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Abstract

Medical images from different modalities (e.g. MRI, CT) or contrasts (e.g. T1, T2) are
usually used to extract abundant information for medical image analysis. Some modalities
or contrasts may be degraded or missing, caused by artifacts or strict timing during acqui-
sition. Thus synthesizing realistic medical images in the required domain is meaningful and
helpful for clinical application. Meanwhile, due to the time-consuming of manual annota-
tion, automatic medical image segmentation has attracted much attention. In this paper,
we propose an end-to-end cross-domain synthesis and segmentation framework SSA-Net.
It is based on cycle generative adversarial network (CycleGAN) for unpaired data. We
introduce a gradient consistent term to refine the boundaries in synthesized images. Be-
sides, we design a special shape consistent term to constrain the anatomical structure in
synthesized images and to guide segmentation without target domian labels. In order to
make the synthesis subnet focusing on some hard-to-learn regions automatically, we also
introduce the attention block into the generator. On two challenging validation datasets
(CHAOS and iSeg-2017), the proposed method achieves superior synthesis performance
and comparable segmentation performance.

Keywords: medical image, synthesis and segmentation, unpaired data, CycleGAN

1. Introduction

Different feature information are helpful to improve medical image analysis (Frangi et al.
(2018)) and clinical diagnosis (Wenqi Lu and Qiang Su (2016)), which are extracted from
multiple modalities (e.g. MRI, CT) or multiple contrast (e.g. T1, T2 in MRI). How-
ever, some sequences often be missing or destroyed during collection. Cross-modality or
cross-contrast (they are referred as cross-domain in the paper) medical image synthesis has
attracted much attention and can be used as an intermediate for medical image analysis
tasks (Dar et al. (2018)). But it still faces a significant challenge that the appearance
difference between different domains are complex (see Fig. 1).
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Figure 1: Appearance differences between unpaired sequences of different modalities or
contrast. (a) CHAOS dataset (CHAOS (2019)), the real slice size is 256 × 256. (b) iSeg-
2017 dataset (Wang et al. (2019)), the real slice size is 144× 192.

Unlike intra-modality generation (Frid-Adar et al. (2018); Isola et al. (2016)), cross-
domain synthesis is based on different domains (Huo et al. (2019)). Previous cross-domain
synthesis methods (Burgos et al. (2012); Huang et al. (2017); Jog et al. (2017)) usually based
on image patches and with a lot of computational overhead. Several deep-learning based
methods are developed recently, such as Generative adversarial network (GAN) (Goodfellow
et al. (2014); Dar et al. (2018)) based methods, which often require the aligned data.
Recently, CycleGAN-based methods (Zhu et al. (2017); Hiasa et al. (2018)) are proposed
to handle unpaired data. However, basci CycleGAN is not enough to supervise the result
of synthesis, such as boundary (Hiasa et al. (2018)).

Segmentation labels are important in clinical applications and deep-learning based seg-
mentation (Pham et al. (2019); Liu et al. (2019)) is also prevalent. Recently, several
synthesis-based segmentation methods (Chartsias et al. (2017); Zhang et al. (2018); Huo
et al. (2019)) has shown the potential to use realistic synthesized data to improve segmenta-
tion, and they are generally based on the CycleGAN framework. Among them, (Chartsias
et al. (2017)) is a two-stage method (see Fig. 2(a)), which performs synthesis before seg-
mentation.

Inspired by the above works, we propose a CycleGAN-based one-stage medical image
synthesis and segmentation framework (Fig. 2(b)), which is end-to-end trained by unpaired
data. In order to constrain the consistency of anatomical structure and boundaries, we
design a gradient consistent (Hiasa et al. (2018)) and a special shape consistent (Zhang et al.
(2018)) loss as additional loss terms. Only labels in the source domain are required in the
proposed method, which means higher utilization of existing data and better adaptability.
Moreover, an modified Attention U-net (Oktay et al. (2018)) is used as generator to focus
on hard-to-synthesis image regions automatically.

