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Abstract

The bird community in the mangrove areas is an important component of the mangrove
wetlands ecosystem and an indicator species for the assessment of the environmental health
status of mangrove wetlands. The classification of bird species by the sound of bird in
the mangrove areas has the advantages of less interference to the environment and wide
monitoring range. In this paper, we propose a novel method that combines the feature re-
calibration mechanism with depthwise separable convolution for the mangrove bird sound
classification. In the proposed method, we introduce Xception network in which depthwise
separable convolution with lower parameter number and computational cost than tradi-
tional convolution can be stacked in a residual manner, as the baseline network. And we
fuse the feature recalibration mechanism into the depthwise separable convolution for ac-
tively learning the weights of the feature channels in the network layer, so that we can
enhance the important features in bird sound signals to improve the performance of the
classification. In the proposed method, firstly we extract three-channel log-mel features
of the bird sound signals and we introduce the mixup method to augment the extracted
features. Secondly, we construct the recalibrated feature maps including the different scales
of information to get the classification results. To verify the effectiveness of the proposed
method, we build a dataset with 9282 samples including 25 kinds of the mangrove birds
such as Egretta alba, Parus major, Charadrius dubius, etc. habiting in the mangroves of
Fangcheng Port of China, and execute the experiments on the built dataset. Furthermore,
we also validate the adaptability of our proposed method on the dataset of TAU Urban
Acoustic Scenes 2019, and achieve a better result.

Keywords: mangrove bird sound classification, feature recalibration, bird sound dataset,
mixup

1. Introduction

The acoustic monitoring system is very popular as a non-invasive method to study the
number and community of the vocal animals. It can provide information about biodi-
versity and its spatial-temporal distribution changes Kelling et al. (2012). In bird sound
classification, the most widely used feature-based conventional modeling techniques include
Hidden Markov Model (HMM) (Potamitis et al. (2014); Chou et al. (2007); Jančovič et al.
(2014)), Gauss Mixture Model (GMM) Ganchev et al. (2015), Support Vector Machine
(SVM) (Fagerlund (2007); Tran and Li (2010)), and Template Matching Kaewtip et al.
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(2016). The success of the bird sound classification methods based on GMM and HMM
depends on the applicability of the audio parameterization process, especially the segmenta-
tion and selection of representative parts of specific species sounds. And the template-based
bird sound classification algorithms, such as dynamic time warping (DTW), have very large
computational costs. In general, the traditional bird sound classification often requires high
applicability and computational cost of audio parameterization. However, the method of
deep learning does not require high parameterization of features and the computational cost
is relatively small.

With the rise of deep learning, a large number of research fields have introduced the deep
learning methods such as convolutional neural network (CNN) to solve the key and difficult
problems in the field. Since the introduction of AlexNet Krizhevsky et al. (2012) in 2012,
mensional signal processing. The only difference is that for the sound signals, we need to
extract features to obtain two-dimensional or even higher-dimensional feature vectors that
can be input into CNN. In the competitions such as BirdCLEF Bird Challenge Joly et al.
(2018) and DCASE Acoustic Scene Classification Plumbley et al. (2018), the best results
of solutions submitted by participants before 2016 are using traditional methods such as
template matching and dictionary learning Salamon and Bello (2015). Since then, the best
models for acoustic classification tasks are based on CNN.

The two elements of deep convolution network applied to the bird sound classification
task are effective input features and appropriate network structures. Firstly, an effective
model input can maximize its representation ability. So in order to get good performance of
the mangrove bird sound classification, in this paper, we set three-channel log-mel features
as the input of the network. Secondly, because the appropriate network structure is the
key to get good accuracy of classification and a network with enough learning ability can
maximize the classification accuracy without serious overfitting, we introduce the Xception
network [27] as the baseline network, which is a network that introduces depthwise sepa-
rable convolution Sifre and Mallat (2014) and stacks them in a residual manner. Taking
into account the fact that the bird sound data contains less effective target information, we
construct a network by embedding the Squeeze-and-Excitation (SE) block Hu et al. (2018)
in depthwise separable convolution for recalibrating the channels of the features extracted
from each layer of the network, which enables the constructed network to actively learn
useful features and discard useless features for improving the classification accuracy of the
mangrove bird sound classification. In addition, we concatenate the recalibrated feature
maps including the different scales of information to get the classification results. Further-
more, deep neural networks have a large number of parameters and the bird sound data
has few samples or few effective target information in the samples, which are extremely
easy to result in an over-fitting problem. In the field of the image processing, although the
random clipping, scaling and other data augmentation methods can be applied to solve the
over-fitting problem, they are not effective in the bird sound classification. So we introduce
the mixup method Zhang et al. (2017) for relieving the over-fitting and augmenting the
mangrove bird sound data.

