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Abstract

Nowadays the system vulnerability caused by soft errors grows exponentially, of which
Silent Data Corruption(SDC) is one of the most harmful issues due to introducing unnoticed
changes to the original data and error outputs. Thus, the detection of SDC-causing errors
is extremely significant to the system reliability. However, most of the current detecting
techniques require sufficient data of fault injections for training, which are difficult to
achieve in practice because of high resources consumption, such as expensive execution
time and code size costs. To this end, we propose a lightweight model named Deep Forest
Regression based Multi-granularity Redundancy(DFRMR) to improve the error detection
rate and meanwhile decrease the resources consumption. Specifically, first, we employ the
program analysis to extract instruction features which are highly related to SDCs. Second,
we design the deep forest regression model to predict the SDC vulnerability of instructions.
Third, we optimize the error detection procedure by duplicating the critical instructions
with different granularity. Finally, we evaluate our DFRMR model on Mibench benchmarks
with multiple testing programs. The results show that our method attains better detection
accuracy compared to other state-of-the-art methods and keeps the low multi-granularity
redundancy.

Keywords: SDC vulnerability prediction, Fault tolerance, Error detection, Deep forests

1. Introduction

Soft errors in a computer’s memory system always refer to the changes of an instruction in
a program or a data value, which will damage the processing data1. Practically, Silent Data
Corruption(SDC) is the most harmful issue of soft errors caused by multiple reasons. For
instance, the network might suffer undetected corruption, cosmic radiation and many other
causes of soft errors in memory. Due to run unnoticedly, SDCs can’t be detected by the disk
firmware or the host operating system. As a result, SDCs can lead to incorrect program
outputs without any explicit error phenomena. Previous studies have exhibited that the
error rates on silent corruption are far higher than one in every 106 bits Shoshani and

1. https://en.wikipedia.org/wiki/Soft error
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Table 1: Statistics of programs under full fault injection approach

Qsort Fast Fourier trans Dijkstra

Lines of source code 45 142 170
Number of static instructions 92 541 325
Number of dynamic instructions 245 13061 6.51× 106

Number of fault injections 10751 7.07× 105 3.54× 108

Rotem (2009). Thus, how to identify and protect instructions against SDCs have become
an significant problem in academic and industry.

In recent years, various techniques have been proposed to detect SDCs. They focus on
the identifying process of SDC vulnerability instructions, for instance, fault injection based
techniques Hari et al. (2012a); Hiller et al. (2002), program analysis based techniques Yang
and Gao (2007); Pattabiraman et al. (2008) and machine learning based techniques Laguna
et al. (2016); Bronevetsky et al. (2009); Liu et al. (2018); Yang and Wang (2019); Lu et al.
(2014, 2017); Liu et al. (2019). To be specific, fault injection based techniques identify the
vulnerable instructions by a full fault injection. They inject faults to every bit of an operand
of all dynamic instructions, which takes too much time to practice. Tab.1 reports some
statistics of three classic programs (i.e., Qsort, Fast Fourier Transform and Dijkstra) under
the full fault injection approach. We can observe that a program with only hundreds of code
lines may require millions of injections, which is very time-consuming. Program analysis
based techniques determine whether an instruction needs to be protected by statically
analyzing the propagation path of errors. However, as programs linearly increase in size,
rapid exponential growth of computational complexity makes these methods hard to be
applied. Machine learning based techniques use instruction SDC vulnerability predictors
for predicting which instruction to protect. Generally, these methods can achieve a better
prediction accuracy, but they suffer from the demand for large-scale training data and
complex manual parameter tuning.

