
JMLR: Workshop and Conference Proceedings 101:441–456, 2019 ACML 2019

Multi-modal Representation Learning for
Successive POI Recommendation

Lishan Li ls-li14@mails.tsinghua.edu.cn

Ying Liu∗ liuying@cernet.edu.cn

Jianping Wu jianping@cernet.edu.cn

Lin He helin1170@gmail.com

Gang Ren rengang@cernet.edu.cn

Tsinghua University, Beijing, 100084, China

Abstract

Successive POI recommendation is a fundamental problem for location-based social net-
works (LBSNs). POI recommendation takes a variety of POI context information (e.g.
spatial location and textual comment) and user preference into consideration. Existing
POI recommendation systems mainly focus on part of the POI context and user prefer-
ence with a specific modeling, which loses valuable information from other aspects. In this
paper, we propose to construct a multi-modal check-in graph, a heterogeneous graph that
combines five check-in aspects in a unified way. We further propose a multi-modal repre-
sentation learning model based on the graph to jointly learn POI and user representations.
Finally, we employ an attentional recurrent neural network based on the representations
for successive POI recommendation. Experiments on a public dataset studies the effects
of modeling different aspects of check-in records and demonstrates the effectiveness of the
method in improving POI recommendation performance.

Keywords: Representation learning, attention mechanism, POI recommendation, location-
based social network

1. Introduction

Location-based social network (LBSNs), such as Foursquare and Gowalla, are increasingly
popular, which uses GPS features to locate users and let users broadcast their locations
and comments from their mobile device. The collected huge amount of location data from
millions of individuals make it possible to study human mobility patterns and understand
users’ preferences (Sun et al., 2017; Zhao et al., 2018). An intriguing use of location data is
Point-of-Interest (POI) recommendation, namely recommending successive POIs based on
users’ check-in records, which attracts great research interest in recent years.

There are several prominent features in POI recommendation, such as POI attributes
(spatial coordinates, textual comment) and the target user. For example, users’ textual
comments could represent POIs’ characteristics (Gao et al., 2015; Liu et al., 2016b; Chang
et al., 2018), the spatial distance close POIs might be visited together (Zhao et al., 2017;
Wang et al., 2018) and the target user’s preference also affects the successive POI recom-
mendation (Yang et al., 2017b).
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Existing approaches that exploit POI recommendation roughly falls into two paradigms.
The first kind of method mainly leverages the POI context information, such as the sequen-
tial, spatial and textual correlations among POIs. Wang et al. (2018) studies the geograph-
ical influence based on POIs’ geo-influence, geo-susceptibility and physical distance. Chang
et al. (2018) proposes a content-aware POI representation learning method, which utilizes
POI’s textual comment and co-occurrences to capture POIs’ characteristics. Sequential POI
patterns are also studied to explore the sequential correlations (Chen et al., 2014; Kong and
Wu, 2018). The second kind of method studied user preference (Yang et al., 2017b,a) over
POIs from a user’s historical check-in records. Yang et al. (2017b) learns user embeddings
from historical trajectories, which further work as preference vectors. Yang et al. (2017a)
proposes a semi-supervised learning framework from user and POI context graph to regular-
ize user preferences. Although aforementioned methods achieve some success, they are very
specific to model part of POI recommendation features, such as only modeling spatial POI
connections without considering POIs’ textual comment or only modeling POIs’ context
feature without considering users’ general preferences. All these POI features contain valu-
able information for successive POI recommendation, while it’s challenging to characterize
multiple aspects in a unified way.

In this paper, we propose a multi-modal representation (MMR) learning approach, which
captures aforementioned POI features uniformly and is easy to expand more possible char-
acteristics. Firstly, we construct a multi-modal check-in graph (MMCG) which contains
heterogeneous nodes (users/POIs) and edges. The heterogeneous edges model POI correla-
tions from five perspectives, including co-occurrence, spatial, textual location-location edge
that models POI context, user-location and user-user edge that models user preference.
Secondly, inspired by recent success of word embedding (Mikolov et al., 2013) and network
embedding (Tang et al., 2015; Cui et al., 2018) approaches, we jointly learn POI/user repre-
sentations from multi-modal check-in graph by capturing second-order proximity. Thirdly,
we further propose an attentional recurrent neural network based on user and POI/location
representations to recommend successive POI. Our major contributions are summarized as
follows:

• We formally define a heterogeneous multi-modal check-in graph, which combines mul-
tiple aspects from check-in records in a unified way.