We summarize the contributions of our work as follows:
(1) We propose a novel CycleGAN-based end-to-end cross-domain synthesis and seg-

mentation network, with using unpaired data and without target domain labels.
(2) We integrate the gradient- and shape-consistency terms as additional loss terms to

supervise the boundary and the anatomical structure separately. We introduce an adjusted
Attention U-Net into synthesis subnet to refine the hard-to-learn regions during synthesis.
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(a) (b)

Figure 2: The diagram of two-stage method (Chartsias et al. (2017)) and our proposed two-
stage method, they are based on CycleGAN. “Domain S” and “Domain T” represent the
source and the target domain, respectively. GS/T is a source-to-target generator, GT/S is a
target-to-source generator. SS is a segmentor for the source domain and ST is a segmentor
for the target domain. “Label S” is the segmentation label in the source domain. Blue
arrows indicate the flow of data information. L denotes the loss term. (a) Cycle+Seg
(Chartsias et al. (2017)). (b) Our proposed SSA-Net.

(3) Our proposed method has shown good performance on two challenging datasets. As
far as we konw, this is also the first end-to-end cross-domain synthesis and segmentation on
iSeg-2017.

2. Related Work

2.1. Cross-domain Synthesis for Medical Image

For medical images, cross-domain synthesis can predict the target modal or contrast of a
given object, by learn the pixel-level mapping from source to target domain (Chartsias et al.
(2017)). Technically, they can be divided into three categories: 1) registration-based meth-
ods, 2) sparse-coding-based methods, and 3) deep-learning-based methods. Registration-
based methods (Burgos et al. (2012)) are to register the atlas to the target and are sensi-
tive to the registration accuracy. Sparse-coding-based methods (Huang et al. (2017)) are
mainly based on encoding the non-linear mapping between different domain patches. How-
ever, both classes of methods are time-consuming and ignore spatial information. Several
learning-based schemes are also patch-based and to learn the pixel-wise mapping between
different domain, such as (Jog et al. (2017)). Various deep-learning-based approaches have
brought new potential for cross-domain synthesis, such as GAN (Goodfellow et al. (2014)).
Several GAN-based method (Dar et al. (2018)) has been introduced to enhance the fidelity
of synthesis by using game theory. However, there is a common limitation that they are
mainly based on paired data in different domains. In order to solve it, CycleGAN (Zhu et al.
(2017)) combines two GANs with a cycle consistency to receive unpaired data. In (Hiasa
et al. (2018)), a gradient consistency is integrated into CycleGAN to refine the boundaries.

2.2. Segmentation with Synthesis

Cross-domain synthesiszed images can be used to improve the medical image processing
performance, such as segmentation (Iglesias et al. (2012); Liu et al. (2018)). These synthesis-
based segmentation methods are grouped into two classes: 1) two-stage methods (Chartsias
et al. (2017)), they first synthesize and then segment separately. 2) one-stage methods
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Figure 3: The proposed SSA-Net is based on a CycleGAN with four loss terms.

(Huo et al. (2019); Zhang et al. (2018)), they integrate synthesis and segmentation in end-
to-end. As shown in Fig. 2(a), (Chartsias et al. (2017)) introduced a two-stage method
via CycleGAN, which first obtained synthesized data for the next segmentation with using
target labels. For the one-stage methods, (Huo et al. (2019)) integrated a CycleGAN
and a segmentation network with using only source domain label. TranSeg-Net (Zhang
et al. (2018)) added a segmentor at each domain of the CycleGAN, and used a shape
consistent loss with using the both domains label to made the synthesis and segmentation
work together. All these methods used CycleGAN to handle unpaired data, and training
segmentation with synthesized data. We integrate the advantages of both of them (Fig.
2(b)) and propose a shape consistency loss with only requires source domain labels, which
means better adaptability and higher utilization of data.