In this paper, we collect and build the mangrove bird sound dataset including 25 kinds
of birds in Beilun River Estuary Mangrove National Nature Reserve of Guangxi, China,
and execute the experiments on the built sound dataset to verify the effectiveness of the
proposed method. Furthermore, we use DCASE 2019 acoustic scene classification dataset
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to validate the effectiveness of the proposed method. The main contributions of this paper
are highlighted as follows:

• We build a sound dataset with 25 kinds of birds, which is specially for the task of bird
species identification in the mangrove areas.

• We propose a novel method that fuses the feature recalibration and the depthwise
separable convolution to effectively classify the bird sound in the mangrove areas, and
demonstrate the good adaptability in acoustic scene classification tasks.

• We introduce the mixup method for augmenting the mangrove bird sound data, and
construct the multi-scale recalibrated feature maps of the network to further improve
the mangrove bird sound classification accuracy.

The rest of this paper is organized as follows. Section 2 gives a brief review of the
related work. Then we formulate the problem and present the proposed method in section
3. Section 4 is the experiments and discussions. Finally, Section 5 is our conclusions.

2. Related works

The traditional modeling methods include GMM and HMM, template matching and so on.
Kwan et al. (2006) summarized the HMM and GMM methods in bird sound classification.
It can be concluded that both modeling methods need a lot of parameterized calculation of
features, and the requirement of parameterized applicability is extremely strict. Kaewtip
et al. (2016) proposed a template-based algorithm for bird sound classification, which can
be applied in limited training data or noisy environment. This algorithm used DTW and
the prominent region (i.e. high-energy) of the training data acoustic spectrum to obtain
the template. Ruiz-Muñoz et al. (2018) proposed a random projection dictionary learning
approach for a bioacoustics application, which combines the power of estimating spectratem-
poral patterns given by the convolutive model and the computational complexity savings
associated with the random projection approach. However, modeling based on deep learn-
ing method does not require very high requirements for feature parameterization, and the
computational overhead is not too high under reasonable circumstances. Kiskin et al. (2018)
presented that a CNN outperforms generic recordings, where the wavelet-trained CNN out-
performs traditional classification algorithms with no hyper parameter re-tuning of either
approach. Tóth and Czeba (2016) proposed a method of bird sound classification based on
CNN to fine-tuned the classification of 1500 species for BirdCLEF 2018, a challenge of bird
classification based on audio recording. Chakraborty et al. (2016) extracted Mel Cepstrum
Coefficient (MFCC) features from bird sound recordings in the lower Himalayas and inputs
them into SVM and DNN classifiers. Xie et al. (2018) designed a bird sound recognition
model based on transfer learning, which uses VGG-16 model (pretrained on ImageNet) to
extract features, and then adds a classifier composed of two fully connected hidden layers
and a SoftMax layer.

The CNN extracts abstract features by merging spatial information on a channel-by-
channel basis using local receptive fields Jacobsen et al. (2016). It is much difficult to train
a performance-efficient network using features with less effective target information in bird

926



sound classification tasks. Generally speaking, the performance optimization of classifica-
tion networks can be considered form two aspects. Firstly, from the perspective of spatial
dimension, for example, the Inception structure Szegedy et al. (2015) embeds multi-scale
information and aggregates features of different receptive fields to improve performance.
Furthermore, considering the characteristics of bird sound data, we want to use lightweight
networks as much as possible for our work, so we consider introducing a depthwise separable
convolution model. Combined with the above analysis, we choose Xception (Extreme In-
ception) Chollet (2017), which is a network that introduces depthwise separable convolution
and stacks them in a residual manner based on Inception V3, as the baseline model of this
paper. And we improve the classification performance of the network by combining feature
maps of different scales as input to the classifier. Secondly, according to the relationship of
feature channels, the SE Network selectively enhances the useful features and compresses
useless features by using global information. Inspired by this thought, we introduce the SE
block and embed it into the backbone structure of Xception, which can explicitly model
the channel correlation between convolution layer features to improve the representation
ability.

