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Abstract

Accurate access to nuclear information on digital pathology images can assist physicians
in diagnosis and subsequent treatment. The pathological images have a large number of
nuclei and part of nuclei is touching, manual segmentation is time consuming and error
prone. Therefore it is an important task to develop a accurate nuclei segmentation method.
For traditional methods, it is hard to obtain a accurately nuclei segmentation result, be-
cause the nuclei have many different characterizations. In this paper, we propose a new
nuclei segmentation method (MDC-Net), which is a deep fully convolutional network. The
network contains multiple residual operations to reduce detail loss in image. In addition,
dilated convolution which has different dilation ratio is used to increase receptive field.
MDC-Net contains the distance map and contour image, enhancing information on indi-
vidual nuclei to get accurate segmentation results. We improve the segmentation effect
by using the post-processing operate. We demonstrate that MDC-Net can obtain state-of-
the-art results on public dataset with multiple organ slices compared with other popular
methods.

Keywords: digital pathology, histopathology image analysis, deep learning, nuclei seg-
mentation

1. Introduction

It is important to grade cancer in medicine, doctor can use this information to effectively
treat the patient and evaluate the treatment effect (Filipczuk et al. (2013)). Histopathol-
ogy images are mainly used in clinical medicine and are widely used in the diagnosis and
prediction of tumors because they usually include information about the structure of the
tumor and tissues. For tissue slices, hematoxylin-eosin (H&E) is usually used for staining,
which can separate the nucleus and cytoplasm and highlight structural information such as
nuclei. The clinicians can grade the cancer by analyzing the nuclear morphological features
in the slices (Naik et al. (2008)).

Computer Aided Diagnosis (CAD) has achieved rapid development in digital pathol-
ogy. Traditional cancer diagnosis requires manual labeling of tissue slices, this is a time-
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Figure 1: Examples of pathological images, the first row is the pathological image which is
staining by H&E, the second row is the corresponding ground truth. The three columns from
left to right are the pathological images of the kidney, bladder and stomach respectively.

consuming and error-prone task. Furthermore, manual labeling is a work which influences
by subjective of the marker, markers require professional training. In order to ensure the
accuracy of the label, more than one marker is needed. So it is importance to find a method
which can automatically and accurately segment the nucleus. Some pathology images and
ground truth are shown in Figure 1.

There are some challenging problems in nuclei segmentation, but early segmentation
method did not consider these problems. For example, in some pathological conditions
(hyperplasia etc.), the boundary of nuclei is blurred. Traditional segmentation methods
applied to nuclear segmentation are not robust. For example, as Otsu thresholding (Feng
et al. (2017)) and marker contorlled watershed (Yang et al. (2006)).

In recent years, convolutional neural network (CNN) is used to medical image processing,
including detection and enumeration (Xu et al. (2015)), segmentation (Liu et al. (2018);
Abdolhoseini et al. (2019); Al-Kofahi et al.; Liu et al. (2019)), and tissue classification
(Sirinukunwattana et al. (2016)). A main challenge in nuclei segmentation is segmenting a
large number of overlapping or touching nuclei. Most existing methods cannot solve this
problem effectively.

The main contributions of this paper are:
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Figure 2: The entire flow chart of our segmentation method.

(1) We propose a new fully convolutional network (MDC-Net) to segment the dense nu-
clei. MDC-Net contains multi-scale dilated convolution and multi-scale residual operations.
The dilated convolution is used to increase receptive field and the residual operation is used
to utilize multi-scale of feature maps information.

(2) Our method uses the distance map and contour information to solve the problem
which is segmenting touching and overlapping nuclei. We fuse the distance map and contour
information to strengthen the morphology and boundary information. And it can effectively
alleviated this problem and improve the accuracy of segmentation.

(3) MDC-Net can obtain the state-of-the-art performance on the public nuclei histopathol-
ogy dataset with multiple organ slices.