3. The Proposed Method

Taking synthesis of MRI-to-CT as an example (MRI is the source and CT is the target
domain), the workflow of the proposed method is depicted in in Fig. 3. The proposed
SSA-Net consists of a synthesis subnet and a segmentation subnet (they are trained in end-
to-end), and the inputs of it include real MRI, real CT and labels on MRI. The model can
be divided into two cyclic paths C1 (the blue arrows) and C2 (the red arrows) according to
the data flow. In path C1, the generator GCT (for MRI-to-CT) generates synthesized CT
from real MRI, and then the generator GMR reconstructs the synthesized CT back to the
source domain as the reconstructed MRI. In path C2, fake MRI is synthesized from real
CT by generator GMR (for CT-to-MRI), and then it is input to GCT to be reconstructed
back to the target domain as the reconstructed CT. Here, two segmentors only worked
in cyclic path C1, segmentor SCT segments synthesized CT and segmentor SMR segments
reconstructed MRI separately. It should be noted that the labels only in MRI are used as
segmentation ground truth for both segmentors, while working with loss Lsha to supervise
the shape consistency in C1. We also design a gradient consistent term Lgra to constraint
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the boundary in the synthesis subnet. In both C1 and C2, adversarial learning is achieved
by two discriminator (DMR or DCT ) with the adversarial loss Ladv, and an original cycle
consistent loss Lcyc in CycleGAN (Zhu et al. (2017)) is also performed. During testing, real
MRI is input to GCT (the parameters in the model have been fixed) to obtain the realistic
synthesized CT, and the segmentation results are also output by SCT .

3.1. Synthesis and Segmentation Network

In this paper, the source domain MRI and target domain CT are marked as XMR and XCT .
The proposed network consists of two subnets: synthesis subnet and segmentation subnet.
They are introduced as follows.

3.1.1. CycleGAN-based Synthesis Subnet with Attention

We use the Attention U-Net structure (see Fig. 4) as the generators GMR and GCT . This U-
Net consists of a contraction and an expansion path, including three down-sampling blocks
(convolution with max pooling), three upsampling blocks (convolution with deconvolution)
and several convolutions with stride 1. We also employ Instance normalization (IN) and
rectification linear unit (ReLU). Note that the original skip connections in U-Net are re-
placed by the attention blocks, which connect the contraction and the expansion layers. As
shown in Fig. 4, the attention block can calculate a grid-wise attention matrix from the
feature maps to enhance or suppress (by element-wise multiplication) the propagation of
some local features. It allows the generators focus on the hard-to-synthesis region during
optimizing. We use the basic basic PatchGAN (Isola et al. (2016)) as the discriminators to
identify synthesized local region with the adversarial loss Ladv.

These two generators and the two discriminators form a CycleGAN-based synthesis
subnet with a cycle consistent loss Lcyc (Zhu et al. (2017)), which simultaneously learns
two cross-domain mappings (MRI-to-CT and CT-to-MRI). Besides, a gradient consistent
loss Lgra is introduced to constraint the texture in synthesized result, and a segmentation
subnet with the shape consistent loss Lsha is also used to constrain the anatomical structure
during synthesis, they are described in Section 3.2.

3.1.2. Segmentation Subnet via U-Net

We employ a simplified U-Net (Huo et al. (2019)) as the structure of our segmentors to
obtain reliable segmentation results on the synthesized images, as shown in Fig. 5. The
segmentor consists of two symmetrical contraction (down-sampling block with max pooling)
and expansion (upsampling block with unpooling) paths. Here are several skip connections
(as shortcuts) between different layers to achieve deeper supervision.

The segmentation subnet works with a special shape consistent loss Lsha, which can
constrain the structural consistency during synthesis and guide segmentation. Lsha is driven
by two segmentors, SCT (in target domain) segments the synthesized target domain images
and SMR (in source domain) segments the reconstructed image returned to the source
domain. In order to better deal with the limitation of data acquisition in real situations,
we make a compromise between performance and generalization. Here only source domain
labels are used as the ground truth for segmentation, thus Lsha mainly supervise the cyclic
path C1. However, because the whole framework is trained in end-to-end and the object
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Figure 4: The structure of the proposed SSA-Net. Each group of overlapped color cubes
represents a group of feature maps. The channel number of the feature maps is marked on
the top of the cube, the size is marked on the bottom.

supervised by Lsha belongs to both domains, shape consistent loss can also indirectly work
in the C2.