3. Proposed method

In this section, we first review the related works of the feature recalibration and the depth-
wise separable convolution, and then propose our method.

3.1. Feature Recalibration

Hu et al. (2018) proposed the SE block to enhance the accuracy by modeling the correlation
between feature channels and strengthening the important features. The SE block is the
representative of the channel-wise recalibration of the feature maps. Figure 1 gives a detailed
description of the SE block.

Figure 1: The detailed structure diagram of SE block, where ”GP” indicates the global
pooling operation, ”FC” represents full connection layer, and ”RL” means acti-
vation function of ReLu.
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As shown in Figure 1, the Global Average Pooling operation is performed on the input
feature maps of size W × H × C, which is the Squeeze process in the figure. Then the
output data of size 1 × 1× C is fed into two fully connected layers, which is the Excitation
process in the figure. Finally, the output is limited to the range of [0, 1] by the activation
function Sigmoid.

The principle of SE block is to enhance the important features and weaken the unim-
portant ones by controlling the channel weights of the features, so as to make the extracted
features more directional. For the mangrove bird sound data, the features extracted from
5 seconds audio clips contain many redundant background noises, so we need to suppress
these insignificant noises and enhance the target bird sound information to improve the
classification performance. Therefore, it is necessary to introduce a feature recalibration
mechanism.Figure 2 shows in detail the feature spectrograms extracted from 25 kinds of
the bird sound signals in this paper. As can be seen from the Figure 2, the proportion of
the highlights representing the sounds of target bird in each feature map is very small.

3.2. Depthwise Separable Convolution

The depthwise separable convolution was first proposed by Sifre and Mallat (2014) in 2013.
It decomposes the traditional convolution into a depthwise convolution and a 1 × 1 channel
convolution. As shown in Fig 3, (a) is the traditional convolution operation, (b) and (c)
correspond to the depthwise convolution and the 1 × 1 channel convolution of the depthwise
separable convolution respectively. As shown in Fig 3, (a) shows a conventional convolution
operation in which the convolution kernel size is DK × DK × M , and the number of
the output feature maps is N. Traditional convolution is a one-step operation, while the
depthwise separable convolution integrates traditional convolution into two-step operations
as shown in (b) and (c) respectively. First, as shown in (b), a spatial convolution with
convolution kernel size of DK × DK × 1 is performed, and then as shown in (c), it shows
a channel convolution with convolution kernel size of 1 × 1 × M .

3.3. Feature Recalibrated Depthwise Separable Convolution

Inception structure is designed to achieve the highest classification precision in classification
tasks. Since its first introduction, Inception has been one of the best performing models
for both ImageNet datasets and Google internal datasets, especially JFT-300M. Therefore,
when selecting baseline models in the mangrove bird sound classification tasks, we focus on
various improved networks of Inception structure. Furthermore, the dataset of the mangrove
bird sound classification task has the characteristics with less data and less effective target
information in the features extracted from one 5-second segment, and the advantages of
Xception network, such as easy migration, less computation, adaptability to the different
tasks and high accuracy, can solve these problems. So we choose the Xception network as
the baseline and add the SE block to it to enable the network to automatically acquire the
important information of each feature channel through training. Figure 4 shows the overall
network architecture. There are 12 Blocks in the backbone network, each one contains
similar convolution and pooling operations. As shown in Figure 4, the connection marked
red in the enlarged Block structure is the SE block that we introduce. The details of the
SE block are further explained in the upper right enlarged Block structure. We add the SE
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Figure 2: The Log-mel feature Spectrograms extracted from 25 mangrove bird sound sig-
nals.
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Figure 3: The difference between traditional convolution operation and depthwise separable
convolution operation.

block in front of the Maxpooling layers of each Block in Xception network, and its output
is added to the output of the residual connection and then used as the input to the next
Block.

