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Abstract

Recent years have witnessed significant progress in solving challenging problems across various
domains using deep reinforcement learning (RL). Despite the success, the weak robustness has
risen as a big obstacle for applying existing RL algorithms into real problems. In this paper, we
propose unified policy optimization (UPO), a sample-efficient shared policy framework that allows
a policy to update itself by considering different gradients generated by different policy gradient
(PG) methods. Specifically, we propose two algorithms called UPO-MAB and UPO-ES, to leverage
these different gradients by adopting the idea of multi-arm bandit (MAB) and evolution strategies
(ES), with the purpose of finding the gradient direction leading to more performance gain with less
extra data cost. Extensive experiments show that our approach can lead to stronger robustness and
better performance than baselines. !

Keywords: unified policy optimization, robustness, multi-arm bandit, evolution strategies

1. Introduction

Deep reinforcement learning (RL) methods have shown their tremendous success in learning com-
plex skills for agents and solving challenging control tasks in high-dimensional raw sensory state-
space (Mnih et al., 2015; Schulman et al., 2015). The great potential of deep RL, unfortunately,
cannot conceal a big concern in terms of its weak robustness, which has been a major hurdle for
applying deep RL algorithms into real-world problems. In particular, such weak robustness is usu-
ally specified by inconsistent behaviors of existing RL algorithms given different hyper-parameters,
environments, and random initializations (Henderson et al., 2017).

Despite the importance of robustness, there have been very limited works that attempt to increase
the robustness by considering: 1) noise (Pattanaik et al., 2018; Tretschk et al., 2018; Behzadan and
Munir, 2018; Havens et al., 2018); 2) step-size (Schulman et al., 2015; Wu et al., 2017; Schulman
et al., 2017); 3) random initialization (Liu et al., 2017); 4) hyper-parameter (Laroche and Feraud,
2017). Meanwhile, none of them paid attention to an important aspect of the weak robustness across
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different tasks. For example, ACKTR (Wu et al., 2017) can learn a good policy in the HalfCheetah
environment, while struggling in the Swimmer environment; TRPO (Schulman et al., 2015) can
perform well in the Swimmer environment, while getting trouble in the HalfCheetah environment.
In this paper, we propose to enhance the robustness of deep RL across different tasks by combining
existing popular policy gradient (PG) algorithms. Intuitively, combining the advantages of each PG
algorithms in a proper way may lead to robust performance.

A straightforward way to achieve this is to run different PG algorithms to learn different policies
and combine these policies via ensemble methods (Dietterichl, 2002; Zhou, 2012). However, due to
the on-policy nature of most PG methods, such as TRPO, PPO (Schulman et al., 2017), and ACKTR,
each policy can only learn from experiences that generated by itself. As a result, the simple ensemble
approach will lead to the linear increment of training sample cost with the number of policies, which
is quite significant and unaffordable for learning complex real-world problems.

To address this problem, we propose unified policy optimization(UPO), a sample-efficient shared
policy framework for combining a variety of PG methods. In this framework, there is a shared pol-
icy which is used to generate experiences for training. From the basis of such shared experiences,
different PG algorithms will produce their own gradients, which will be further unified to generate
a gradient to update the shared policy.

To combine a variety of gradients from different PG algorithms, a general idea is to find the
gradient direction that can lead to the best performance gain. To estimate the performance gain
of different gradient direction, we can leverage either extra data (sampled using new policy) or
history data, where, however, extra data may introduce extra cost and historical data may not be
accurate enough for estimation. To trade-off between the amount of extra data consumption and the
estimation accuracy of right gradient direction, we propose two algorithms, called UPO-MAB and
UPO-ES. Particularly, UPO-MAB uses historical information to estimate which gradient direction is
better, with no extra data cost, and UPO-ES uses extra data to test how good each gradient direction
is at each time step. Experiments demonstrate that UPO-ES works better and can beat baseline PG
methods on all environments thus achieving strong robustness across different tasks. We also show
that both UPO-MAB and UPO-ES outperforms the naive ensemble method.

Given the recent concerns in reproducibility (Henderson et al., 2017), we run all experiments
across a large number of seeds with fair evaluation metrics to guarantee the reproducibility of our
results.