• We propose multi-modal representation learning approach, which jointly learns co-
occurrence, spatial, textual context, and also models user preference from MMCG.

• We further propose an attentional recurrent network based on MMR for POI recom-
mendation.

• We conduct extensive experimental evaluations based on a public dataset. The eval-
uation results demonstrate the effectiveness of our proposed method.

2. Related Work

2.1. Successive POI Recommendation

Conventional POI recommendation relies on POI context information to predict successive
POIs. Chen et al. (2014); Zhang et al. (2014) leverages Markov Chain model or Hidden

442



Markov Chain model to exploit users’ check-in sequences. Some research work extends
POI recommendation models by considering temporal characteristics. Zhao et al. (2016)
proposes a spatial-temporal latent ranking (STELLAR) method to capture the temporal
influence of times on POI recommendation. However, it focuses on POI pairs and cannot
model the whole check-in sequence. ST-RNN (Liu et al., 2016a) extends the RNN model and
takes temporal and spatial contextual information into consideration. The model replaces
the single transition matrix in RNN with time-specific transition matrices and distance-
specific transition matrices. HST-LSTM (Kong and Wu, 2018) combines spatial-temporal
influence in LSTM network to predict successive POI. POIs’ textual comments can also
provide very useful information for POI recommendation task. Gao et al. (2015) inves-
tigates various types of content information on LBSNs in terms of sentiment indications,
user interests, and POI properties, which are incorporated into a unified POI recommenda-
tion framework. However, these models randomly initialize vectors as POI representations.
Thus, they cannot efficiently utilize POIs’ specific characteristics and relationships between
POIs.

2.2. POI Embedding Learning

There have been many research efforts that utilize embedding technique to learn POI rep-
resentation for POI recommendation task. Liu et al. (2016b) learns a POI’s latent repre-
sentation vector by leveraging the Skip-gram model. Moreover, the model is extended by
considering temporal influence to train a time latent representation vector. Feng et al.
(2017) proposes a new latent representation model, namely POI2Vec, to incorporate geo-
graphical influence. The geographical influence is reflected by the physical distance between
POIs based on hierarchical binary tree. Zhao et al. (2017) proposes a temporal POI se-
quential embedding model to capture the contextual check-in information and temporal
characteristics as well. This work shows that check-in sequences in different days exhibit
low correlation. Chang et al. (2018) proposes a content-aware embedding model, which
utilizes both check-in sequence information and text content. The injection of text content
is beneficial to capture contextual characteristics of POIs. Furthermore, there have been
some research work (Yang et al., 2017b,a) that incorporate user preference into POI repre-
sentation by embedding techniques. In addition, embedding learning techniques have also
been successfully used in other location-based social network issues, including trajectory
similarity computing (Li et al., 2018) and trajectory clustering (Yao et al., 2017, 2018)
and social circle inference (Gao et al., 2018). Although above methods achieve some suc-
cess, they are very specific to model part of POI recommendation features. They cannot
characterize multiple aspects in a unified way.

3. Preliminaries

Definition 1 (Check-in) Let U denote a set of unique users, L denote a set of locations
(a.k.a check-in points or POIs) and T denote the time domain. A check-in c is a triple
〈u, l, t〉 ∈ U × L × T , which means the user u has visited l at time t. Specifically, each
location l ∈ L has the coordinate information of longitude and latitude (lon, lat) and users’
textual comment s.
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Definition 2 (User-trajectory) Let C be a collection of check-ins. Given a user u,
his/her trajectory is a sequence of triplets related to u: Cu = {〈u, l1, t1〉 , · · · , 〈u, li, ti〉 , · · · 〈u, lN , tN 〉},
where N is the sequence length and the triplets are ordered by time ascendingly.

Definition 3 (Multi-modal Check-in Graph(MMCG)) A multi-modal check-in graph
is a heterogeneous undirected weighted graph G = (V,E), where V = U ∪ L is a set of
heterogeneous nodes and E = Eclcl ∪ Eslsl ∪ Etltl ∪ Eul ∪ Euu is set of heterogeneous edges
including co-occurrence location-location edges Eclcl, spatial location-location edges Eslsl,
textual comment location-location edges Etltl, user-location edges Eul and user-user edges
Euu.