2. Related Work

Early medical image segmentation usually used some traditional methods. For example,
threshold, clustering (Clark et al. (1994)), edge detection (Davis (1975)). Nuclei informa-
tion is important in clinical. In recent years, researchers propose many methods, pixel
classification (Gao et al. (2016)), mathematical morphology (Cheng et al. (2008)), level
sets (Guo et al. (2016)) and graph-based segmentation methods (Xing and Yang (2016)).
However, traditional methods are not robust to medical image segmentation.

Recently, some CNN-based methods have been applied to medical image segmentation.
Janowczyk et al. (Janowczyk and Madabhushi (2016)) propose a tutorial which show some
pathological image target (carcinoma, nuclei, epithelium, tubule) segmentation methods.
However,this method used the image patches as the input data. Although using this patch-
based approach can achieve better nuclei segmentation results, it is a very time consuming
task. Different from this patch-based method, some segmentation methods use the entire
pathology image. Naylor et al. (Naylor et al. (2018)) transformed the nuclei segmentation
task into a regression task, which can effectively improve the segmentation accuracy of the
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Figure 3: The image which obtain by using chessboard distance transformation to ground
truth. (a) ground truth, (b) the distance map which is obtaining by using chessboard
distance transformation, (c) normalized distance map, the value of center pixel in each
nuclei is 1.

nuclei. There are some segmentation tasks similar to nuclei segmentation in medical image,
Chen et al. (Chen et al. (2016)) proposed using contour information to segment the glands.
(Raza et al. (2019)) proposed a Micro-Net which is robust in high level noise. Jia et al. (Jia
et al. (2017)) proposed a method which uses weak supervision to segment glands.

3. Proposed method

In this section, we introduce and discuss our approach in detail. Firstly, we introduce the
pre-processing of datasets. Then, the components of the proposed MDC-Net network and
the object loss function are presented. Finally, the post-processing is introduced. The
flowchart of the proposed method is shown in Figure 2.

3.1. Data pre-processing

Distance transformation: using the distance transformation to the ground truth can strengthen
morphological information of the nuclei and it can improve the effect of nuclei segmentation.
In this paper, we apply the chessboard distance transform to the ground truth to obtain
the distance map. Finally, we normalize the distance map. And the result of distance map
is shown in Figure 3.

Contour information: although using the distance map can strengthen the morphological
characteristics of the nuclei, some dense nuclei boundary are still difficult to segment. Thus,
we add the contour information to our method to get better nuclei segmentation result.

3.2. Network structure and loss
3.2.1. OVERVIEW OF NETWORK STRUCTURE

In this paper, we propose a new fully convolutional network named MDC-Net. Firstly using
one encoder to extract high-level feature maps from pathological images. And then use two
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Figure 4: The framework of MDC-Net. The detail of the operate is shown in bottom right
corner. The operate of copy is to direct use data.

decoder branches. The first branch is the DM-path, the target is to obtain the predicted
distance map. The last branch is the C-path, which uses to get the predicted contour image.
The parameters which are in this two branches are independent updated. Using the fusion
module to fuse the predicted distance map and contour image. Finally, post-processing is
used after the fusion module. The detail of the MDC-Net is shown in Figure 4.

3.2.2. DILATED CONVOLUTION

Unet (Ronneberger et al. (2015)) is a universal medical image segmentation model. The
encoder structure of MDC-Net is similar to U-Net. The pooling layer is used to expand the
receptive field of the network, but it will reduce resolution of the feature map. Different from
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U-Net, MDC-Net uses dilated convolution(Yu and Koltun (2015)) to enlarge the receptive
field in network. In addition, the dilated convolution does not reduce the resolution of the
feature map.

Similar to (Chen et al. (2017)), MDC-Net uses the dilation ratio of (1, 2, 5) and uses
the dilated convolution in parallel. Different dilation ratios make all of the pixels of image
have convolution operation, and can improve the segmentation accuracy.