3.2. Objective Function

During the training, the total objective loss Ltotal (Eq. 1) is a combination of four loss
terms: an adversarial loss Ladv, a cycle consistent loss Lcyc, a gradient consistent loss Lgra
and a shape consistent loss Lsha. Here α, β, γ and δ are the weight coefficients. The
adversarial loss Ladv is the least square error (Qi (2017)) between the synthesized and real
images. The cycle consistent loss Lcyc refers to (Zhu et al. (2017)), which can force two
cyclic paths to capture the features from their respective domains and allows CycleGAN to
handle unpaired data. The gradient consistent and shape consistent loss are described in
detail bellow.

Ltotal = αLadv + βLcyc + γLgra + δLsha (1)

3.2.1. The Gradient Consistent Loss

In order to supervise the contours in synthesized images, we use a gradient consistent loss
Lgra (see Eq. 2) to maximize the gradient correlation (GC, between 0 and 1) (Penney et al.
(1998)) between synthesized and real images. Here xmr, xct are two unpaired images in both
domains, GCT is the generator for CT domain (MRI-to-CT), and GMR is the generator for
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Figure 5: The U-Net used as the segmentors in the proposed SSA-Net, includes Down-
sampling block and Up-sampling block. The size batchsize× width× heigth× channel of
the feature maps is marked around the arrow.

MRI domain (CT-to-MRI).

Lgra =
∑

xmr∈XMR

(1−GC(xmr, GCT (xmr))) +
∑

xct∈XCT

(1−GC(xct, GMR(xct))) (2)

For two given images p and q, their gradients in both horizontal and vertical directions
are marked as pv, qv, ph and qh. Then their GC is calculated according to Eq. 3, where
NCC(�) is the normalization cross-correlation (NCC) (Hiasa et al. (2018)).

GC(p, q) =
1

2
[NCC(pv, qv) +NCC(ph, qh)] (3)

3.2.2. The Shape Consistent Loss

In order to alleviate the geometric distortion (Zhang et al. (2018)) caused by insufficient
constraint in basic CycleGAN and obtain reliable segmentation in target domains, we design
a shape consistent loss Lsha (see Eq. 4) with two segmentors. SCT is the segmentor for CT
domain, and SMR is the segmentor for MRI domain.

Lsha = Lsha(GCT , SCT ) + Lsha(GMR, GCT , SMR) (4)

Here Lsha(GCT , SCT ) is the shape consistency error between the synthesized target
image and the source image, and Lsha(GMR, GCT , SMR) is between the reconstructed image
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of the synthesized target image and the source image. They are defined as two multi-class
cross-entropy:

Lsha(GCT , SCT ) = −
∑

xmr∈XMR
ymr∈YMR

(ymr log(SCT (GCT (xmr))))
(5)

Lsha(GMR, GCT , SMR) = −
∑

xmr∈XMR
ymr∈YMR

(ymr log(SMR(GMR(GCT (xmr)))))
(6)

Here ymr ∈ YMR represents the segmentation labels of MRI inputs and used as the
shape ground truth for shape consistency. Unlike (Zhang et al. (2018)), here only source
domain (MRI) labels are required to directly constrain C1, which also indirectly affect C2

due to the features can cyclically propagate among different domains in CycleGAN.

4. Experimentation and Results

4.1. Dataset

To investigate the performance of cross-domain synthesis and segmentation of the methods,
an abdominal dataset CHAOS (CHAOS (2019)) is used for cross-modality experiment,
and an infant brain MRI dataset iSeg-2017 (Wang et al. (2019)) is used for cross-contrast
experiment.