4. Experiments and Discussions

4.1. Building of Mangrove Bird sound Dataset

The collected bird sounds involve a lot of background noises. For example, the sounds
collected in the remote mountains may contain buzzing insect sounds, while the sounds
recorded in the edge of human settlements may contain the noise of motor vehicles. Other
non-bird sound, such as wind sound and rain sound, are also common background noises.
And the studies of birds are mostly based on geographical or environmental distribution,
such as the study of birds in the Amazon rainforest. So it is always difficult to collect
these data, whether in image classification or sound classification of birds. In our work,
we collected the related mangrove bird sound through Xeno-canto in the early stage, and
we selected 25 kinds of bird sound in Guangxi mangrove areas on Xeno-canto to build the
dataset for verifying the effectiveness of the proposed method. The data collected on Xeno-
canto mainly include the records with subjective evaluation of A or B grade. We did not
distinguish the location and altitude of records in detail, and we tried to select the audio
with better quality and no longer than 90 seconds. In this way, we chose the records with
large proportion of bird sound time as far as possible to facilitate later processing. The
records collected from Xeno-canto come from the different parts of the world, but we have
not distinguished them in detail. In this paper, we try our best to obtain the sounds of
birds in the mangrove areas under various circumstances, only to identify which kind of
birds make sounds. We set up the mangrove bird sound dataset by assigning the same
label to these slightly different records based on the species. Table 1 provides the detailed
information on the birds sounds in the mangrove bird sound dataset.
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Figure 4: The overall architecture of the network. The left structure is a backbone network
containing 12 Blocks, where Block4 to Block11 are the same Block, and the rest
are similar Blocks. The dotted box on the upper right is the detail of Block1 (the
red dotted box shows the detail of the SE block), and the dotted boxes at the
lower right is the detail of Block4, the red connection part in the figure is the
SE block introduced in this paper and the concatenated operation of recalibrated
features is a connection marked as blue.
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In the mangrove bird sound dataset, we preprocess the original records to audio segments
5 seconds and remove the audio segments only with the background noise from the original
records to preserve the segments with the target bird sound. In the built sound dataset,
there are 9282 recorded segments, of which the smallest one has 190 recorded clips and
the largest one has 500 recorded clips. For each bird sound clip, we give a single label,
regardless of the complex background sounds in the audio. We preprocess all the sounds
data into a mono and 5-second clips with the sampling rate of 22050 Hz. And we collect
these records from the different contributors on Xeno-canto, and the detailed information
on each bird sound is given in the Table 1.

In addition, in order to further verify the effectiveness of our method, we also carry
out experiments on the TAU Urban Acoustic Scenes 2019 dataset, which extends the TUT
Urban Acoustic Scenes 2018 dataset with other 6 cities to a total of 12 large European
cities. The dataset consists of 10-seconds audio segments from 10 acoustic scenes, and each
acoustic scene has 1440 10-second segments (48 kHz / 24bit / stereo, 240 minutes of audio).
The dataset is recorded in 12 large European cities. The dataset contains audio material
from 10 cities, whereas the evaluation dataset contains data from all 12 cities. The dataset
is perfectly balanced at acoustic scene level, with very slight differences in the number of
segments from each city.

4.2. Data augmentation

In the classification tasks, the data augmentation often determines the performance of the
classification results. As mentioned above, the data augmentation methods in the image
processing field are not suitable for the mangrove bird sound classification task. So we need
to find a simple and effective way to augment the data. Zhang et al. (2017) proposed the
Mixup method which combines prior knowledge, that is, linear interpolation of eigenvectors
has linear interpolation of related labels to extend the training distribution, to effectively
alleviate the over-fitting problem. In general, the Mixup method makes no reference to the
data type and enables data augmentation by generating virtual data.The linear interpolation
of the samples can be demonstrated using Equations (1) and (2).

x̄ = λxi + (1− λ)xj (1)

ȳ = λyi + (1− λ)yj (2)

where (xi , yi), (xj , yj) are two samples randomly selected from the one-batch training
data, (x, y) is the generated virtual sample and λ∈[0,1].