To these ends, in order to lighten the workload of identifying process, we propose
a lightweight model called Deep Forest Regression based Multi-granularity Redundancy
(DFRMR) to predict the SDC vulnerability of instructions, and select high SDC vulner-
ability instructions to conduct protection. Generally, considering the time consumption
issue, DFRMR identifies vulnerable instructions depending on source code features rather
than fault injections. Further, our method allows users to select how many instructions to
protect subject to the overhead they are willing to tolerate. To reach above goals, specif-
ically, (1) We extract the features related to SDC vulnerability using Low Level Virtual
Machine(LLVM) framework on a small set of benchmark programs. Then we perform a
small scale fault injection experiment to generate predictive value of SDC vulnerability. (2)
We introduce deep forest regression as SDC vulnerability predictor to relief data scale is-
sue. Compared to other machine learning methods (e.g., deep neural network) that require
large-scale training data Zhou and Feng (2017), the deep forest can obtain high accuracy
even when there are only small-scale training data, which allows us to lighten the process
of data collection. Further, it requires little manual tuning because the cascade level can
be adaptively determined. In order to improve the prediction accuracy, we develop cascade
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regression forest structure and improved sliding window scanning technique. The former
is used for generating enhanced features which provide a more accurate description of the
data, while the latter is used for exploring feature space as well as extracting relationships’
features among sequential samples. (3) We use DFRMR to predict SDC vulnerability of
instructions in new programs. The prediction results are used to derive error detectors for
instructions, subject to a given redundancy granularity. While the program is running,
our detectors re-execute the chosen instructions by duplicating them and compare the re-
executed value with the original one. Any deviation between the two values will be treated
as successful error detection. Our experimental results demonstrate that DFRMR is more
accurate in predicting the SDC vulnerability and achieves a higher SDC error detection
rate. The main contributions of our work are summarized as follows:

• We develop a lightweight model named DFRMR to detect SDCs of instructions.
DFRMR predicts the SDC vulnerability depending on instruction features without
performing fault injections. And instructions are protected partially subject to the
given granularity by users.

• We design a deep forest model for vulnerability prediction in order to lighten data
collection and processing workloads. To achieve higher accuracy, we apply various
regression forests to extract enhanced features, and improved sliding window scanning
to explore feature space.

• We develop error detectors by duplicating the instructions depending on a given gran-
ularity. The detectors will throw indications if there occur soft errors.

• We evaluate the performance of our approach under two metrics, accuracy of the
prediction model and effectiveness of fault tolerance subject to the overhead specified
by users. The result shows that DFRMR achieves higher accuracy than state-of-the-
art algorithms, as well as acquires high error detection rate with low overhead.

The remainder of this paper is organized as follows. Section 2 introduces the related
works. Section 3 presents the overall framework of our approach. Section 4 details the
DFRMR method, including SDC vulnerability, feature extraction, deep forest model and
instruction redundancy strategy. Eventually, the validation experiments are conducted in
Section 5, and the conclusion is summarized in Section 6.

2. Related Work

Error detection techniques are mainly classified into hardware-implemented and software-
implemented techniques. The hardware-implemented techniques require on-chip redun-
dancy which means additional hardware circuits for fault tolerance. Typical triple-module
redundancy(TMR) provides an efficiency error detection rate, but it also brings huge ad-
ditional hardware overhead Kastensmidt et al. (2005). Dai et al. (2015); Sato and Arita
(2001) proposed methods for repeatedly executing an operation on idle processing units
of the processor in order to reduce the hardware overhead of fault tolerance. Although it
is proved that hardware-implemented methods are able to achieve higher reliability, they
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need to modify or add additional circuits to meet the needs of error detection. In con-
trast, software-implemented methods are flexible enough to solve these problems and have
attracted a lot of attentions. Generally, software redundancy techniques are classified into
three categories: fault injection based techniques, program analysis based techniques, ma-
chine learning based techniques.

Fault injection based techniques have significant overhead to performing a large number
of fault injections. Hari et al. (2012b) attempted to reduce the overhead of fault injection by
obtaining equivalent faults. Li and Tan (2013) employed the faults equivalent technique and
faults outcome prediction technique to reduce the time for a single fault simulation. Xu and
Li (2012) compressed fault injection space using a biased injection method, which allows
the injection campaign only focuses on likely non-derated faults. However, these methods
are not suitable for large-scale programs.

Program analysis based techniques identify the vulnerability instructions through pro-
gram analysis rather than fault injection. Yang and Gao (2007) analyzed the propagation
of transient fault in the program and calculate the SDC vulnerability by the error propa-
gation model. Pattabiraman et al. (2008) used symbolic execution to abstract the state of
erroneous values in the program and modeled checking to comprehensively find all errors
that evade detection. Although these techniques can achieve a high analysis accuracy, they
suffer from high computation complexity due to the complex structures of programs.

To balance the relationship between fault injection space and analysis accuracy, program
analysis can be combined with fault injection techniques. The SDC-causing instructions
are inferred dynamically based on the information of program analysis and fault injection
results, which not only ensures the accuracy but also reduces the cost of fault injections.
Recent studies focus on the efficient selection of susceptible instructions, because a valid
instruction set is a guarantee of the trade-off between detection accuracy and overhead.