CHAOS (CHAOS (2019)) includes unpaired CT and MRI images as well as their labels.
Note that the labeled organs in both modalities are different, CT label marks liver and
abdomen, MRI label marks abdomen, liver, left kidney, right kidney, and spleen. It allows
our method to try to segment organs unmarked in CT (target domain) label (see Section
4.4). We extracted a total of 1120 unpaired MRI/CT images (256× 256) and their labels,
80% (896) of them are used for training, and the remaining 20% (224) are used for testing.

For iSeg-2017 (Wang et al. (2019)), there are more fuzzy boundaries and irregular tissues
in the images, beacause the brain of 6-month infant is undeveloped. It means greater unpre-
dictability for image processing task. As far as we know, there is no cross-domain synthesis
and segmentation method has been explored on this dataset before. iSeg-2017 includes T1
and T2 images as well as their labels (label marks cerebrospinal fluid (CSF), white matter
(WM) and gray matter (GM)). To make these two contrast sequences unaligned, we disrupt
the order of them. A total of 1200 T1/T2 images (144×192) and their labels are extracted.
80% (960) of them are training samples, and the remaining 20% (240) are testing samples.

4.2. Implementation Details and Compared Methods

All method are carried on a Linux workstation with a NVIDIA Tesla V100-SXM2 GPU (16
GB memory). During training, the coefficients of four loss terms are set to α = 1, β = 10,
γ = 0.5 and δ = 0.5 respectively.

We select two advanced synthesis and segmentation methods to compare with the pro-
posed method. They are (1) Cycle+Seg (Chartsias et al. (2017)) (Fig. 2(a)) and (2)
TranSeg-Net (Zhang et al. (2018)). All methods are evaluated with the same dataset par-
titioning, and noting that the target domain labels are used to train TranSeg-Net (Zhang
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Figure 6: The visual results of synthesized images in target domain of all methods. The
first row shows the results on CHAOS, and the second row shows the results on iSeg-2017.

et al. (2018)). Because of the lack of the corresponding ground truth in target domain (this
paper are based on unpaired data), we chose an indirect evalution criteria S-score (Zhang
et al. (2018)) (see Eq. 7) for synthesis, which is worked with an additional independent seg-
mentation network Stest. Stest (using a basic U-net in this paper) is independently trained
with the real images and manual labels in target domain. The S-score is calculated by
Dice similarity coefficient (DSC). Here xmr and ymr represent the source MRI image and
its segmentation label, N denotes the number of testing images.

S-score =
1

N

∑
i∈N

DSCi(Stest(GCT (xmr)), ymr) (7)

4.3. Results of Cross-Domain Synthesis

To investigate the cross-domain synthesis performance of our method, all methods are
evaluated on two datasets (CHAOS (CHAOS (2019)) and iSeg-2017 (Wang et al. (2019))).
For quantitative evaluation with S-score, Stest is trained by real images and labels in target
domain (CT or T2). Here, the results of Cycle+Seg (Chartsias et al. (2017)) are as the
baseline.

4.3.1. Visual Comparison and Qualitative Analysis

The synthesized results of our method and other comparative methods on both datasets
(CHAOS and iSeg-2017) are displayed in Fig. 6. Among the synthesized results (syn-
thesized CT and synthesized T2) on both datasets, the proposed SSA-Net have achieved
best visual performance than other two compared methods. The result of the baseline
Cycle+Seg (Chartsias et al. (2017)) has rough edges of tissue and low contrast between
different organs. TranSeg-Net (Zhang et al. (2018)) and our SSA-Net obviously outperform
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Table 1: The S-scores of our method and other comparative methods on two datasets for
cross-domain synthesis. The largest is marked in blod and the second on italics

Methods
CHAOS iSeg-2017

CT MRI T2 T1

Cycle+Seg (baseline) 0.796±0.052 0.764±0.043 0.684±0.049 0.647±0.036
TranSeg-Net 0.863±0.035 0.825±0.032 0.716±0.031 0.677±0.021

SSA-Net (ours) 0.877±0.028 0.846±0.034 0.734±0.033 0.692±0.023

the baseline, due to the advantage of additional semantic segmentation information (labels)
used to strengthen supervision. Furthermore, the result of our proposed SSA-Net has clearer
contours and higher contrast than TranSeg-Net (Zhang et al. (2018)). As shown in the red
boxes, our model can obtain better details and clearer boundaries by integrating gradient
consistent loss, which guarantees the contrast between different tissues. Besides, some small
details are also retained in the result of SSA-Net, because of the attention component can
make our generators attend to detailed texture.