Figure 1 gives an example of a multi-modal check-in graph. We obtain edges of G from
user-trajectory and location attributes. The weight of co-occurrence location-location edge
is the number of times that two locations co-occur in the user-trajectory of a given context
window size. The weight of spatial location-location edge represents how close two locations
are. The weight of textual comment location-location edge indicates the semantic similarity
of two locations from users’ perspectives. The weight of user-location edge indicates a user’s
general preference over each location. User-user edge represents how similar of two users’
preferences over locations.

Users

POIs

POI attributes

[geography]

[text comment]

restaurant shopping mall art exhibition park

Figure 1: An example of the multi-modal check-in graph.

Problem Statement: Given a user u ∈ U and his/her trajectory history Cu, the goal of
successive POI recommendation is to recommend a ranked list of POIs that the user u is
likely to visit next at each step.

4. Multi-modal Recurrent Recommendation Framework

We study the successive POI recommendation problem via multi-modal representation
learning. Figure 2 presents the overall architecture of proposed multi-modal recurrent rec-
ommendation framework. It consists of three major components: (1) multi-modal check-in
graph construction, (2) multi-modal representation learning and (3) attentional recurrent
network for recommendations.
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4.1. Multi-modal Check-in Graph Construction

We construct a multi-modal check-in graph based on user-trajectory data and location
attributes (i.e. spatial coordinates and textual comment). The nodes set V is the union set
of users U and locations L. The challenging issue here is how to measure the weights of the
set of heterogeneous edges E. We will model each edge type as follows:

Multi-modal Representation Layer 

Recurrent Layer
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Fully Connected Layers

Output Layers
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Multi-modal check-in graph construction

Feature 

Representation
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model and 

user attention

Prediction

user

attention

Figure 2: The overall architecture of multi-modal recurrent recommendation framework.

Co-occurrence Location-Location Edge captures the location co-occurrences in local
context, which is essential information used in many embedding based approaches, such
as Skip-gram (Mikolov et al., 2013). The co-occurrence explicitly reflects how frequent
two locations occur in a user-trajectory. We define a data-driven approach to quantify the
weight between two locations:

weightcl(li, lj) =

∑
Cu∈C F (Cu, li, lj , b)∑

Cu∈C
∑

lk∈L(F (Cu, li, lk, b) + F (Cu, lj , lk, b))
(1)

where F (·) computes the frequency of locations li and lj co-occurred in user trajectory Cu

with context window size b.
Spatial Location-Location Edge represents the spatial connections between two loca-
tions. Intuitively, after users visit one location, they might continue to visit its spatial close
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locations. We measure the edge weight based on the geographic distance as follows:

weightsl(li, lj) =
1

dist(li, lj)
(2)

dist(li, lj) =
√

(loni − lonj)2 + (lati − latj)2 (3)

This weight is aligned with the property that the closer two locations, the higher their
associated weight.
Textual Location-Location Edge denotes the semantic relationship between two loca-
tions from users’ perspectives. Users may give comments on locations after they have visited
them. The textual comments reflect users’ preferences on the locations. If two locations
have semantic similar comments, they may share similar qualities that attracts users to visit,
such as price and taste. We measure the weight as the cosine similarity of their comment
representations:

weighttl(li, lj) =

∑
k dikdjk√∑

k d
2
ik

√∑
k d

2
jk

(4)

where di and dj are the textual comment representation vectors of locations li and lj ,
respectively. Here we used pretrained word embeddings (Pennington et al., 2014) and
obtained aggregated comment document representation.
User-Location Edge reflects users’ general preferences over locations. Some users may
prefer locations in recreation area, such as shopping mall. Some other users might prefer
spending their time at locations around working area, such as Starbucks. The weight
between user u and location l is defined based on the frequency of l in user u’s trajectory
Cu.

weightul(u, l) =
Count(Cu, l)

N
(5)

where Count(·) counts the number of times user u has visited location l and N is the user
trajectory length Cu.
User-User Edge represents how similar two users’ general preferences. If two users have
similar preference, the POIs one user has visited might also attract another user to visit.
The weight between users ui and uj is defined as follows:

weightuu(ui, uj) =

∑
lk∈Cui∪Cuj

Count(Cui , lk)× Count(Cuj , lk)√∑
lk∈CuiCount(Cui )2

√∑
lk∈CujCount(Cuj )2

(6)

where Count(·) counts the number of times user u has visited location l.