As shown in equations 1 and 2, two samples are randomly selected from the one-batch
training data for random weighted summation, and the labels of the samples are also ran-
domly weighted and summed. This method can increase the generalization ability of the
model while reducing the computational cost. In the experiment, two samples randomly
selected from the same batch of the training data are linearly interpolated to generate a
new sample.
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Table 1: Sound signal details of MBSD25

Order Family Species Abb. Recordings Clips/5s

Ciconiiformes Ardeidae
Ardea cinerea ARCI 39 371
Egretta alba EGAL 90 307

Nycticorax nycticorax NYNY 90 330

Anseriformes Anatidae
Anas crecca ANCR 39 217

Anas platyrhynchos ANPL 39 371
Anas querquedula ANQU 45 190

Falconiformes
Falconidae Falco tinnunculus FATI 75 358

Pandionidae Pandion haliaetus PAHA 47 340

Charadiiformes

charadriidae
Charadrius alexandrinus CHAL 82 352

Charadrius dubius CHDU 61 416

Scolopacidae
Tringa totanus TRTO 82 468
Calidris alpina CAAL 72 340

Recurvirostridae Himantopus himantopus HIHI 54 402
Sternidae Sterna hirundo STHI 82 330

Passeriformes

Motacillidae
Motacilla alba MOAL 64 500
Motacilla flava MOFL 63 392

Pycnonotidae
Pycnonotus jocosus PYJO 65 454
Pycnonotus sinensis PYSI 64 484

Pycnonotus aurigaster PYAU 47 317

Dicruridae
Dicrurus macrocercus DIMA 46 389
Dicrurus hottentottus DIHO 42 332

Paridae Parus major PAMA 70 453
Zosteropidae Zosterops japonicus ZOJA 42 452

Coraciiformes Alcedinidae Alcedo atthis ALAT 101 395

Gruiformes Gruidae Grus grus GRGR 68 322

4.3. Multi-Scale Feature Fusion

n the mangrove bird sound classification task, the collected audio data is clipped into the
segments for an equal duration, generally according to the standard of 5s or 10s per seg-
ment. The clipped audio segment may contain only a few target birds sounds, so the
features extracted from the clipped audio segment only contain a small amount of available
information. In order to make better use of the feature information, we combine the recal-
ibrated features from several different scales and input them into the classifier, so that we
can make more effectively use of the different layer features with multi-scale information to
compensate the disadvantage of the input audio data with less useful information.

In the Figure 4, we only give the corresponding schematic diagrams of the concatenated
operations of Blcok1 and Block11 which marked as a blue connection. Specifically, we con-
catenate the outputs of Block1, Block 3 and Block 11, and the input of the last Maxpooling
layer, and then input the fused vectors to the full connection layers. This simple and effec-
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tive mechanism improves the classification results of the model by combining the features
of the different scales, but it does not increase too much computational cost.

4.4. Experimental Settings

The preprocessing and extracting features of raw audio in this paper rely on LibROSA,
which is a python package for music and audio analysis. And all the experiments in this
paper were performed on two NVIDIA GTX 1080Ti GPUs in the PYTORCH environment
of the Ubuntu 16.04 system.

Our network is trained for 200 epochs in batches of 16 samples by optimizing the cate-
gorical cross-entropy and Adabound Luo et al. (2019), and we apply 40 percent dropout to
the full connection layers. The learning rate, mini-batch size, and decay were respectively
set to 0.0001, 16, and 0.0001. The strategy of cosine annealing is used in training, which
is one cycle for every 50 epochs with initial learning rate of 0.0001, and the learning rate
decreases twice in one cycle. The scoring of the mangrove bird sound classification will
be based on classification accuracy: the number of correctly classified segments among the
total number of segments.

4.5. Experiment Results and Discussions

The results of the comparative experiments on the mangrove bird sound dataset are shown
in Figure 5, Figure 6 and Figure 7, and the Figure 8 shows the results of comparative
experiments on TAU Urban Acoustic Scenes 2019 dataset. The results show that our
method can effectively improve the accuracy of the mangrove bird sound classification by
setting up the different comparative experiments on whether to use SE block, multi-scale
feature fusion and Mixup method.

The Figure 5 illustrates and compares the performances of different experimental con-
ditions when SE block was introduced into Xception network. Although the classification
performance is good when we only add the SE block to the backbone network, we can fur-
ther improve the classification results by adding the mixup and multi-scale feature fusion
methods. And the experimental results show that the performance of our method can be
improved by using Adabound optimizer. From the results, we can see that after adding SE
block (SE) and multi-scale features fusion operation (MS) to the network, the experimental
results are much lower than only adding SE. We think that the operation of MS increases
the parameters of the whole network, but it is not friendly to the simple bird sound dataset.
So we further add Mixup method to the network, and the experimental results have been
significantly improved, which confirms our analysis.

