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Abstract

In this paper, we propose a method that can handle censored data, data collected under
the condition that the exact value is recorded only when the value is within a certain range,
abbreviated information is recorded otherwise. It is known that existing methods that use
mixture models with censored data suffer from (i) the existence of local optimum solutions
and (ii) the need to compute the statistics of truncated distributions for parameter esti-
mation. Our proposal, exemplar based censored mixture model (EBCM), overcomes these
two difficulties at once by adopting the exemplar based model approach. The effectiveness
of EBCM is confirmed by experiments on synthetic and real world dat sets.

Keywords: exemplar based model, convex clustering, mixture model, censoring, censored
data, survival analysis, multivariate survival analysis

1. Introduction

Censored data is the data collected under the condition that the exact value is recorded
only when the value is within a certain range; partial information is recorded otherwise
Kleinbaum and Klein (2010); Crowder (2012). The censoring occurs for various reasons
such as limits of observation period or the of measurement range of sensors. The former is a
typical scenario in survival analyses, which treat the lifetimes of devices, humans and so on.
Figure 1(a) shows an example of the “time to failure” data of devices. Since observation
periods are limited, some devices are still working at the end of the period. Thus, we know
only that their time to failure is larger than the elapsed time of testing. The latter scenario
reflects sensor limits. For example, if the water level of a river exceeds the observable
range of a water gauge, we know only that the level exceeded the maximum value of the
gauge. Considering that survival analysis is now the key to various real world problems
such as customer lifetime modeling Rosset et al. (2002), click log analysis Chin and Street
(2012), and quality analysis of advertisements Barbieri et al. (2016) and that many types of
(censored) data are collected by sensors due to the popularity of Internet of Things (IoT),
it is clear that the importance of censored data analysis will continue to increase.

Similar to the analysis of standard (not censored) data, the use of mixture models is one
promising approach to censored data analysis. For example, mixture models can capture the
multimodal structure of the probability distribution such as the time to failure distribution,
whose constituents include initial failure and aging failure distributions. To estimate the
parameters of mixture models we can apply expectation maximization (EM) Dempster et al.
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(1977) based algorithm, EM for censored mixture models (EMCM) Chauveau (1995), or
the variational Bayes (VB) Attias (1999); Jordan et al. (1999) based algorithm, VB for
censored mixture models (VBCM) Kohjima et al. (2018). However, these two approaches
have two problems. The first is that EMCM and VBCM convergence readily fall into
local optima since convergence is very sensitive to the initial settings. To ensure adequate
coverage, multiple, different initial points must be examined. The second is the necessity of
computing the statistics of truncated distributions. Since no analytic solution is available,
numerical computation is needed, the cost of which increases with the number of dimensions.
Since both EMCM and VBCM are iterative algorithms that compute the statistics multiple
times, some alternative is essential.

In this study, we propose the exemplar-based censored mixture model (EBCM). EBCM
solves the two above difficulties at once, i.e., parameter estimation is assured of converg-
ing on global optima and computation of the statistics of the truncated distribution is
not required. The idea behind EBCM is to use the approach called the exemplar-based
model (EBM) or convex clustering Lashkari and Golland (2008). EBM puts the mixture
model’s components on (possibly all) data points and considers only the mixing ratio param-
eter as the parameter to be estimated. This approach converts the objective log-likelihood
function into a convex function with no local optima. Furthermore, since EBCM does not
need the component parameter, there is no need to compute the statistics of truncated
distributions. Thus EBCM solves the two key problems simultaneously. EBCM can also be
regarded as a generalization of EBM that permits the input of censored data.

We design component distributions used in EBCM for survival analysis. Since survival
data usually have values greater than (or equal to) zero, Gaussian distributions, which
support negative and positive values, may not be appropriate. We develop component dis-
tribution candidates by using inverse Gaussian and Gamma distributions. We also confirm
the effectiveness of EBCM by experiments on both synthetic and real data sets.

The contributions of this paper are summarized below:

• We develop EBCM, an exemplar-based model that can deal with censored data. The
EBCM algorithm converges to the global minimum and does not calculate the mo-
ments of truncated distribution.
• We also design component distribution(s) of EBCM for survival analysis. Since sur-

vival data usually have values greater (or equal) zero, the constructed distributions
should lie only on the positive line.
• We confirm the effectiveness of EBCM by numerical experiments using both synthetic

data and real survival data.