4.3.2. Quantitative Comparison and Analysis

The S-scores of cross-domain synthesis on two datasets are presented in Tab. 1, the pro-
posed SSA-Net outperforms other methods and achieves the highest S-score. Similar to
visual results, TranSeg-Net (Zhang et al. (2018)) and our method exceed the Cycle+Seg
(Chartsias et al. (2017)) (baseline) to a certain extent. This reveals that for the medical
images with complex textures and specificity, a single CycleGAN is not sufficient to map
the synthesis transition between different domains. This also means that additional se-
mantics segmentation information can provide more constraints to synthesis and promote
it. The S-score of TranSeg-Net (Zhang et al. (2018)) is higher than Cycle+Seg (Chartsias
et al. (2017)), because all semantic labels in both domains are used in TranSeg-Net (Zhang
et al. (2018)) to ensure the shape consistency. Although only MRI labels are used in our
method to supervise the shape consistency to C1, the attention component and the gradient
consistent term are mainly conducive to improve synthesis (see the ablation experiment in
Section 4.5) and can compensate for this weakness.

4.4. Results of Cross-domain Synthetic Segmentation

A comparison is carried out on all methods to verify the performance of segmentation based
on cross-domain synthesized images. Taking the cross-domain synthetic segmentation of
source-to-target as the example, the visual results and quantitative analysis are described
below.

Qualitative analysis. The results of synthetic segmentation of all methods are visu-
alized in Fig. 7. The segmentation result on CHAOS of two-stages Cycle+Seg (Chartsias
et al. (2017)) has obvious deficiencies, such as the contours of segmented organ are irregular.
The segmentation results of TranSeg-Net (Zhang et al. (2018)) and our model are close to
the ground truth. For the challenging iSeg-2017 with Six-month infant brain, all methods
can segment CSF reliably, but there is under-segmentation in other two tissues (especially
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Figure 7: Visual results of cross-domain synthetic segmentation for all methods on two
datasets. The first row is the results on CHAOS, white marks abdomen, orange marks
liver, yellow marks right kidney, green marks left kidney, and blue marks spleen. The
second row is the results on iSeg-2017, white marks cerebrospinal fluid, orange marks gray
matter, and yellow marks white matter.

Table 2: The synthetic segmentation DSC scores of all methods for different tissues on two
datasets. The largest is marked in blod and the second on italics

Methods
CHAOS iSeg-2017

Abdomen Liver CSF GM WM

Cycle+Seg (baseline) 0.854±0.059 0.788±0.046 0.816±0.045 0.697±0.053 0.684±0.048
TranSeg-Net 0.916±0.033 0.824±0.038 0.869±0.041 0.764±0.041 0.745±0.042

SSA-Net (ours) 0.910±0.031 0.805±0.033 0.855±0.034 0.757±0.037 0.751±0.033

in WM). Compared with Cycle+Seg (Chartsias et al. (2017)), other two one-stage models
(TranSeg-Net and our SSA-Net) have better segmentation performance. This confirms that
one-stage framework optimizes the synthesis and segmentation networks jointly, so that
synthesis and segmentation can promote each other. Note that the results of TranSeg-Net
(Zhang et al. (2018)) on both datasets outperform the proposed SSA-Net. This is because
TranSeg-Net (Zhang et al. (2018)) uses both domain labels to optimize segmentors and
achieve the shape consistency. Although our proposed SSA-Net only use source domain
labels, this also brings more generalization and flexibility to our framework, such as we can
segment the organs (kidney and spleen on CHAOS) that do not exist in the target domain
label. Besides, the segmentation contour of our method is smooth, which may be the effect
of gradient consistency.