3.2.3. RESIDUAL OPERATIONS

The residual operation is used to make the network more deeper. These residual operations
obtain the output of the entire operation by summing the input and final convolution result.
This operation can enhances transmition of information between the layers. By using this
residual operation, the detail of the image will be preserved, while it can prevent the gradient
vanishing and gradients exploding.

3.2.4. LOSS FUNCTION

The parameter is denoted as W, the result of the DM-path is P; = D(W}), and the result
of the C-path is P, = C(W,). The variable of Wy and W, are the parameters in DM-path
and C-path, respectively. The loss function of the contour is defined as:

ZOSSC = _ZGC(ja k) log(PC(ja k)) (1)
7.k

where k is the class in this segmentation task (background and nuclei contour). j = (z,y)
is a pixel of an image. G.(j, k) is the value in ground truth label whether it belongs to
k, P. represents the result of the C-path, and is calculated by softmax. P.(j, k) represents
probability of the pixel belonging to k.

The result from the DM-path is a predicted distance map, the center of the nuclei is
defined as a local maximum value in image. The pixel value in distance map represents the
normalized distance of the nuclei pixel to the nearest background pixel. The loss function
of the DM-path is defined as follows:

tossp = & 3 (Gald) = P} @)

J

where GG is obtained by using distance transformation in the ground truth (see section 3.1),
and Py is the predicted distance map from the network. j=(x,y) represents a pixel and n is
the number of pixels.

There are two parts in the whole loss function, one is the distance map loss and the other
is the contour loss. Since the information proportion of nucleus and contour are different on
the pathological image, for the two losses we use different weights. These weights are used
to balance the nuclei contour and whole nuclei pixels have different proportions in image.
The values of these two weights need to be set according to the dataset.
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3.3. Fusion module

Fusion module: in order to obtain the final segmentation result, using fusion module to fuse
the decoder result of the DM-path (Py) and C-path (P.). The fusion formula is defined as
follow:

. . 1if Py(7)>t d P.(j)<t
Fusion(j) = {§ I hald)>to and Pe()<t (3)

where to and ¢; are the threshold, and judge pixel is background or nuclei. j = (z,y)
is a pixel of image. This operation determines the pixels on the image is the nuclei or
background.

3.4. Post-processing

The pixel value in distance map represents the normalized distance of the nuclei pixel to
the nearest background pixel. We use the distance transformation to the segmentation map
which is same as the pre-processing. Different nuclei have different signal, and this signal
has different decline. The detail of this phenomenon of the decline is explained in Soille
(2013): R is the probability map. M represent the local maximum in R. M is defined to a
nuclei if all path P which is connected M with some higher max maximum M /, the decrease
value in R is more than the py:

i R(M)-R 4
poin o Amax [R(M) = R(z)]} > pr (4)
R(M’)>R(M)

p1 is a hyperparameter which can be freely selected, then find nuclei regions by using the
watershed transformation seeded from the maxima method in the regions that fulfill this
criterion. Furthermore, all object pixels value are required to higher than po.

4. Experiment
4.1. Datasets

DATA ORGANS (Naylor et al. (2018)): the pathological tissue slices were obtained with
microscope magnified 40x , and using H&E to stained. The resolution of slices are 1000 x
1000 and a total of 30 samples images are extracted from 7 different organs.

4.2. Dividing for datasets

We divide the this dataset into three parts:

Training and Validation dataset: this training and validation data contains four different
human organs: prostate, liver, breast and kidney, a total of 16 pathological images. Due to
this data does not have many images, we used data augmentation method to expand data.
Training dataset has 16 images, and 8 images are used as the validation dataset.

Test dataset A: a total of 8 pathological images in the first test dataset, and contains
four human organs: prostate, liver, breast and kidney, and this images not appear in the
training dataset.

Test dataset B: different from the test dataset A, this test dataset has 6 pathological
images, and has three human organs which are not appear in the training dataset: stomach,
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Figure 5: some nuclei segmentation results which use MDC-Net, (a) pathological image, (b)
ground truth, (c) the segmentation results, (d) the ground truth of contour, (e) the predicted
nuclei contour map, (f) the ground truth of distance map, (g) the predicted distance map.

bladder and colorectal. The purpose of using this dataset is to test the segmentation effect
and the generalization of our method for the nuclei in different organs.