The rest of this paper is organized as follows. We introduce related works in § 2 and
a description and definition of censored data are given in §3. §4 presents EBCM and its
algorithm. The distributions created for survival analysis are also provided. §5 details our
experimental evaluation. Finally, §6 concludes the paper.

2. Related Works

Extensions of machine learning models and algorithms for survival analysis have been
widely studied in the machine learning and data mining communities Kohjima et al.
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(a) 1-dimensional censored data (b) 2-dimensional censored data

Figure 1: Example of censored data. (a) presents one-dimensional censored data represent-
ing the failure time of devices. The gray points represent installation times and
the white points represent the failure times. The red points represent data points
whose failure times were not observed due to observation censoring. (b) presents
two-dimensional censored data of user service usage time. The gray points in-
dicate the start time of using the services and the white points represent the
cancellation time. The green/blue/red points indicate the data points whose
cancellation times were not observed due to the end of observation period.

(2018); Pölsterl et al. (2015); Kiaee et al. (2016); Fernández et al. (2016); Ranganath et al.
(2016); Grob et al. (2018). Fernandez et al. developed the Gaussian process based method
Fernández et al. (2016) and Kiaee et al. extended the relevance vector machine Kiaee et al.
(2016). Ranganath et al. and Grob et al. focus on deep neural nets Ranganath et al.
(2016); Grob et al. (2018). Our study also follows this context and its proposal is based on
the exemplar-based model Lashkari and Golland (2008).

In the parameter estimation of mixture models with censored data, the conventional
approach makes it necessary to compute the cumulative density function (CDF) of the com-
ponent distribution and the statistics of the truncated distribution (distribution changed
to take values only in a certain range). This is because the latent variable indicating
the true value, which was not observed due to observation censoring, is introduced, and
this variable follows the truncated distribution defined using CDF. Although many stud-
ies have been published (e.g., Tallis (1961); Genz and Bretz (1999); Genz (2004); BG and
Wilhelm (2009)), the ability to compute the statistics of the truncated distribution is not
adequately developed. For example, only the one-dimensional truncated normal distribu-
tion and the truncated exponential distribution are implemented in the statistical module
scipy.stats. Also, even if they are provided (e.g. “R”s multivariate truncated normal distri-
bution package, “tmvtnorm” Wilhelm and Manjunath (2010)), they often require numerical
calculations internally. CDF also require numerical calculations and its computational cost
increases with the dimension number. For example, MathWorks’s numerical calculation
software MATLAB R©, uses the adaptive quadrature method Genz (2004) for the calcula-
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(a) (b)

Figure 2: Survival time representation of (a) 1d censored data and (b) 2d censored data
shown in Fig. 1).

tion of the cumulative probability of the multidimensional normal distribution if it is three
or less, for four or more, the quasi-Monte Carlo integration algorithm must be used Genz
and Bretz (1999) 1. Clearly it is desirable to avoid repeating these calculations. As men-
tioned above, we constructed a method to avoid repeated numerical calculations by using
an example-based model approach.

Advanced studies on the exemplar base model (EBM) can be found in the literature,
and some algorithms can find global optimal solutions while avoiding local optima Lashkari
and Golland (2008); Sugiyama et al. (2010, 2012). However, none of the above methods can
use censored data as input. Our solution, EBCM, is an extension of Lashkari and Golland’s
approach Lashkari and Golland (2008).

3. Censored Data

3.1. Description

We describe the censored data using the common example of time to failure analysis, see
Fig. 1(a). The time of device installation and the time of failure are recorded. For device 1,
both the installation time and failure time are recorded. In contrast, for devices 2 and 3, the
failure times are not recorded because the observation period ended without them failing.
Therefore, the censored data consist of the values (time of failure) for devices 1 while for
devices 2 and 3, the entries are written as right censored data.

Although the example uses one-dimensional censored data, the focus of this study in-
cludes censored data with more than two dimensions. Figure 1(b) shows an example of
two-dimensional censored data; it presents usage periods (contract period) of two services
such as movie streaming and music streaming. The time when a user starts to use a service
and the time when a user cancels a service are recorded. For user 1, the start and cancel-

1. https://www.mathworks.com/help/stats/mvncdf.html
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lation time of service 1, ts1 and te1, and that of service 2, ts2 and te2, are observed. However,
the time at which user 2 cancels service 1 is not recorded since he/she is still using it at the
end of the observation period. Similarly, user 3’s cancellation time of service 2 and user 4’s
cancellation time of services 1 and 2 are not recorded. So the data contain three types of
censored situations as multiple dimensions are involved. In general, there are 2dx − 1 types
of censored situations for dx-dimensions.