4.2. Multi-modal Representation Learning

Multi-modal check-in graph (MMCG) contains valuable information in describing users’ and
locations’ characteristics. Inspired by network embedding approaches (Tang et al., 2015;
Cui et al., 2018), we propose multi-modal representation learning model (MMR) to train
user and location embeddings from MMCG. MMR captures not only the co-occurrence,
spatial and textual influences of POIs, but also the user general preference characteristics.
MMR consists of location/POI context modeling and user preference modeling.
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Location Context Modeling

Considering that co-occurrence, spatial and textual location-location edges characterize dif-
ferent aspects of locations. We use three embedding vectors vc, vs, vtto represent the loca-
tion embeddings with different edge types, respectively. And concatenate three embedding
vectors as the final location embedding vector vl = [vc; vs; vt].

The general idea of learning the embedding vectors is to preserve the second-order
proximity from the graph (Tang et al., 2015). Given a graph G = (V,E), we define the
conditional probability of node ni generated by node nj as:

p(ni|nj) =
exp(vTi · vj)∑
k∈V exp(v

T
k · vj)

(7)

where vi and vj are the embedding vectors of node ni and nj , respectively. To preserve the
graph structure, we can make the conditional distribution p(·|vj) be close to its empirical
distribution p̂(·|vj), which can be achieved by minimizing their KL-divergence distance:

O =
∑
j∈V

d(p̂(·|vj), p(·|vj)) (8)

where d(·, ·) is the KL-divergence between two distributions. Besides, the empirical distri-
bution of p̂(vi|vj) is set as

wij∑
i wij

. Then the objective function is minimize:

O = −
∑

(i,j)∈E

wijlogp(vi|vj) (9)

Based on above analysis, we treat Co-occurrence, spatial and textual location-location
edges separately. In other words, these edges construct sub-graphs with same edge types.
The objective function for each edge type is defined as follows:

Ocl = −
∑

(i,j)∈Eclcl

weightcl(li, lj)logp(vci |vcj ) (10)

Osl = −
∑

(i,j)∈Eslsl

weightsl(li, lj)logp(vsi |vsj ) (11)

Otl = −
∑

(i,j)∈Etltl

weighttl(li, lj)logp(vti |vtj ) (12)

User Preference Modeling

User embedding representation models the general preference of users over locations. Hence
user embedding could be used as a guide for recommending successive POIs for users based
on their user-trajectories. In MMCG, there are two user-related edges, namely user-location
edges and user-user edges. Here we employ the unique user representation for two edge types
since they all characterize the users’ preferences. The objective function is to minimize:

Oul = −
∑

(i,j)∈Eul

weightul(u, l)logp(vu|vl) (13)
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Ouu = −
∑

(i,j)∈Euu

weightuu(ui, uj)logp(vui |vuj ) (14)

At last, the final objective function for multi-modal representation learning is minimiz-
ing:

O = Ocl +Osl +Otl + β(Oul +Ouu) (15)

where β is the hyperparameter that controls the influence of user preference modeling.

4.3. Attentional Recurrent Network

The recurrent network aims to capture the complicated sequential information or long-term
dependencies contained in the user-trajectory. The recurrent layer takes the location vector
sequence embedded by the multi-modal representation layer as input and outputs the hidden
state step by step. The hidden states are regarded as the current status of the trajectory.
Here we choose Long Short-Term Memory Network (LSTM) (Hochreiter and Schmidhuber,
1997) as the basic recurrent unit. In addition, the attention mechanism (Fan et al., 2018)
is designed to make the important location hidden states contribute more on the final POI
recommendation with the guidance from user embedding vector. In other words, the user’s
general preference affects how the locations in historical trajectory decides the successive
POIs.