Quantitative analysis. The segmentation DSC scores on two datasets of all methods
are listed in Tab. 2. It can be seen that all the methods get the lower DSC scores on
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Table 3: The S-scores and DSC scores of our method and two ablation versions on CHAOS
dataset. The largest is marked in blod and the second on italics

Methods
S-score(synthesis) DSC(segmentation)

CT Abdomen Liver

SSA-Net NA 0.846±0.024 0.876±0.034 0.784±0.032
SSA-Net NG 0.860±0.033 0.892±0.030 0.791±0.037

SSA-Net (ours) 0.877±0.028 0.910±0.031 0.805±0.033

iSeg-2017, which indicates that segmentation of 6-month infant brain is also a challenge.
Compared to Cycle+Seg (Chartsias et al. (2017)), our SSA-Net and TranSeg-Net (Zhang
et al. (2018)) achieve better segmentation performance based on synthesis, which benefits
from end-to-end optimized synthesis and segmentation subnets. Our SSA-Net gets higher
scores than the Cycle+Seg (Chartsias et al. (2017)) on all tissues, which is due to the ad-
ditional consistent loss terms can strengthen the supervision of the synthesis and indirectly
improve the segmentation. Note that our model is second only (even the best result on
WM) to TranSeg-Net (Zhang et al. (2018)), which is due to additional target domain la-
bels used in TranSeg-Net (Zhang et al. (2018)) can directly improve the segmentation, but
the best result on WM segmentation also reveals the potential of our method. Although
our SSA-Net sacrifices little performance for segmentation with less labels, it also achieves
better generalization and practicability.

4.5. Ablation Experiment

The ablation experiment is carried out on the CHAOS datasets with two abridged versions
(SSA-Net NA and SSA-Net NG) of our proposed method. SSA-Net NA replaces the atten-
tion block with the ordinary skip connection in U-Net. SSA-Net NG removes the gradient
consistent loss term Lgra from the objective function. The quantitative results (S-score and
DSC) are listed in Tab. 3. The complete version (SSA-Net) surpasses SSA-Net NA and
SSA-Net NA in both metircs, which illustrates that these two components are positive for
the proposed method in synthesis and segmentation. Besides, we can see that the attention
block improves the synthesis scores (S-score) more than the gradient consistent loss term.
It implies that the attention is more conducive to improve synthesis performance.

5. Conclusion

In this paper, we propose a novel one-stage cross-domain synthesis and segmentation method
using unpaired data, which is CycleGAN-based and only requires the labels in source do-
main. We use the gradient prior information in synthesis and integrate the segmentation
network to supervise the shape consistency. Besides, we introduce an attention U-Net as
generator to automatically attend to the hard-to-synthesis regions. Experiments on two
datasets (CHAOS and iSeg-2017) demonstrate the effectiveness of the proposed SSA-Net,
which achieves good performance on cross-domain synthesis and shows the potential of
segmentation.
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Tolga Çukur. Image synthesis in multi-contrast mri with conditional generative adver-
sarial networks. IEEE Transactions on Medical Imaging, PP(99):1–1, 2018.

Alejandro F. Frangi, Sotirios A. Tsaftaris, and Jerry L. Prince. Simulation and synthesis
in medical imaging. IEEE Transactions on Medical Imaging, 37(3):673–679, 2018.

Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit
Greenspan. Gan-based synthetic medical image augmentation for increased cnn perfor-
mance in liver lesion classification. Neurocomputing, 2018.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Xu Bing, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. 2014.

Yuta Hiasa, Yoshito Otake, Masaki Takao, Takumi Matsuoka, Kazuma Takashima, Jerry L.
Prince, Nobuhiko Sugano, and Yoshinobu Sato. Cross-modality image synthesis from
unpaired data using cyclegan: Effects of gradient consistency loss and training data size.
2018.

Yawen Huang, Ling Shao, and Alejandro F. Frangi. Simultaneous super-resolution and
cross-modality synthesis of 3d medical images using weakly-supervised joint convolutional
sparse coding. 2017.