3.2. Definition

This subsection formally defines censored data. We consider that the data are processed
and the value represent a survival time such as time to failure and time to cancellation.
Figure 2 shows the survival time representation of the data in Fig 1. We use Fig. 2(b) as
an example in the explanation below.

We denote censored data as D={xi,wi}ni=1. xi and wi are dx-dimensional vectors. xij is
user i’s usage time of service j and wij indicates whether the time at which user i’s cancelled
service j are recorded or not; when recorded we write (wij = 0), and when not recorded
we write (wij = 1). Similarly, let vi ∈ Rdx be the threshold of user i. vij is the observation
period (length) of user i for service j. We also assume that xij is set to the threshold, i.e.,
xij = vij , when the value is censored (wij = 1). Although we use the example of censored
data for survival analysis, censored data collected by some sensors with limited observed
range can be handled in an analogous manner.

4. Exemplar-Based Censored Mixture model (EBCM)

This section provides the proposed method.

4.1. Models

Our proposed method, exemplar-based censored mixture model (EBCM), is constructed on
(standard) mixture models. The probability distribution of mixture models is defined as

(Standard) Mixure Model : f(x|θ,η) =
∑K

k=1
θkψ(x|ηk) = θTψ(x|η), (1)

where K is the number of components and θ = {θk}Kk=1 is the mixing ratio, ψ is the com-
ponent distribution and η = {ηk}Kk=1 are the component parameters. When the component
is Gaussian, the component ψN is written as follows:

ψN (x|µk, σ
2) = N (x|µk, σ

2) =
1

(
√

2πσ2)dx
exp
(
−‖x− µk‖2

2σ2

)
, (2)

where µk and σ represent the mean and standard deviation, respectively. Here we con-
sider the component is Gaussian; the details of using other distribution types, e.g., inverse
Gaussian distribution IG and gamma distribution G, are provided at the end of this section.

IG(x|µ, λ) =

√
λ

2πx3
exp
(
−λ(x− µ)2

2µ2x

)
, G(x|a, b) =

xa−1 exp(−x/b)
baΓ
(
a
) . (3)
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In (standard) mixture models, both mixing ratio θ and component parameter η are
the parameters to be estimated. On the other hand, EBCM has only the mixing ratio
as its parameter as it uses the approach of exemplar-based model (EBM) Lashkari and
Golland (2008). This is done by putting the components on the (possibly all) data points 2.
Given (non-censored) standard data {xk}nk=1, the EBM constructs a model with Gaussian
component as

EBM (Gaussian) : f(x|θ) =
∑n

k=1
θkψN (x|xk, σ

2).

Note that the number of components K is the number of data n and the mean parameters
correspond to the data points. Since the mean parameter is removed, there is no need to
estimate it. By treating the standard deviation σ as the hyperparameter that is estimated
by e.g., cross-validation, this formulation allows us to build a model whose only parameter
is its mixing ratio.

We closely followed the EBM approach in building EBCM. The difference is we reflect
the nature of the censored data; when the value is censored (wij = 1), although the value
of xij is set to the threshold vij by definition, its unobserved true value is larger than the
threshold. Keeping this in mind, given censored data {xk,wk}nk=1, we build the model of
EBCM with Gaussian component as

EBCM (Gaussian) : f(x|θ) =
∑n

k=1
θkψN (x|zk, σ2), (4)

where we define the variable {zk}nk=1 as zkj = xkj if wkj = 0, and zkj = xkj + εkj otherwise.
Note that εkj is a positive random variable (arbitrary) and we use the standard exponential
distribution for its generation in an experiment described later. This procedure allows us
to put the component at a value greater than the threshold.

4.2. Generative Process

The generative process of censored data D = {xi,wi}ni=1 using the model of EBCM shown
in Eq. (4) consists of 2 steps. We use the notation ψk(x) to indicate the k-th component dis-
tribution; it allows us to ignore the choice of the distribution while avoiding any dependency
on hyperparameters such as standard deviation.