To summarize, our contributions are as follows:

1. To our best knowledge, we are the first to address the robustness across different tasks.

2. We highlight two technique contributions in this paper: 1) we propose a sample-efficient
shared policy framework called UPO; 2) we propose two algorithms (UPO-MAB and UPO-
ES) to trade-off between extra data cost and estimation accuracy of performance gain of
gradient direction.

3. We conduct a lot of experiments and in-depth analysis. Our algorithms outperform both base-
line PG methods and the naive ensemble method.
2. Background
RL aims at learning the policy for agents, facing a sequential decision making problem, by interact-

ing with environment. And, such interactions with the environment take place at discrete time steps
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(t = 0,1,...). We denote environment state space by S, the action space A and the reward space
R. At time ¢ the agent observes state s; € S and takes an action a; € A, which results in a scalar
reward r; € R and a transition to the next state s;+1 € S. We consider finite horizon problems with
a discounted return objective [?; = Zgzt A =try, where v € (0, 1] is the discount factor. The goal
of the agent is to find an optimal policy 7 : S — A that maximizes its expected discounted return.

2.1. Policy Gradient Methods

Policy Gradient (PG) is one of the most promising branches in reinforcement learning, due to its
recent success in solving complex continuous motion control problems. In particular, PG methods
work by computing an estimator of the policy gradient and plugging it into a stochastic gradient as-
cent algorithm. The most commonly used gradient estimator has the form § = E, [V log 7 (as|s¢) Ay,
where 7y is a policy network represented by parameter 6 and Ay is an advantage function that es-
timates the future discounted return at time step ¢; the expectation E,[- - - | indicates the empirical
average over a finite batch of samples.

Trust Region Policy Optimization (TRPO) (Schulman et al., 2015): This algorithm maximizes
a certain surrogate objective function to guarantee policy improvement with non-trivial step sizes.
Specifically, the objective function is maximized subject to a constraint on the size of the policy
update:

iy (at]st) N
T0o1a(at|5t)

subject to Er, [KL(7g(-|s¢), mg,,,(-|5¢))] < 6. ()

ey

maximize E.,
0

where 6,4 is the vector of policy parameters before the update. After making a linear and quadratic
approximation to the objective and constraint, respectively, this problem can be approximately
solved in a more efficient way.

Proximal Policy Optimization (PPO) (Schulman et al., 2017): This method reformulates the
constraint (2) as a clipping objective:

maxignize Eor, [min(r(0) Ay, clip(r4(6),1 — €, 1 + €) Ay)] 3)

m (at|st)
0,4 (at]st)
of stochastic gradient ascent to perform each policy update. Thus, it has the same stability and

reliability as trust-region methods and can result in better overall performance than TRPO.

where 7.(0) = and e is a hyper-parameter. PPO allows the usage of multiple epochs

Actor Critic using Kronecker-Factored Trust Region (ACKTR) (Wu et al., 2017): This ap-
proach uses actor-critic methods which estimate the action-value function Q(s, a) and optimize
a policy that maximizes discounted future return. It uses Kronecketer-factored approximation to
compute the natural gradient update and applies the natural gradient update to both the actor and
the critic.
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3. Unified Policy Optimization
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Figure 1: (a) Left: different policy gradient directions; Right: cosine distance between policy gradients that
generated by three different policy optimization methods (TRPO, PPO, ACKTR).; (b) Unified Policy Opti-
mization Framework.

To investigate the reason why PG methods are not robust across various tasks, we train a policy and
generate gradients at each iteration using different PG algorithms (e.g., TRPO, PPO, ACKTR), and
show the cosine distance between different policy gradients in Figure 1a. We find that gradients that
generated by various methods are quite different. Gradients from ACKTR are almost orthogonal
with gradients from TRPO and PPO. Gradients from TRPO and gradients from PPO are relatively
close due to the similarity of their design principle.

Although gradient directions generated by various PG methods are quite different, these meth-
ods can still achieve good performance by training using their own gradients, as shown in Figure 3.
Therefore, we conjecture that we can combine different policy gradients to achieve better explo-
ration in gradient space and find a better policy optimization path.

To increase the robustness of PG algorithms across various tasks, we propose a unified policy
optimization (UPO) framework, which can address the sample efficiency issue for combining var-
ious on-policy methods by sharing a unified policy network across various algorithms. After that,
we will present two specific algorithms for UPOQ, i.e., UPO-MAB and UPO-ES.