Y. Huo, Z. Xu, H. Moon, S. Bao, A. Assad, T. K. Moyo, M. R. Savona, R. G. Abramson,
and B. A. Landman. Synseg-net: Synthetic segmentation without target modality ground
truth. IEEE Transactions on Medical Imaging, 38(4):1016–1025, April 2019. ISSN 0278-
0062. doi: 10.1109/TMI.2018.2876633.

Juan Eugenio Iglesias, Ender Konukoglu, Darko Zikic, Ben Glocker, Koen Van Leemput,
and Bruce Fischl. Is synthesizing mri contrast useful for inter-modality analysis? 2012.

999

https://chaos.grand-challenge.org/


Liu Wei Yu Pan

Phillip Isola, Jun Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation
with conditional adversarial networks. 2016.

Amod Jog, Aaron Carass, Snehashis Roy, Dzung L. Pham, and Jerry L. Prince. Random
forest regression for magnetic resonance image synthesis. Medical Image Analysis, 35:
475–488, 2017.

X. Liu, J. Cao, T. Fu, Z. Pan, W. Hu, K. Zhang, and J. Liu. Semi-supervised automatic
segmentation of layer and fluid region in retinal optical coherence tomography images
using adversarial learning. IEEE Access, 7:3046–3061, 2019. ISSN 2169-3536. doi: 10.
1109/ACCESS.2018.2889321.

Xiaoming Liu, Dong Liu, Tianyu Fu, Zhifang Pan, Wei Hu, and Kai Zhang. Shortest
path with backtracking based automatic layer segmentation in pathological retinal optical
coherence tomography images. Multimedia Tools and Applications, (2), 2018.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Mis-
awa, Kensaku Mori, Steven Mcdonagh, Nils Y Hammerla, and Bernhard Kainz. Attention
u-net: Learning where to look for the pancreas. 2018.

G.P. Penney, J. Weese, J.A. Little, P. Desmedt, D.L.G. Hill, and D.J. hawkes. A comparison
of similarity measures for use in 2-d-3-d medical image registration. IEEE Transactions
on Medical Imaging, 17(4):586–95, 1998.

D. D. Pham, G. Dovletov, S. Warwas, S. Landgraeber, M. Jäger, and J. Pauli. Deep learning
with anatomical priors: Imitating enhanced autoencoders in latent space for improved
pelvic bone segmentation in mri. pages 1166–1169, April 2019. doi: 10.1109/ISBI.2019.
8759221.

Guo Jun Qi. Loss-sensitive generative adversarial networks on lipschitz densities. 2017.

Li Wang, Dong Nie, Guannan Li, Elodie Puybareau, Jose Dolz, Qian Zhang, Fan Wang,
Jing Xia, Zhengwang Wu, and Jiawei and Chen. Benchmark on automatic 6-month-old
infant brain segmentation algorithms: The iseg-2017 challenge. IEEE Transactions on
Medical Imaging, PP(99):1–1, 2019.

Wenqi Lu and Qiang Su. Impact of clinical information quality on healthcare diagnosis
quality: An empirical study. pages 1–5, June 2016. doi: 10.1109/ICSSSM.2016.7538608.

Zizhao Zhang, Lin Yang, and Yefeng Zheng. Translating and segmenting multimodal med-
ical volumes with cycle- and shape-consistency generative adversarial network. 2018.

Jun Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. 2017.

1000


	Introduction
	Related Work
	Cross-domain Synthesis for Medical Image
	Segmentation with Synthesis

	The Proposed Method
	Synthesis and Segmentation Network
	CycleGAN-based Synthesis Subnet with Attention
	Segmentation Subnet via U-Net

	Objective Function
	The Gradient Consistent Loss
	The Shape Consistent Loss


	Experimentation and Results
	Dataset
	Implementation Details and Compared Methods
	Results of Cross-Domain Synthesis
	Visual Comparison and Qualitative Analysis
	Quantitative Comparison and Analysis

	Results of Cross-domain Synthetic Segmentation
	Ablation Experiment

	Conclusion