In the first step, given threshold vi, variable wi is drawn by the following distribution:

P (wi|θ) = F (wi|θ;vi) =

∫ ∞
vci

{∫ voi

−∞
f(xi|θ)dxo

i

}
dxc

i

=
∑K

k=1
θk

[∫ ∞
vci

{∫ voi

−∞
ψk(x)dxo

}
dxc
]
, (5)

where we define xo
i and voi as the elements of the observed dimension of xi and vi, i.e.,

xo
i = {xij |wij = 0},voi = {vij |wij = 0}. Similarly, we define xc

i and vci as xc
i = {xij |wij = 1},

vci = {vij |wij = 1}. Note that the integral in the equation can be computed using the
cumulative density function (CDF) of the component distribution if necessary. As shown

2. If the number of data is large, just randomly chosen data points may be used.
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Figure 3: generative process (a) probability of w and (b) that of x given w = (0, 0).

in Fig. 3 (a), P (w|θ) corresponds to the volume of model f in the region divided by the
threshold v.

In the second step, if at least one element is observed, i.e., wi 6= 13, variable xi is drawn
as follows:

P (xi|wi 6= 1,θ) = δ(xc
i − vci )ftr(xo

i |wi,θ;vi), (6)

where δ(·) is the delta function and ftr is the truncated distribution

ftr(x
o
i |wi,θ;vi) =

{
g(xo

i |wi,θ;vi)
F (wi|θ;vi) (if xo

i ≤ vi)
0 (otherwise)

where

g(xo
i |wi,θ;vi) =

∫ ∞
vci

f(xi|θ)dxc
i =

∑K

k=1
θkΨik = θTΨi(x

o
i ,wi,vi), (7)

Ψik = Ψk(xo
i ,wi,vi) =

∫ ∞
vci

ψk(xi)dx
c
i . (8)

The integral of Ψik can be computed using CDF as well. If the component is Gaus-
sian (Eq. (2)),

ΨNik = N (xo
i |zok(w), σ2)

∫ ∞
vci

N (xc
i |zck(w), σ2)dxc

i ,

where zok(w) and zck(w) are the vectors extracted from zk, zok(w) = {zkj |wj = 0} and
zck(w) = {zkj |wj = 1}, respectively. Figure 3 (b) shows an example of distribution trunca-
tion where all values are less than threshold (w = 0). This distribution has non-zero values

3. 1 is the vector with all one elements
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only in the region which is smaller than threshold value. If all elements are unobserved by
censoring, i.e., wi = 1, all elements of xi equal threshold vi:

P (xi|wi = 1,θ) = δ(xi − vi). (9)

Summarizing the above processes, the probability of censored data D given (mixing
ratio) parameter θ can be written as

P (D|θ) =
∏n

i=1
P (xi|wi,θ)P (wi|θ)

=
∏

{i|wi=1}

F (wi|θ;vi)δ(xi−vi)
∏

{i′|wi′ 6=1}

F (wi′ |θ;vi′)ftr(x
o
i′ |wi′ ,θ;vi′)δ(x

c
i′−vci′)

=
{∏n

i=1
g(xo

i |wi,θ;vi)
}{∏

{i|wi 6=0}
δ(xc

i − vi)
}
.

The objective function is derived by taking the negative logarithm and removing the con-
stant terms:

L(θ) = −
∑n

i=1
log g(xo

i |wi,θ;vi) = −
∑n

i=1
log
(
θTΨi(x

o
i ,wi,vi)

)
.

4.3. Algorithm

The algorithm is derived by minimizing the objective function L(θ). Since θ is the mixing
ratio parameter that satisfies the sum to one constraint, it can be formulated as

θ̂ = arg min
θ

L(θ) s.t. θk ≥ 0,
∑n

k=1
θk = 1.0.

The algorithm is derived by the method of Lagrange multipliers. Let us define the Lagrange
function with the Lagrange multiplier Λ as

F(θ,Λ) = L(θ)− Λ
(∑n

k=1
θk − 1

)
.

Setting the partial derivative equal to zero yields

∂F(θ)

∂θk
= 0⇔ Λ = −

∑n

i=1

Ψk(xo
i ,wi,vi)

θTΨi(xo
i ,wi,vi)

.