Formally, the multi-modal representation learning model outputs two embedding ma-
trixes, namely location embedding matrix Ml ∈ R|L|×dw and user embedding matrix
Mu ∈ R|U|×dw , where dw is the embedding size, |L| and |U| are the unique numbers of
location/POI set and user set, respectively. Given a user trajectory Cu, its location list as
{l1, l2, · · · , lN} is fed to location embedding layer to lookup the input representation list
{x1, x2, · · · , xN} ∈ RN∗d. Then the LSTM updates the hidden states at each time step t as
follows:

it = σ(Wi · [ht−1, xt] + bi), (16)

ft = σ(Wf · [ht−1, xt] + bf ), (17)

ot = σ(Wo · [ht−1, xt] + bo), (18)

gt = tanh(Wg · [ht−1, xt] + bg), (19)

ct = ft ∗ ct−1 + it ∗ gt, (20)

ht = ot ∗ tanh(ct), (21)

where xt is the input at time t, ht−1 is the last output of LSTM unit, d is the hidden
dimension size, σ is the sigmoid activation function, and it, ft, and ot indicate the input
gate, forget gate and output gate, respectively. Wi,Wf ,Wo,Wg ∈ Rd∗(d+dw) are gate matrix
parameters, bi, bf , bo, bg ∈ Rd are bias vectors for different gates, ct is the candidate and ht
is the output result.

Intuitively, not all locations in historical trajectory contribute equally to affect next POI
selection. We bring in user attention to capture the crucial components over the location
hidden vector sequences for successive POI recommendation. The user embedding vector
vu is used to enhance the influence of important location hidden states and finally we could
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Algorithm 1 Joint training of multi-modal representation

Input: A multi-modal check-in graph G, embedding size d, iteration times T , negative
samples K, hyperparameter β, learning rate lr.

Output: location embedding vl and user embedding vu.

1: Initialize location and user embedding vectors vl = [vc; vs; vt], vu with uniform distribu-
tion.

2: iter ← 1;
3: while iter≤ T do
4: sample an edge (li, lj) from Eclcl, draw K negative examples and update vci and vcj

representations.
5: sample an edge (li, lj) from Eslsl, draw K negative examples and update vsi and vsj

representations.
6: sample an edge (li, lj) from Etltl, draw K negative examples and update vti and vtj

representations.
7: sample an edge (u, l) from Eul, draw K negative examples and update vu and vc

representations.
8: sample an edge (ui, uj) from Euu, draw K negative examples and update vui and vuj

representations.
9: end while

obtain an aggregated user trajectory representation vector m for final recommendation.
The process is formalized as follows:

ai =
exp(score(hi, vu))∑N

k=1 exp(score(hk, vu))
(22)

m =

N∑
i=1

aihi (23)

where ai measures the importance of i−th location based on user’s preference. score(·) is a
score function which scores the importance of locations for composing trajectory represen-
tation. The score function is defined as:

score(hi, vu) = tanh(Ws[hi, vu] + bs) (24)

where Ws ∈ R2d and bs ∈ R1 are the score weight matrix and bias, respectively. The
obtained user trajectory representation m will be fed to a softmax layer for generating the
target POI.

p = softmax(Wp ∗m+ bp), (25)

where p ∈ RC is the probability distribution for all possible POIs, Wp ∈ RC×d and bp ∈ RC

are the weight matrix and bias, respectively. Here C indicates the number of all possible
POIs.

4.4. Training Algorithms

In terms of training the multi-modal representation model, the objective function 15 can
be optimized with stochastic gradient descent using the techniques of edge sampling (Tang

449



et al., 2015) and negative sampling (Mikolov et al., 2013). For each edge (i, j) ∈ E, we ran-
domly sample multiple negative edges from a noise distribution. The sampling mechanisms
can improve effectiveness of stochastic gradient descent in learning graph embeddings. In
addition, we employ joint training approach to train the multi-modal representation learn-
ing model, which is described in Algorithm 1. In joint training, all types of edges are used
together and then deploy edge sampling, which samples an edge for model updating at each
step, where the sampling probability proportional to its weight.

5. Experiments

We conduct extensive experiments on the following aspects: (1) overall performance of our
model and performance comparisons with state-of-the-art POI recommendation models, (2)
performance effects of five check-in factors and effectiveness of the user attention mechanism
and (3) hyper-parameter sensitivity.

5.1. Dataset Description

We choose one public dataset in (Chang et al., 2018) to evaluate our model, since it contains
not only regular POI check-in sequences but also a large amount of POIs’ textual comments.
The statistics of this dataset are summarized in Table 1. We divide the dataset into training
set, validation set and test set to conduct experimental evaluations. The most recent 20%
check-ins of each user are used as test set. And the less recent 10% check-ins are used as
validation set. The remaining 70% check-ins in the dataset are used as training set.