The Figure 6 shows the results under different experimental conditions. We compare
the experimental results of different conditions with or without SE in Xception network,
and conclude that adding the SE to the Xception network can effectively improve the
experimental results and the best result was 0.8734 on the mangrove bird sound dataset.
From the experimental results, the accuracy of adding SE to Xception is improved by more
than 2 percent, and adding Mixup to network can improve by 1.7 percent, while adding
these two methods together result in a higher improvement. In addition, as mentioned
above, when only MS is added to Xception, the accuracy will be greatly reduced, while
the accuracy of using MS and Mixup at the same time will be significantly improved.
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Figure 5: The experimental results under different conditions of embedding the SE block
into the backbone network. ”SE” means the SE block is added to the Xcep-
tion network, ”MS” represents the multi-scale features fusion operation, and ”+”
indicates that the method is used in Xception network.

Further, we compare the experimental results of different optimizers. It can be seen that
the Adabound optimizer can make the model get better results, but the convergence time
is almost the same as SDG.

Figure 6: The experimental results under different conditions of embedded and non-
embedded SE block in backbone network. The backbone model without ”SE”
representation in the figure is Xception.
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Figure 7: The comparative experimental results of mainstream classification networks on
the mangrove bird sound dataset.

The Figure 7 shows the comparative experimental results with the best classification
networks currently available. The Mixup and MS methods are introduced into each network.
It can be seen from the figure that although the results of networks such as VGG19, seNet54,
DenseNet121 are close to Xception, the parameters of these networks are very large and
the training time is very expensive. Most importantly, the accuracy of our method is much
higher than that of other mainstream classification models. In the training phase, the size
of each mini-batch is set to 16, and the training time of each epoch of seXception is about
2 minutes.

The Figure 8 shows our experimental results on the TAU Urban Acoustic Scenes devel-
opment 2019 dataset. We have done different comparative experiments, and the best results
are obtained by our method, which is 20 percent higher than the official baseline. The TAU
Urban Acoustic Scenes 2019 dataset is the official public dataset of the IEEE AASP Chal-
lenge on Detection and Classification of Acoustic Scenes and Events DCASE 2019 Task
1A,which is concerned with basic problem of acoustic scene classification, in which all data
(development and evaluation) are recorded with the same device, and contains only data
from the 10 known acoustic scene classes. We use this public dataset to verify the applica-
bility of our proposed method for the acoustic scene classification tasks. If our method can
classify the acoustic scene well, then we can further label the existing bird sound dataset in
our follow-up work, and classify the scenes of birds based on the bird sounds.

In general, our proposed method can get good classification results on the mangrove bird
sound dataset we have built. At the same time, compared with other mainstream sound
classification models based on deep neural network, it can be seen that our method can get
the best classification results with less time overhead. Furthermore, the proposed method
can also classify the acoustic scenes well.
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Figure 8: The results of different network structures or methods on the TAU Urban Acoustic
Scenes development 2019 dataset.

5. Connclusion and Future Work

In this paper, we built a dataset containing 25 kinds of the mangrove bird sound, called
mangrove bird sound dataset, and we proposed a method that combines feature recalibration
mechanism with depthwise separable convolution for the mangrove bird sound classification.
In our method, we use the mixup and multi-scale feature fusion tricks to get a better
performance on the mangrove bird sound dataset. The experimental results demonstrate
that the proposed method not only performs well on the mangrove bird sound dataset but
also gets a good result on the TAU Urban Acoustic Scenes 2019 dataset. So we can conclude
that our method has good adaptability in the acoustic scenes classification tasks.

In future work, we will try our best to collect a wide range of the different mangrove
bird sound and intend to continue the works of bioacoustics classification and detection,
such as bird sound detection and classification, and expand the mangrove bird sound clas-
sification task to the classification of bird singing scenes which is the reason why we verify
the adaptability of our method on the TAU Urban Acoustic Scenes 2019 dataset.
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