4.3. Metrics

For evaluating the segmentation performance of nuclei, we use three indicators. The F'1 score
is an object-level metric, and the Aggregated Jaccard Index (AJI) (Kumar et al. (2017)) is
used for evaluating the segmentation effect in dense nuclei. The Hausdorff distance is used
to measure the similarity of the ground truth and predicted image.

The F1 score is a commonly used evaluation index in image segmentation. F1 score is

defined as follows:
1= P (5)
-~ 2TP+FP+FN

TP, FP, FN denote the number of true positives, false positives and false negatives, respec-
tively.
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Table 1: comparing the results of nuclei segmentation on the test set in different 7 human
organs

AJI Hausdorff distance F1 score
Human organs|Image MDC-Net DIST U-Net RefineNet Mask |MDC-Net DIST ~ U-Net RefineNet Mask |MDC-Net DIST U-Net RefineNet Mask
R-CNN R-CNN R-CNN
Breast 1 0.5420  0.5350 0.4294 0.3875  0.4353 |6.7483  7.0848 7.7268 6.7601  6.6711 |0.7747  0.7688 0.7442 0.7446  0.7229
2 0.5860  0.5257 0.5954 0.5546  0.5262 |7.3163 ~ 7.8500 7.4889 7.8400  8.3706 |0.8274  0.8137 0.8351 0.8067  0.7535
Kidney 1 0.5900  0.5716 0.5868 0.5375  0.5749 |5.6811  6.4757 5.6160 5.6210  5.8238 |0.7914  0.7790 0.8090 0.7919  0.7723
2 0.5290  0.5740 0.4695 0.4270  0.4242 |6.6350 ~ 5.8613 7.4411 6.9184  6.6380 |0.7645  0.7676 0.7421 0.7430  0.7020
Liver 1 0.5306  0.5370 0.4660 0.4416  0.4941 |6.8185 ~ 7.1043 7.5480 6.9615  6.9430 |0.7874  0.7740 0.7672 0.7720  0.7489
2 04747 04581 0.4603 0.3407  0.4219 |11.1732 11.4000 11.1677 11.0853  10.7682|0.7016  0.6838 0.7135 0.5688  0.6246
Prostate 1 0.6085  0.6080 0.3974 0.2233  0.5282 |8.2812 84356 8.6951 8.2392  7.7229 |0.7912  0.7847 0.7842 0.8011  0.7904
2 0.6529  0.5970 0.5770 0.4352  0.5894 (9.5775  9.8192 9.8057 9.6445  9.6970 |0.8050  0.7963 0.7962 0.7987  0.7803
Bladder 1 0.6339  0.57410.6089 0.5629  0.5947 |7.6381  8.0584 7.7908 7.8544  8.1290 |0.8502  0.8450 0.8505 0.8554  0.8283
2 0.4921  0.5542 0.3937 04116 0.3901 |7.2600  7.1966 8.4421 7.9702  8.1201 |0.7736  0.7874 0.7369 0.7419  0.7101
Colorectal |1 0.4457 04325 0.3453 0.0861  0.3800 |11.7022  11.0443 11.4182 14.1867 11.5746/0.7248  0.7212 0.7444 0.6774  0.6046
2 0.5000  0.4568 0.4537 0.2125  0.4118 |11.2912  11.5262 10.6567 12.3042  11.5386/0.7392  0.7344 0.7689 0.7433  0.6370
Stomach 1 0.5846  0.6455 0.4670 0.4534  0.4920 |10.3267 10.0853 10.4201 10.0040 11.0242/0.8306  0.8366 0.8305 0.8466  0.7963
2 0.6024  0.6385 0.4857 0.4876  0.5525 |9.5088 ~ 9.5878 9.5773 9.4179  10.1787/0.8410  0.8450 0.8405 0.8476  0.8048
average 0.5551  0.5505 0.4812 0.3972  0.4868 |8.5684  8.6806 8.8421 8.9148  8.7999 |0.7859  0.7812 0.7830 0.7670  0.7340