3.1. Framework for Unified Policy Optimization

Sharing training data is common in supervised learning due to static property of the dataset. How-
ever, this is not the case in RL. The incoming data an agent can receive depends on agent itself. For
off-policy RL algorithms, data generated by different agents can be shared since they can leverage
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off-policy training data naturally. But for on-policy RL algorithms, experience sharing is difficult
since each policy can only learn from experiences generated by itself (Cauwet et al., 2016).

To overcome the obstacle of experience sharing between on-policy RL algorithms, we propose
to share the policy. Specifically, we share policy parameter and policy architecture between different
on-policy RL algorithms. Note that we do not share value functions because: 1) keeping separate
value functions does not have influence on experience sharing; 2) values functions from different
PG methods can be trained according different logics and help to generate different policy gradients.

Figure 1b shows the unified policy optimization framework. The model consists of three compo-
nents, including a shared policy network, shared experience data, and a library of different on-policy
PG methods. We denote policy parameter at k-th training iteration by 0. At k-th training iteration,
we first roll out B steps (B is batch-size) using the shared policy mg, to get shared training ex-
perience, and then leverage different on-policy PG methods to generate different policy gradients
(€1, €2, ..., €n), where n is the number of PG algorithms used in UPO. Specifically, each PG method
computes its own loss J;(#) and then generates the corresponding gradient, as shown below:

€ = VQJZ(Q),Vl S {1,2, ,n} 4)

Our general idea is to update the policy, in the learning iterations, into a better gradient direction.
Therefore, it is essential to estimate the performance gain of each gradient and then generate a final
gradient by a combination of all weighted by their respective performance:

Ory1 =0k + Zwi5i~ )

=1

3.2. Algorithms for Unified Policy Optimization

Given the framework, we can generate different gradients by different PG algorithms at each itera-
tion. Then, we need to decide how to combine these gradients to generate a better gradient direction.
Intuitively, the requisite is to determine which gradient direction can lead to more significant per-
formance improvement.

To compute the performance gain of a gradient direction, we can leverage the measurement by
F(6+€)—F(0), where F'() represents performance of policy mg. The next question is on which data
to compute such measurement. In fact, if we want to estimate good gradient direction accurately, it’s
desirable to take extra data (interaction with environment) to get feedback. Henceforth, there exists
a trade-off between the amount of extra data consumption and estimation accuracy of right gradient
direction. More concretely, using too much extra data will hurt sample efficiency; on the other hand,
no extra data may result in less accurate estimation of the performance gain of each gradient, which
will hurt performance at last. To address such trade-off, we propose UPO-MAB and UPO-ES. In
particular, UPO-MAB uses historical data to estimate the performance of each gradient direction.
While it consumes no extra data, it may not make the very accurate estimation. On the contrary,
UPO-ES uses extra data to judge each gradient direction. At the expense of its cost in using extra
data, UPO-ES can make relatively more accurate estimation.

3.2.1. UPO-MAB

The first method we propose is called UPO-MAB. It estimates the performance gain of each gradient
direction without taking extra data. Here we formulate the selection process as a multi-armed bandit
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Figure 2: Illustration of UPO-MAB and UPO-ES. ‘extra data’ means UPO-ES needs data sampled by using
new policy 7. to estimate F'(6 + €), while ‘no extra data’ means UPO-MAB does not need data sampled
by using new policy.

(MAB) problem, which leverages history statistics to make selection. The underlying assumption is
that, if an algorithm is good in the historical update, then it could be also good in current update.
As shown in Figure 2, UPO-MAB takes no extra data to select one gradient direction to update the
shared policy.

We define the reward in this MAB problem as the performance improvement F'(6 + ¢;) — F'(6)
of selecting the gradient generated by algorithm i. We adopt UCB1 algorithm to solve this bandit
problem, which is popularly used in previous work (Li and Zhang, 2017; Laroche and Feraud, 2017).
Specifically, we use (i) to estimate how good is taking gradient by algorithm . In general, Q(7)
is a statistic that represents on average how much performance gain can we get by taking algorithm
1. As a result, we do not need to take extra data at each iteration, but to select the algorithm with
best Q(4). In order to balance between exploration and exploitation, UCB1 also adds a confidence
bound to consider variance and bias of each action. Since the reward in MAB is assumed to be in
range [0, 1], we further normalize the reward and apply sigmoid function to satisfy this assumption.

