latent dimension sizes are selected as 35 and 32 for MNIST and KDD99 respectively. In
MNIST, learning rates and latent dimension sizes were searched in [1073,107%,1075, 1079
and in [20, 35, 50, 100, 200] respectively. After performing this hyperparameter search, mean
AUPRs of AnoGAN and BiGAN were improved by 10% and 42% respectively compared
to those reported in Zenati et al. (2018). In KDD, we adopted the same learning rate and
latent dimension size in Zenati et al. (2018). Trainings were performed during 100 epochs
with batch size of 100 and 50 for MNIST and KDD99 respectively. In FBGANS, the feature
matching weight w; and we are not sensitive, so we set them as 1 for all experiments.

5.4. Evaluation

Anomaly Score We defined an anomaly score as like (3). We defined a residual score as
a reconstruction error: Sg(x) = |[|[x — G(E(x))||2 and a feature matching error as a discrim-
ination score: Sp(x) = ||D§%(X) - D}‘(G(E(X)))Hg We set the score weight hyperparameter
A as 0 for both MNIST and KDD99. We found that using a discrimination score is not help-
ful for anomaly detection performance of FBGANs. Using a discrimination score (A # 0)
degrades anomaly detection performance in all dataset. This can be interpreted such that
it’s because FBGANSs alleviates a bad cycle consistency problem significantly.

Evaluation Metric We evaluated our model for MNIST by using Area Under Precision
Recall curve (AUPR) because the proportion of abnormal samples in a test set is slightly
different depending on an anomaly digit class. In KDD99, anomaly ratio p in test set is
fixed as a constant: p = 0.2. In other words, test samples having top 20% anomaly score
are classified as anomalies. We evaluated our model by using precision, recall and F} score.

5.5. Results

Anomaly Detection In qualitative results on MNIST, both FBGANs and BiGAN give
poor reconstructions on outlier samples, but FBGANS gives better reconstructions on inlier
images compared to BiGAN (Fig. 3). In quantitative results on MNIST, FBGANSs shows
much higher AUPR over all digits except ‘9’ than previous approaches (Table 1). In KDD,
FBGANSs shows significantly improved performance over precision, recall and Fj-scores
compared to previous state-of-the-art methods (Table 2).
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Table 1: Mean AUPR on MNIST (3 seeds)

Anomaly AUPR
digit AnoGAN BiGAN FBGANs

0 0.7548 0.8709 0.9425
1 0.3209 0.3359 0.4408
2 0.7529 0.9040 0.9415
3 0.5662 0.6375 0.7955
4 0.5502 0.7575 0.8032
) 0.5961 0.7437 0.7975
6 0.7353 0.7468 0.8429
7 0.5419 0.6508 0.6490
8 0.5379 0.7266 0.7979
9 0.3704 0.4624 0.4529
mean 0.5723 0.6791 0.7464

Table 2: Mean precision and recall on KDD99 (10 seeds)

Models Precision Recall F1l-score

OC-SVM 0.7457 0.8523 0.7954
DSEBM-r 0.8521 0.6472 0.7328
DSEBM-e 0.8619 0.6446 0.7399
DAGMM 0.9297 0.9442 0.9369
AnoGAN 0.8786 0.8297 0.8865
BiGAN 0.9200 0.9582 0.9372
FBGANSs 0.9539 0.9691 0.9614

Unreliable Discriminator in BIGAN We executed an additional experiment to show
reliability of learned discriminators in BiIGAN. As aforementioned, we assumed that a dis-
criminator in BiIGAN does not need to consider relation between a data point and a latent
point to achieve its training goal. The discriminator can achieve its goal by just looking
at a data point and making a decision whether this point is real or fake. Consequently,
the discriminator cannot give informative training signals for the encoder and generator
to be coupled tightly, which can result in a bad cycle consistency problem in BiGAN. To
support this assumption empirically, we compared mean sigmoid outputs of learned dis-
criminator from some different inputs (Fig. 4). The results show that the outputs of the
learned discriminators are highly determined by a data point. Let Sge, be a mean output
of pairs from generator: Sge, = % Zfi 1 D(G(2;),2;) and Sene be a mean output of pairs
from encoder: Sepe = % Z,fil D(x;, E(x;)) and S;qnq be a mean output of random pairs:
Srand = % Zfi 1 D(xi,2;) where x; is a data sample in test set and z; is a sample randomly
drawn from a predefined latent distribution. N is the number of test samples. |Syqnqd —Sgen|
is an absolute difference after G(z;) in Syen, is replaced by a random data sample x;, which
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Discriminator's outputs in BIGANs
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Figure 4: Comparison of mean sigmoid outputs from learned discriminators in BiGAN.
X-axis indicates experiments performed in this paper and each digit indicates the anomaly
class used in each MNIST experiment. Y-axis indicates mean sigmoid outputs of BiIGAN’s
discriminators after training. The sigmoid output is a discriminator’s prediction to the
probability that a given pair is from an encoder. Sy, are mean sigmoid outputs of pairs from
a generator and Se,,. are the values of pairs from an encoder. S;4,q are the values from pairs
sampled randomly from true data distributions and predefined latent priors independently.
Over all experiments, [Syand — Sgen| are 4.2 ~ 26.5x greater than [Syqnd — Senc|, Which
means that the output of a leanred discriminator in BiGAN is highly determined by a data
point

means how much effect changes in a data point have on the learned discriminator. In con-
trast, |Srand — Senc| is an absolute difference after F(x;) in Sepc is replaced by a random
latent point z;, which means the effect on discriminator’s output caused by changes in a
latent point. In our experiments, |Syqnd — Sgen| are 4.2 ~ 26.5x greater than |[Syqng — Senc|-
In other words, discriminator’s output is highly determined on a data point. In addition,
we also found that S,.q,q is greater than S, in all MNIST experiments, which means Bi-
GAN discriminators believe that random pairs comes from an encoder more confidently
than even actual samples from the encoder. These results empirically show how unreliable
a discriminator and training signals it gives in BIGAN. FBGANSs gives more informative
training signals, a discriminative feature matching loss, to an encoder and a generator and
mitigate a bad cycle consistency problem which is frequently observed in BiGAN.

6. Conclusion

We proposed FBGANSs to mitigate bad cycle consistency problem that BiGAN suffer from.
By replacing an ambiguous training signal from BiGAN discriminator with an explict feature
matching loss, FBGANSs alleviates the bad cycle consistency problem while forcing outliers
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to be reproduced within an inlier distribution. Superior anomaly detection performance of
FBGANS over the previous state-of-the-art methods is also demonstrated in experiments.
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