Multiplying both side of this equation by θk on and taking a summation w.r.t. k, Λ = −n.
Then, the optimum solution satisfies

θk =
1

n

{ n∑
i=1

θkΨk(xo
i ,wi,vi)

θTΨi(xo
i ,wi,vi)

}
. (10)

The parameter estimation algorithm for EBCM iterates the update of θ following Eq. (10).
Note that when data is (non-censored) standard data, the update equation reduces to that of
EBM. Therefore, EBCM is a natural generalization of EBM that can handle censored data.
The proposed algorithm converges to the global optimum solution. Moreover, following the
work by Lashkari and Golland Lashkari and Golland (2008), A clipping procedure can be
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added to raise the convergence speed of this algorithm. This is done, in each iteration, by
setting θk = 0 if θk is smaller than some given threshold α and re-normalizing θ to satisfy
the sum to one constraint. In a later experiment, we set α = 10−3/n.

The global convergence of the algorithm is confirmed as follows. Let us define the
responsibility term γi = {γik}nk=1 as

γik =
θkΨk(xo

i ,wi,vi)

θTΨi(xo
i ,wi,vi)

.

This allows update equation Eq. (10) to be written as θk =
∑n

i=1 γik/n, which is exactly
same update equation of the mixing ratio in the EM algorithm Bishop (2006). Therefore,
the monotone decreasing characteristic of the objective function by this update can be
shown in the same manner. In addition, our objective function, L(θ), is a convex function
unlike standard mixture models using EM. This can be confirmed by checking the Hessian
of the objective function, H = {Hkk′}, which is defined as

Hkk′ =
∂2L(θ)

∂θk∂θk′
=
∑n

i=1
γikγik′ .

Since for arbitrary θ, θTγiγ
T
i θ = ‖θTγi‖2 ≥ 0 holds and the sum of the positive definite

matrices is also positive definite, H is a positive definite matrix. Therefore, the objective
function is convex and the solution reached by this algorithm is the global optimum of the
objective function.

4.4. Component Distributions for Survival Analysis

At the end of this section, we state our choice for the component distribution for survival
analysis. The data values in survival analysis, which represent e.g., the time to failure or the
usage time of services, are larger than or equal zero. Therefore, Gaussian distributions which
support both negative and positive values may not be appropriate. We present examples
using inverse Gaussian and Gamma distributions. Using a well-known distribution is of
practical use since the PDF and CDF of the component distribution needs to be computed
before running the algorithm (See Eq. (10)).

To use the inverse Gaussian and Gamma distributions, it is necessary to decide how to
arrange the distribution with respect to the data points since the average and the mode
do not match, unlike Gaussian distributions 4. So we adopt the following approach: (i)
re-parametrize the inverse Gaussian and Gamma distributions using mean parameter µ and
set the component distributions so that the mean parameter matches the data point. (ii)
introduce standard deviation like hyperparameters (b and c) so that the mode equals the
mean when taking the hyperparameter limit to 0. This approach allows us to use inverse
Gaussian and Gamma distributions as Gaussian-like distributions.

4. Studies on kernel density estimation (KDE) used asymmetric kernels such as Beta kernel Chen (1999),
Gamma kenel Chen (2000), and inverse Gaussian kernel Scaillet (2004). Inverse Gaussian kernel and the
estimator given (non-censored) data {xi} are defined as follows: KIG(x,1/c)(µ) = IG(µ|x, 1/c), f̂IG(x) =
1
n

∑n
i=1KIG(x,1/c)(xi). Note that the x in the estimator f̂IG(x) corresponds to the 1st parameter of

inverse Gaussian IG(µ|x, 1/c). We do not to use these kernels as component distributions since their
CDF is not easily computed; it requires the integral w.r.t. parameter.
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(a) inverse Gaussian (b) Gamma

Figure 4: Candidates of component distributions using (a) inverse Gaussian and (b) Gamma
distribution for survival analysis

Following this approach, we use the following inverse Gaussian based and Gamma based
component distributions:

ψIG(x;µ, c) =
∏dx

j=1
IG(xj |µj , cµ2j ), ψG(x;µ, b) =

∏dx

j=1
G(xj |bµj , b).

The shapes and statistics are shown in Fig. 4(a), 4(b) and Table 1. From Table 1, we can
confirm that the modes converge to µ by taking the hyperparameter limit to 0:

lim
c→0

(µ2 + 9c2/4)
1
2 − 3c/2 = µ, lim

b→0
µ− b = µ.