Since reward distribution of each bandit is changing during the training process, the algorithm
selection here is a stochastic MAB problem with non-stationary rewards (Besbes et al., 2014). Pre-
vious works consider forgetting the past (Garivier and Moulines, 2011). Here we use a forgetting
factor a and update the bandit reward as Q (i) = (1 — «)Q(i) + aR;, where the hyper-parameter «
controls the ‘forget’ degree about history. Algorithm 1 shows the pseudo code of our approach.

3.2.2. UPO-ES

On top of guessing which gradient direction is better according to the historical information, an
alternative way is to test how well each gradient direction is at current training iteration. As shown
in Figure 2, UPO-ES uses extra data to test on all gradient directions generated by different PG
methods, and then generates a new gradient.

Specifically, we roll out 7" steps (7'« B) for each new policy 7y, 4, (i = 1,2, ..., n) and compute
the performance improvement. Here testing data will introduce extra sample cost. We measure the
performance of policy 7y by Frr(6), which represents the T-step Monte-Carlo return. Formally, the
testing function is defined as Frp(0) = Zg;l r¢. Then the performance improvement of ¢-th gradient
is defined by R; = Fr(0 + €;) — Fr(60y). To stabilize R;, we firstly maintain running average and

400



UNIFIED POLICY OPTIMIZATION FOR ROBUST REINFORCEMENT LEARNING

running standard deviation of the performance gain, and then we will use these values to normalize
R; for each gradient direction.

Intuitively, if the performance gain R; of the gradient generated by algorithm ¢ is higher, we will
consider the corresponding gradient more. Furthermore, we apply a softmax operation to adjust the
smoothness of I?;:

exp(R;/7)
W = =5 i=1,2,...,n, (6)
>_j—1 exp(R;/T)

where 7 is the temperature that decides the smoothness of softmax operator. This allows a soft
combination of different gradients. There are two special cases in this method: when 7 — 0, our
approach will select a gradient direction that achieves the best result in testing time at each training
iteration; when 7 — o0, our approach approximates to average all gradients. This method is similar
to Evolution Strategies (ES) (Salimans et al., 2017). ES updates policy by evolving among sampling
Gaussian noise, while our method updates the shared policy by evolving among different gradients.
Algorithm 2 shows the pseudo code of our approach.

Although UPO-ES takes extra data to evaluate performance gain, we empirically find that a
small amount of testing data is enough to achieve good performance. This suggests that extra data
will not hurt sample efficiency too much.

Algorithm 1 UPO-MAB
Initialize: Q(i) = 0,7(i) = 1,i=1,...,n
Generate training experience with initial policy my,

for k =01t K do
Generate all policy gradients €;,Vj = 1,...,n

Select an algorithm: ¢ = argmax;_; _,(Q(j) +/ W)

Compute gradient: ¢; = Vg.J;(0)

Update policy: 011 = 0 + €;

Generate next batch of training data with 7, _ |

Get performance improvement as reward: R; = F'(641) — F(0)
Reward normalization: R; = normalize(R;)

Apply sigmoid: R; = m

Qi) = (1 —a)Q(i) + aR;

T() = T(i) + 1

end
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Algorithm 2 UPO-ES

Generate training experience with initial policy my,

for k =01t K do

Compute gradients: ¢; = VgJ;(0),Vi € {1,...,n}

Roll out 7 steps for each policy 7y, 1,, Vi € {1,...,n}

Get performance improvement as reward: R; = Fr(6x + €;) — Fr(6x),Vi € {1,...,n}
Reward normalization: R; = normalize(R;),Vi € {1,...,n}

Compute weights w; using Eq. 6

Update policy: 0p11 = O + Y1 | wie;

Generate next batch of training data with g, _ |

end

4. Discussion

Theoretical foundation. Our proposed algorithms, UPO-MAB and UPO-ES, theoretically can
be viewed as a simplified version of meta RL algorithms (Wang et al., 2016a). Specifically, the
policy gradient method selection in UPO is essentially a meta RL problem with a meta policy 7™
whose objective is to maximize final performance of the policy after its training with UPO is over. In
particular, the state of 7™ is defined as parameters of current policy, the action of 7" is defined as the
selection among multiple PG methods, and the reward of each action is defined as the performance
gain of new obtained policy over the old one.