Description Number Description number

check-ins 2,216,631 Average check-ins per user 28.3

POIs 13,187 Average POIs per user 15.2

Users 78,233 Average users per POI 90

Words 958,386 Average text words per POI 22.7

Table 1: The dataset statistics.

5.2. Evaluation Metrics

We adopt two metrics: Recall@k and Mean Reciprocal Rand (MRR) to evaluate model
performance, which are all popularly used in ranking tasks. Recall@k is computed if the
target POI is in the top-k recommended POI list. We report evaluation results on Recall@k
for k = 1, 5 and 10. MRR represents the mean reciprocal rank of the true successive POI
target in the predicted ranked lists. The high evaluation score indicates that the target POI
is highly ranked in the predicted recommended list.

5.3. Baseline Algorithms

We compare the proposed model with the following baseline algorithms, which are shown
as follows.
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• GRU: utilizes the conventional GRU network and average hidden vector for successive
POI recommendation.

• LSTM: employs a basic LSTM network and obtains the average vector to predict
successive POI.

• ST-RNN: (Liu et al., 2016a) extends RNN model to capture temporal influence and
geographical distance information between POIs.

• STELLAR: (Zhao et al., 2016) proposes a spatial-temporal latent ranking method
to exploit interactions among user, POI and time. This model is established upon
pairs of consecutive POIs to predict the next POI.

• Geo-Teaser: (Zhao et al., 2017) proposes a geo-temporal sequential embedding
model, which exploit sequential check-in information and incorporates POI’s temporal
characteristics in different days.

• CAPE: (Chang et al., 2018) proposes a content-aware POI hierarchical embedding
model, which extracts POIs’ characteristics from text comments.

5.4. Parameter Setting

In our experiments, word embeddings for these methods are initialized by Glove (Penning-
ton et al., 2014). The dimension size of embedding and hidden state d are set to 300. The
weight and bias are initialize by sampling from a uniform distribution U(−0.01, 0.01). The
context window b is set to 5, the learning rate is set to 0.01.

5.5. Overall Performance Evaluation

Table 2 shows performance comparison results of MMR with other baseline methods. We
could have following observations.

(1) ST-RNN, GRU and LSTM model the sequential pattern of user trajectories to
predict successive POI. They achieve good performance, which demonstrates the effective-
ness of POI sequential feature. MMR outperforms the above methods since it not only
considers the sequential information but also models other POI context aspects, such as the
co-occurrence, spatial connection and textual semantic relationship.

(2) STELLAR and Geo-Teaser obtains better results than above methods by further
considering spatial influences among POIs. MMR performs better than them by further
modeling user preference in a unified way.

(3) CAPE gains better performance compared with previous methods, which models
POI co-occurrence, textual comment and geographical influence. MMR performs better
than CAPE, since we model POI context and user preference jointly.

Our proposed model consistently outperforms state-of-the-art POI recommendation
models due to the following considerations. Firstly, MMR utilizes more check-in factors,
namely POI’s co-occurrences, spatial/textual connections, and users’ preferences. Each
of them contains valuable information for POI recommendation. Secondly, MMR jointly
trains user and location representations, where user representation is further employed as at-
tention signals when predicting successive POI in recurrent neural network. In other words,
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the learned user embeddings help to enhance important locations to contribute more in final
recommendation, which is aligned with user preference setting.

Model Recall@1 Recall@5 Recall@10 MRR

GRU 0.1197 0.2207 0.2726 0.1792
LSTM 0.1207 0.2225 0.2751 0.1805

ST-RNN 0.1185 0.2142 0.2529 0.1721
STELLA 0.1308 0.2251 0.2923 0.1857

Geo-Teaser 0.1291 0.2334 0.2980 0.1850
CAPE 0.1390 0.2433 0.3079 0.1953

MMR 0.1538 0.2571 0.3148 0.2097

Table 2: The performance comparisons between MMR and other baseline methods. The
results of baseline methods are retrieved from published papers. The best performances are
marked in bold.