Following Eq. (4), EBCM with inverse Gaussian/Gamma distributions can be con-
structed as follows:

EBCM (inverseGaussian) : f(x|θ) =
∑n

k=1
θkψIG(x|zk, c)

EBCM (Gamma) : f(x|θ) =
∑n

k=1
θkψG(x|zk, b)

For parameter estimation, Ψik is required before running the algorithm. The term Ψik for
inverse Gaussian/Gamma can be computed as follows:

ΨIGik =
∏

{j|wij=0}

IG(xj |zkj , cz2kj)
∏

{`|wi`=1}

∫ ∞
v`

IG(x`|zk`, cz2k`)dx`

ΨGik =
∏

{j|wij=0}

G(xj |bzkj , b)
∏

{`|wi`=1}

∫ ∞
v`

G(x`|bzk`, b)dx`

Note that, although we show the example of component distribution using Gamma and
inverse Gaussian, EBCM can use any type of distribution and parameterization.
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Table 1: Examples of component distributions and their statistics.
distribution expectation variance mode

N (x|µ, σ2) µ σ2 µ

IG(x|µ, λ) µ µ3/λ µ[(1 + 9µ2/4λ2)
1
2 − 3µ/2λ]

G(x|a, b) ab ab2 (a− 1)b (if a ≥ 1)

ψIG(x;µ, c) = IG(x|µ, µ2/c) µ µc (µ2 + 9c2/4)
1
2 − 3c/2

ψG(x;µ, b) = G(x|µ/b, b) µ µb µ− b (if µ ≥ b)

5. Experiments

5.1. Setting

This section confirms the effectiveness of EBCM.
Synthetic Data: We prepared synthetic data set (synth), that follows a true gaussian

mixture distribution. We set the true number of components to K∗ = 2 and the component
parameters to µ1 = (−2,−2), µ2 = (2,−2), µ3 = (−2, 2), µ4 = (2, 2), The standard
deviation was set to σ∗ = 1.0. We randomly generated 5 pairs of training and test data
using this true distribution. The threshold used in censoring was set to vi = (1.5, 1.5) for
all i. Note that test data for evaluation was generated without censoring. The training data
and test data consisted of 100 and 1000 items, respectively. Generated data are shown in
Fig. 5(a) and 5(b).

Censored Benchmark Data: We used Old Faithful Geyser Data (geyser) 5 and
Fisher’s iris data (iris) 6. geyser represents the waiting time and duration until the geyser
spout in Yellowstone National Park, USA. iris is taken from Fisher’s article. These two are
not censored data and so we covert them by setting 3/4 quantile point of each dimension
as the threshold value vi for all i. The y axis value of geyser has been multiplied by 0.1
to match the scale of the x and y axes. Original and censored data are shown in Fig. 6(a)
and 6(b). We prepared 5 datasets by dividing the data into five, using 80% of the data for
training and the remaining 20% for testing.

Real Survival Data: We also used two publicity available survival data sets, Crowder’s
repeated response times data (rrt) and paired response times data (prt), both of which are
presented in Table 6.1 and 6.2 in Crowder (2012). These data are collected to investigate
the effect on the brain of lead absorption by young children living in a traffic-clogged city.
rrt contains the response time of rats (in second), (t1, t2, t3, t4), when they are exposed to
a harmless sensory stimulus at 0, 15, 30, and 60 minutes after administration of a drug.
The values are censored at 10 seconds. prt also contain response time of rats, (t1, t2), before
and after administration of the same drug. The values are censored at 250 seconds. The
value of prt has been multiplied by 0.01 to match the scale. We prepared five data sets by
dividing the data into five, using 80% of the data for training and the remaining 20% for
testing.

Baseline: We compare EBCM with two existing methods, EBM and KDE. EBM Lashkari
and Golland (2008) is the exemplar-based model, which is the basis of the proposed method.

5. https://www.stat.cmu.edu/~larry/all-of-statistics/

6. https://archive.ics.uci.edu/ml/datasets/Iris
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Table 2: Results of EBCM (proposed method) and baseline. Average and standard devia-
tion of negative log-likelihood are shown. Smaller values are better.