However, such meta RL learning process requires amounts of training episodes to learn the meta
policy, which is quite inefficient. To derive practical algorithms, UPO-MAB and UPO-ES are pro-
posed with certain assumptions and approximations for the purpose of simplification. Specifically,
UPO-MAB is introduced with the assumption that the state (policy parameters) will not change dra-
matically in recent policy updates, especially when our paper does not only set a small learning rate
for policy update but also uses forgetting reward update («=0.3) to forget historical state. Since the
recent states are roughly the same, we can consider that they are facing the same MAB problem. It
is thus natural to adopt an MAB algorithm (UCB1) to solve this problem. Meanwhile, UPO-ES, as a
greedy variant of Evolution Strategies, is proposed with the assumptions including: 1) taking action
greedily with respect to current state will lead to a not bad final total reward; 2) linear combination
of actions with respect to their rewards may lead to even better gradient.

On-policy or off-policy. Our UPO framework is mainly based on on-policy gradients, but it can
also incorporate off-policy (Lillicrap et al., 2015; Haarnoja et al., 2018; Fujimoto et al., 2018; Lin
et al., 2018) methods in principle. However, leveraging off-policy experience in UPO raises another
problem about the combination of off-policy and on-policy gradients (Wang et al., 2016b; Gu et al.,
2017; Oh et al., 2018). Due to the limit of space, we might leave it in future works.

5. Experiments

We conduct the robotic locomotion experiments using the MuJoCo simulator (Todorov et al., 2012).
We build all network architectures following common practices (Schulman et al., 2015, 2017; Wu
et al., 2017). We use three (n=3) PG algorithms (i.e., TRPO, PPO, ACKTR) for UPO framework
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Figure 3: Performance comparisons on six standard MuJoCo environments trained for 2 million time steps.
The shaded region denotes the standard deviation over 10 random seeds.

in our experiments. Our algorithms are built based on the implementation of OpenAl baselines
code (Dhariwal et al., 2017). Batch-size is set to 2048 for all experiments.

We conduct hyper-parameter search in the HalfCheetah and Walker2D environments. For UPO-
MAB, we tune hyper-parameter o among {0.01, 0.1, 0.2, 0.3, 0.4}. For UPO-ES, We tune 7 and
T in the range of {0.1, 1, 3, 6, 9} and {100, 150, 200, 300} respectively. Finally we set 7 = 6,
T =200 and o = 0.3.

Each algorithm has been implemented on 7 environments. We score each run of the algorithms
by computing the average total reward of the last 100 episodes. Note that the training curves of our
method UPO-ES includes the extra data for fair comparison.

5.1. Comparison with Strong Baselines

Figure 3 shows the performance comparison between TRPO, PPO, ACKTR, UPO-MAB and UPO-
ES. We show the scores comparison in Table 1. Similar to previous work (Schulman et al., 2017),
we shift and scale the scores for each environment so that the random policy gives a score of 0
and the best result is set to 1, and average over all environments to produce a single scalar for
each algorithm. To compare with naive ensemble method, we also include UPO-random and UPO-
average as baselines. We find that both UPO-ES and UPO-MAB outperform baseline methods in
averaged normalized performance. This shows that UPO-MAB and UPO-ES can achieve robust and
consistent performance across different environments. We also find that UPO-ES performs much
better than UPO-MAB. This suggests that a small amount of extra data can lead to better estimation
accuracy. We show the video of trained policies at https://sites.google.com/view/
upopaper. From the video, we observe that all baseline algorithms stuck into different bad local
optima while UPO-ES can avoid such local optima and show much better behavior.

It is also worth noting that UPO-ES has a high tolerance for its subcomponents’ performance
variation. In the InvertPendulum environment, the methods PPO and ACKTR have very high vari-
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TRPO PPO ACKTR UPO-MAB UPO-ES UPO-rand UPO-avg

HalfCheetah 1438 3191 2347 3695 4113 3347 3167
Hopper 1865 1964 2483 2736 2652 2210 2409
Walker2D 2667 2137 1429 3521 3608 3276 3380
InvertedPendulum 960 788 966 980 988 965 971
InvertedDoublePendulum 189 6128 6825 7583 8270 7246 8113
Swimmer 112 108 62 113 118 107 110
Reacher -110  -5.8 -4.5 -4.0 -3.5 -5.3 -4.2
Avg. Normalized Score 053  0.79 0.75 0.94 0.99 0.89 0.92