The Aggregated Jaccard Index (AJI) is an extension of the global Jaccard Index. The
target is to penalize both object-level and pixel-level errors. Firstly, we use maximizing the
Jaccard Index to obtain the component of each ground truth, and get the result which is
intersection of the component in the ground truth and final segmentation result, adding
this result value to the numerator. The denominator is this matched components and
union of the undetected component. Finally, the value of AJI is numerator divided by the
denominator. The detail of formula is shown as follow:

S 1Gik) 1 57()
AJI = =1 (6)

L
1;::1 |Gi(k) U Si' ()| + > ier 19:(D)]

G; = Ui, 1 Gi(k) represents ground truth pixels, S;’(j) represents the component obtained
by in the segmentation result to use maximizing the Jaccard Index. Set T represents a
component which is mismatched in ground truth and segmentation result.

Hausdorff distance (Huttenlocher et al. (1992)) is used to measure the distance of pixels
between the ground truth and predicted result, and the target is evaluating the similarity
between the predicted result image and corresponding ground truth. P represents the final
result image, d(.) is the distance of two pixels.

H(G,P)= max[;lglze% g,lgll? d(zg — xp), iﬂ?ﬁ gglé% d(xg — xp)] (7)

4.4. Comparsion with other segmentation methods

We compared the proposed method with other four state-of-the-art methods: Mask R-CNN,
U-Net, DIST (Naylor et al. (2018)) and RefineNet (Lin et al. (2017)). We used TensorFlow
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Figure 6: The box plots which are showing the results of nuclei segmentation, and it is
obtained by using each segmentation method on the test dataset.

(Abadi et al. (2016)) to build each network structure. The used GPU is GTX1070, and the
computer’s memory capacity is 8GB. The backbone network in Mask R-CNN and RefineNet
use ResNet-101, used pre-trained model in ImageNet to get the initial parameters. The val-
ues in DIST was same as (Naylor et al. (2018)), in all segmentation methods, batch_size
and learning rate were setting to 2 and 0.0001. The input image size was 512 x 512 for all
methods and maximum epoch was setting to 500. Figure 5 shows typical nuclei segmenta-
tion results of the proposed MDC-Net in histopathological images, it shows ground truth,
contour, distance map and corresponding predicted images, respectively. These two images
are from two organs (Breast, stomach).

Table 1 lists some segmentation results which are using different methods on test dataset
A and B. From Table 1 can see that RefineNet and U-Net can obtain better performance
on F1 score, but the segmentation result show inferior in Hausdorff distance and AJI.
This appearance shows that the different characteristics of segmentation methods can be
presented in criterions of the object-level and pixel-level. At the same time, both MDC-
Net and DIST method have improved from the fully convolutional network, they can get
better results both on F1 and AJI. Box plots of different segmentation results are shown
in Figure 6. The outlier points are defined as the point which is result value outside range.
Figure 7 shows result of different segmentation method.

The results in Table 1 shows that MDC-Net method can obtain best performance in
F1 and Hausdorff distance, the result of AJI is similar to DIST, and the result values are
higher than other methods.

We can obtain the conclusion from Table 1 that there is no one segmentation method
which can achieve the best performance in every pathological image. Some factors contribute
to the problem, such as the nuclei density is not same in pathological images, the difference
of nuclei characteristics in some organs are widely. However, the result shows that MDC-
Net which uses fully convolutional network, distance map and nuclei contour information
can obtain the best result for test datasets.
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Table 2: Comparing effect of post-processing

AJI Hausdorff distance F1-score

Not Post-processing 0.5387 8.5820 0.7845
Post-processing before fusion 0.5500 8.5740 0.7820
Post-processing after fusion  0.5551 8.5684 0.7859