5.6. MMR Performance Analysis

After constructing multi-modal check-in graph, MMR model is able to jointly consider co-
occurrence location-location influence, spatial location-location influence, textual location-
location influence, user-location influence and user-user influence by optimize user and lo-
cation representations to preserve second-order proximity in the graph. In this section,
we study the effect of modeling each edge type. In addition, we conduct experimental
evaluation to evaluate the user attention mechanism applied in recurrent neural network.

As shown in Table 3, we evaluate the following six MMR variants: w/o co-occurrence
location-location model, w/o spatial location-location model, w/o textual location-location
model, w/o user-location model, w/o user-user model and w/o user-attention model. For
the first five variants, it is generated by ignoring the corresponding edge type. w/o user-
attention model does not apply the user attention mechanism to the prediction.

Compared with complete version MMR, all variants lead to slight performance descend.
These experiments demonstrate the effectiveness of modeling multi-modal check-in aspects.
The results also verify that all these aspects could bring valuable information for POI
recommendation. Specifically, the learned user representation is further used to guide the
final recommendation in recurrent neural network as attention signals, which shows the
general user preference will affect how to recommend successive POI.

5.7. Hyper-parameter Sensitivity

In this section, we report evaluation results of hyper-parameter sensitivity. The hyper-
parameters include dimension number d, control parameter β and negative samples K.

To evaluate the impact of dimension number d, we vary d from 60 to 450, the results are
shown in Figure 3a. The performance is robust to the variation of d. The best performance
is achieved when d is set to 300.
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Variants Recall@1 Recall@5 Recall@10 MRR

w/o co-occurrence location-location 0.1467 0.2505 0.3118 0.2026
w/o spatial location-location 0.1480 0.2533 0.3063 0.2018
w/o textual location-location 0.1505 0.2521 0.3059 0.2057

w/o user-location 0.1510 0.2499 0.3099 0.2043
w/o user-user 0.1491 0.2480 0.3116 0.2055

w/o user-attention 0.1487 0.2475 0.3074 0.2021

MMR 0.1538 0.2571 0.3148 0.2097

Table 3: The performance comparisons between MMR variants.
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Figure 3: Parameter sensitivity

We vary β from 0.5 to 2 to evaluate the impacts of parameter β, which is shown in
Figure 3b. When we increasing β, all metric score first slightly increases and then slightly
decreases. The best performance is achieved when β is set to 1.5.

To test the impacts of negative samples K, we conduct experimental evaluation to vary
K from 1 to 20, which is shown in Figure 3c. A remarkable performance improvement is
observed when varying K from 1 to 3. The best performance is achieved when K is set to
5.

5.8. Case Study

trump world

tower 

st. patrick’s 

cathedral 

my pie 

one world 
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central park  

bryant

park

times square

new york city 

high

line 

Figure 4: The user attention visualizations with a user-trajectory example.
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In order to demonstrate the effect of the user attention mechanism, we visualize the
attention weights of location sequences with an example shown in Figure 4. We can observe
that the attention mechanism can enforce the model to pay more attentions on the important
location with respect to the user’s preference. For example, some POIs, such as “trump
world tower” and “bryant park” have higher attention weights compared with other POIs.

User 

Trajectory

trump world tower -> st. patrick’s cathedral -> bryant park -> times 

square new york city -> high line -> sheep meadow central park -> 

my pie ->one world observatory -> national september 11 

memorial museum

MMR

 

metropolitan museum of art

national september 11 memorial museum

watkins glen state park

Figure 5: POI recommendation results given a historical trajectory. The target POI is
highlighted in bold and italic.

Figure 5 gives an example of recommended top-3 POIs by MMR given a historical user
trajectory. We can observe that the target POI “national september 11 memorial museum”
in the top three recommendations. In addition, the other two recommended POIs have the
similar semantic characteristics with the target POI. From the user trajectory, we could
also find the user prefers to visit tourist attraction POIs, such as parks and museums.

6. Conclusion

In this paper, we present MMR, at unified learning framework that models check-in from five
perspectives, namely co-occurrence/spatial/textual location-location connections to model
POI context and user-location, user-user connections to model user preference. We define
a multi-modal check-in graph that encodes rich semantics from check-in records. Then
we apply joint representation learning on the constructed graph to generate location and
user representations. Finally, an attentional recurrent neural network is employed for final
successive POI recommendation. Extensive experiments demonstrate the effectiveness of
MMR on a public dataset.
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