Table 1: Average score results over 10 random seeds. UPO-rand represents UPO-random, which randomly
picks one algorithm to train the shared policy at each training step; UPO-avg represents UPO-average, which
uses average of all gradients to update the shared policy. Higher average normalized score means better
robustness.

ance during training. Although UPO-ES is built based on these methods, it is not affected by them
and can still demonstrate strong robustness in the training process. In InvertDoublePendulum, the
performance of TRPO does not get off the ground in the whole training process, however, both
UPO-ES and UPO-MAB can still take advantages from all subcomponents and can achieve better
performance. In HalfCheetah, Walker2D and Hopper environments, PPO shows the fastest learning
efficiency at the beginning. However, it goes into local optimal after 0.75 million training time steps
and cannot get further performance improvements in later stage of training. In this case, UPO-ES
can take the advantage of early learning efficiency of PPO without falling into PPO’s local optima
at the later training stage.

Halfcheetah Halfcheetah

-
=
bl
o
i
[

=
PPO{ —mmmi o tr e o — -&
K7}
=

ACKTR{ === +=: + =eee — I

Choosed Algorithm

0 200 400 600 800 1000 ‘ 400 600 800 1000
Training Iteration Training lteration

(a) (b)

Figure 4: Figure(a) shows the algorithm selected by bandit at each training iteration. Figure(b) shows the
change of weight w; of each algorithm at each training iteration.

5.2. Gradient Choosing Behaviors of UPO-MAB and UPO-ES

To gain more constructive insights about our methods, we intend to have a closer look on how
UPO-MAB and UPO-ES leverage the three gradients. We show the gradient choosing behaviors of
UPO-MAB and UPO-ES in Figure 4.
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Figure 4(a) shows bandit behavior of UPO-MAB during training. We find that UPO-MAB can
select different algorithms in different stage of training. In the beginning, UPO-MAB conducts
exploration across different PG algorithms by trying each bandit frequently. After adequate trials, it
begins to leverage different PG algorithms according to the historical reward record. In HalfCheetah,
we observe that UPO-MAB prefers to use PPO and ACKTR in later stage of training. This makes
sense because PPO and ACKTR perform well in this environment.

Figure 4(b) shows change of weight w; of UPO-ES in the training process. We find that the value
of three weights are changing according to their performance estimation all the time. Different from
UPO-MAB which chooses one gradient each time, UPO-ES performs a soft combination of these
three gradients to generate a new gradient. Due to this soft combination, UPO-ES does not incline
too much to any gradient, which allows it to explore better than UPO-MAB in gradient space.

5.3. Ablation Study

Ablation Study for UPO-ES In order to have a closer look at the importance of each policy
gradient, we conduct an ablation study for UPO-ES. We compare four methods: ‘UPO-ES’, ‘UPO-
ES w/o TRPO’, ‘UPO-ES w/o PPO’ and ‘UPO-ES w/o ACKTR’. The last three methods represents
UPO-ES without one PG algorithm. We train different policies for these four methods using the
hyper-parameter 7 = 6,7 = 200 and show the training curves in Figure 5. We find that UPO-
ES demonstrates strongest robustness. In HalfCheetah, the method ‘UPO-ES w/o PPO’ has the
largest drop on performance, which indicates the gradient from PPO is more important than the
others. In Hopper, the performance of method ‘UPO-ES w/o ACKTR’ has large gap with that of
other methods, showing that ACKTR can provide more valuable information during training in this
environment.
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Figure 5: Ablation Study for UPO-ES.

Ablation Study for UPO-MAB We also conduct an ablation study for UPO-MAB. We compare
four methods: ‘UPO-MAB’, ‘UPO-MAB w/o TRPO’, ‘UPO-MAB w/o PPO’ and ‘UPO-MAB w/o
ACKTR’. The last three methods represents UPO-MAB without one PG algorithm. The hyper-
parameter « is set as 0.3. In Hopper, the performance of method ‘UPO-MAB w/o TRPO’ has large
gap with that of other methods, showing that TRPO can provide pivotal information during train-
ing in this environment. However, in HalfCheetah, we surprisingly find that UPO-MAB does not
demonstrate strongest robustness. The method ‘UPO-MAB w/o ACKTR’ even performs better than
‘UPO-MAB’. We conjecture this is because the way that chooses one gradient each time like UPO-
MAB is less robust than soft combination like UPO-ES.
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Figure 6: Ablation study for UPO-MAB.