Table 3: Comparing methods with no post-processing

MDC-Net Mask U-Net  RefineNet
R-CNN
AJl 0.5387 0.4868  0.4811 0.3972
Hausdorff distance 8.5820 8.7999  8.8421 8.8791

4.5. Ablation experiment
4.5.1. POST-PROCESSING

In order to investigate the effect of post-processing operations in the segmentation method.
The ablation experiment was performed on MDC-Net, and the other operations are the
same as previous experiments. The hyperparameters ty and t; in fusion operation are
setting to 0.1 and 0.8, respectively. In this section, we evaluated three different methods.
The first method does not include post-processing operations, and gets the result after
fusing the contour information and initial segmentation result. The second method uses
post-processing operations before the fusion operation, and it only uses in predicted distance
map. The last method uses the post-processing after the fusion operation (MDC-Net). The
hyperparameters p; and ps are setting to 1 and 0.1, respectively.

The results are shown in the Table 2, we only show the average of the result in entire test
dataset. It can obtain the conclusion from the Table 2 that the post-processing operation can
improve AJI value to some extent. Post-processing operations can improve the segmentation
effect for overlapping and touching nucleus. Comparing to the method which is not use the
post-processing operation, MDC-Net is improved about 2% in AJI. Furthermore, comparing
to the method which is using post-processing operations before the fusion operation, MDC-
Net is improved about 0.5% in AJI.

The post-processing operation can improve the Hausdorff distance value. This shows
for the object-level criterion, the post-processing operation can improve the segmentation
result. However, post-processing operation can not get significant improvement for F1
scores. The reasons may be that the post-processing operation mainly improve the contour
pixels, while contour pixels make up a small part of the whole nuclei. The post-processing
operation has a significant positive effect for the object-level but less in pixel-level.

In order to evaluate the performance of MDC-Net, we removed the post-processing from
the MDC-Net. And then comparing with U-Net, Mask R-CNN and RefineNet on AJI and
Hausdorff distance. We set the hyperparameters of ty and t; are 0.1 and 0.8 for fusion
module. The detail of segmentation result is shown in Table 3. The result of Table 3 can
conclude that our proposed MDC-Net without the post-processing can get better effect
in AJI and Hausdorff distance compare to other state-of-the-art method. It can be proved
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Figure 7: The results which obtain by using different method, and each column is the result
which different segmentation method, and MDC-Net is shown in second column.

that MDC-Net using distance map and contour information can obtain better segmentation
results. The reason is MDC-Net which can enhance morphology and boundary information
of individual nuclei.

4.5.2. EVALUATION INFLUENCES FOR EVERY PART

We evaluate the segmentation influences from different parts in the network. The dataset
used DATA ORGANS. Setting ¢y and #1 are 0.1 and 0.8, p; and ps are 1 and 0.1, respectively.
We only compare on F1 score and AJI. The result of F1 and AJI in MDC-Net are 0.7859
and 0.5551, respectively. When remove the post-processing the F1 and AJI are 0.7845
and 0.5387, the F1 and AJI are 0.7816 and 0.5495 when using max-pooling layer to replace
dilated convolution. When remove residual operation the F1 and AJI are 0.7737 and 0.5346,
The ablation experiment demonstrate the residual operation has most significant effect in
MDC-Net in all metrics. This show that fully use context information can have the most
beneficial impact in our method on dense target segmentation task.

5. Conclusion

In this paper, we present a new fully convolutional network MDC-Net, and this is a nuclei
segmentation method. Our target is to get the accurately segmentation result in image with
overlapping and touching nucleus. Distance map and contour information are included in
MDC-Net, it is used to enhance the nucleus morphological information and to highlight
the nucleus boundary information. Furthermore, we use MDC-Net to get the segmentation
result. In MDC-Net we use dilated convolution and multiple residual operations to reduce
detail loss in image. Using fusion operation to fuse the predicted distance map and contour.
Finally, using post-processing operation to improve segmentation result. The experimental
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results prove that our proposed MDC-Net is superior to other state-of-the-art segmentation
methods.
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