EBCM EBM 1 EBM 2 KDE 1 KDE 2

synth 4.22± 0.05 5.51± 0.44 4.33± 0.01 5.15± 0.25 4.35± 0.02
geyser 2.13± 0.08 3.08± 0.23 2.32± 0.16 2.55± 0.17 2.18± 0.15
iris 2.01± 0.18 3.12± 0.56 2.09± 0.35 3.01± 0.50 2.16± 0.30

rrt 6.84± 1.30 8.36± 1.86 6.90± 1.30 8.30± 1.89 6.84± 1.34
prt 0.40± 0.10 0.57± 0.18 0.43± 0.09 0.52± 0.15 0.46± 0.09

KDE is kernel density estimation Bishop (2006). We selected these two because they don’t
have component parameters and thus are candidate alternatives to the EM-based iterative
algorithm Chauveau (1995). Since EBM and KDE cannot handle censored data, we ap-
plied two heuristics: (i) EBM-1 and KDE-1 which only use the data whose all elements
are observed, i.e., {xi|wi = 0} and (i) EBM-2 and KDE-2 which treat the censored values
as observed values. We use Gaussian component in common for synthetic and censored
benchmark data. Hyperparameter σ was set to 0.1, 0.25 and 0.25 for synth, geyser and iris
based on a preliminary experiment.

Evaluation Metric: To evaluate predictive performance, we use the negative log like-
lihood metric. Since we knew the true value (the value which would be observed if the
threshold v was infinitely large) of the censored data in both the synthetic data and cen-
sored benchmark data sets, we use it as test data {ytesti }ntest

i=1 . The negative log likelihood
for test data is computed as follows:

Ltest = − 1

ntest

∑ntest

`=1
log
{
f(ytest` |θ)

}
,

For real survival data, since test data are also censored, we use the following negative
log-likelihood for the censored data as the performance metric:

Lc−test = − 1

ntest

∑ntest

`=1
log
{∫

vc`

f(xtesti |θ)dxc
`

}
,

where {xtest` , wtest
` }ntest

`=1 is the censored test data.

5.2. Result

Quantitative Evaluation: The results of a quantitative evaluation of the experiment are
shown in Table 2. It can be seen that EBCM offer better performance than the other meth-
ods examined. It is considered that this is because the proposed method is designed to use
an objective function that considers the censored data. Table 3 also shows the results of
EBCM on real survival data for various component distributions and hyperparameters. Al-
though the use of Gamma component achieves the best performance, the other distributions
also able to achieve performance close to the best value. This validates the effectiveness of
EBCM regardless of the choice of the component distribution.
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Table 3: Results of EBCM under various component distributions and hyperparameters.
Average and standard deviation of negative log-likelihood are shown. Smaller
values are better.

Gaussian component Gamma component InvGauss component
σ = 0.1 σ = 0.5 σ = 1.0 b = 0.05 b = 0.1 c = 0.05 c = 0.1

rrt 96.99±46.9 8.10±2.17 6.90±1.30 8.15±2.30 6.84±1.30 8.21±2.44 6.88±1.37
prt 0.42±0.14 1.29±0.10 2.17±0.04 0.40±0.10 0.74±0.08 0.44±0.11 0.85±0.08

Qualitative Evaluation: The estimated probability densities in the synthetic data
experiment are shown in Fig. 5. Estimated results of the proposed method (Fig. 5(c))
accurately capture the peaks (mode) of the true probability distribution. On the other
hand, in the estimation result of EBM-1 (Fig. 5(d)), only the position of the lower left
peak in the figure is captured because only the observed data is used. Also, for EBM-
2 (Fig 5(e)), although a structure with four peaks is captured, the positions of the upper
left, lower right, and upper right peaks are closer to the origin than their true positions
since the threshold is used as the observed value. By using censored data appropriately,
the proposed method can accurately estimate the true distribution which contributes to
the performance improvement. Figure 6 also shows that EBCM estimates the upper right
component more precisely than the baseline methods.

6. Conclusion

In this study, we proposed EBCM, a generalized variant of the example-based model that
can analyze censored data. The proposed method can guarantee convergence to a global
optimum solution and can estimate parameters without the need to perform repeated nu-
merical computation of the statistics of truncated distribution. The effectiveness of the
proposed method was confirmed by experiments using synthetic data and real survival
data. Future directions of this study include construction of an online algorithm Cappé and
Moulines (2009).
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