5.4. Effects of Hyper-parameter

In this section, we show the effects of hyper-parameter. In Figure 7(left), we find that performance
can be improved with more extra data when 7" varies between 100 and 200. This suggests that the
performance estimation is more accurate with more extra data. On the other hand, too much extra
data (e.g., T' = 300) will hurt the sample efficiency. To trade off between sample efficiency and
estimation accuracy, we choose T = 200.

Figure 7(right) also shows the effect of hyper-parameter o in UPO-MAB. We find that the
performance of UPO-MAB drops when using too large or too small values. We conjecture the
reason is because: when using small value, the assumption of UPO-MAB might not hold well;
when using large value, the bandits’ Q-values become unstable.
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Figure 7: Effects of hyper-parameters.

5.5. Effects of Extra Data on Sample Efficiency

In order to examine the effects of extra data on sample efficiency, we compare UPO-ES and ‘UPO-
ES (w.o extra data)’ in Figure 8. The two curves are only different in the statistics of x-axis timestep.
The curve of ‘UPO-ES (w.o extra data)’ does not count the extra data in x-axis. We observe that the
use of extra data has negligible influence on performance, which indicates the UPO-ES is able to
use cheap extra data to leverage evolution strategies to improve performance.
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Figure 8: Effects of extra data on sample efficiency.

6. Related Work

Previous works considered addressing robustness of RL. Pattanaik et al. (2018) improve robust-
ness by injecting adversarial attacks. Tretschk et al. (2018) add sequential attacks on agents for
long-term adversarial goals. Behzadan and Munir (2018) use parameter noise to mitigate policy
manipulation attacks. Havens et al. (2018) consider online robust policy learning in the presence of
unknown adversaries. Schulman et al. (2015, 2017) consider address robustness of policy learning
via controlling step size. Liu et al. (2017) address the robustness of policy initialization. Laroche
and Feraud (2017) consider training RL algorithms with different hyper-parameters, thus training a
robust policy, in which hyper-parameters are unnecessary to be tuned. None of them considered to
solve the weak robustness across different tasks. In our paper, we propose UPO-MAB and UPO-ES
to increase the robustness across different tasks.

UPO-ES is related to Evolutionary Reinforcement Learning (ERL) (Khadka and Tumer, 2018)
which hybridizes ES with PG. The key idea of ERL is to leverage the population of ES to provide
diversified data to train an agent and then inject gradient information into ES. Our method UPO-ES
differs from ERL in the following aspects. Firstly, ERL uses experiences from many policies to
generate one gradient while UPO-ES utilizes experiences from a shared policy to generate different
gradients. Secondly, ERL can only use off-policy PG methods (e.g., DDPG) to learn from experi-
ences while UPO-ES allows many on-policy PG methods to generate different gradients. UPO-ES
is also related to Evolved Policy Gradient (EPG) (Houthooft et al., 2018). EPG uses ES to update
a parameterized loss function, while UPO-ES uses ES to update policy gradients based on several
prior PG methods.

UPO-MAB is related to ESBAS (Laroche and Feraud, 2017) which tackles the problem of se-
lecting online off-policy RL algorithms. The idea is to use a bandit meta-algorithm to select one
algorithm to control the next trajectory in the learning process. UPO-MAB differs from this method
in several aspects. Firstly, ESBAS considers many off-policy RL agents which are allowed to share
training experience naturally, while UPO-MAB uses a shared policy framework to tackle the prob-
lem of sharing experience between on-policy PG methods. Secondly, ESBAS addresses robustness
across different hyper-parameter settings, while UPO-MAB addresses robustness across different
tasks.
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7. Conclusion

In this paper, we aim to address the robustness across different tasks for policy optimization meth-
ods. To the best of our knowledge, we are the first to address this issue. We propose a sample-
efficient shared policy framework called UPO which is able to generate many gradients on a batch
of shared experiences. We further propose two algorithms, UPO-MAB and UPO-ES. Experiments
show that our methods achieve strong robustness across different tasks. In the future, more research
can be done on how to 1) incorporate more PG methods into UPO; 2) use a model to roll out for
performance estimation.
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