Machine learning based techniques predict the vulnerability by extracting features of
instructions in programs. Laguna et al. (2016); Yang and Wang (2019) discussed the perfor-
mance of Support Vector Machine(SVM) in SDC-prone prediction, and an analysis in Yang
and Wang (2019) showed the feasibility of partial fault injection. Lu et al. (2014, 2017);
Liu et al. (2019) used Regression Tree based method to predict the SDC vulnerability of
instructions. These methods require little human intervention, which allows them to per-
form no fault injections in the process of instructions selection. Bronevetsky et al. (2009);
Liu et al. (2018) applied Neural Network(NN) and Long Short-Term Memory(LSTM) to
predict SDC vulnerability, which needs a large scale dataset of fault injections.

3. The Overall Framework

Fig. 1 shows the overall framework of our approach. It mainly contains three components:
(1) Data collection. To get our training data, we implement the program analysis to extract
features that are highly related with SDCs. Fault injections are conducted on the benchmark
programs to calculate SDC vulnerability. (2) Model training. We first introduce a sliding
window to extract expanded features of instructions. Then the cascade regression forest
model is applied to train the SDC vulnerability predictor. (3) Fault tolerance. The SDC
vulnerability of instructions from a new program will be predicted by the SDC predictor.
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Figure 1: The overall framework of our approach.

We sort the instructions by predictive values and duplicate those which are more vulnerable.
Next, we introduce the details of each component step by step.

4. Methodology

4.1. SDC vulnerability

In this paper, instruction SDC vulnerability refers to the probability that an SDC will be
generated when a soft error occurs to the instruction. The definition of the instruction SDC
vulnerability is described as follows.

Static and dynamic instruction sets are denoted as Eq. 1,{
Vstatic = {I1, ..., Ii, ..., IN},
Vdynamic = {Id11 , ..., I

di
i , ..., I

dN
N },

(1)

where Ii is the ith static instruction, N is the number of static instructions in the
program, Idii means the dynamic instructions set of Ii that Ii executes di times in a program
running process. The SDC vulnerability of Ii is defined as Eq. 2:

PSDC(Ii) ==
1

di
×
∑

Iqi ∈I
di
i

Sq
i

F q
i

(2)

where Iqi is the qth dynamic instruction of Idii , F q
i is the number of faults injecting to the

dynamic instruction Iqi , Sq
i is the number of the SDC errors caused by fault injections.

4.2. Feature extraction

We extract features according to our analysis and prior works Lu et al. (2014); Ma et al.
(2016); Bo et al. (2016). Fig. 2 shows the SDC vulnerabilities of partial instructions. As
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Figure 2: Impacts of instruction type on fault injection results.

we can see in Fig. 2, instructions SDC vulnerability are highly related to their types. Con-
sequently, the extracted features shown in Tab. 2 mainly consist of the following aspects:

Transfer instructions and branch instructions are the critical points of program propa-
gation paths Ma et al. (2016). They are highly related to the data process like parameter
passing and value return. Data corruption occurs at transfer or branch instructions is most
likely to cause SDCs. So transfer and branch characteristics are concerned in our feature
extraction denoted as vtran.

Comparison instructions impact the bits of the flag register, and they determine the
jump destination of branch instructions Ma et al. (2016). A propagation through comparison
instructions will be affected by the bit-flip, which will incur SDCs. Thus, we take comparison
characteristics into consideration denoted as vcomp.

An error occurs in the instruction related to the address will lead to a crash or hang
in most cases Bo et al. (2016), therefore the SDC will be greatly reduced. In addition,
the address width also affects the rate of SDC, since more bits mean much probability of
error. Thus, address related characteristics are the key characteristics in feature extraction
denoted as vaddr.

Mask instructions may mask the error in the instruction operation and reduce the rate of
SDCs. For example, AND operation with 0 or OR operation with 1 will not affect the result,
Shift Right(SHR) operation may ignore error bits in the variables. Our feature extraction
will involve mask related characteristics denoted as vmask.

The loop info is also key information about SDCs. Lu et al. (2014) shows that nested
loop depths affect the SDC vulnerability of loops’ comparison operations, as the SDC vul-
nerability of comparison operations in inner loops are generally lower than the comparison
operations in outer loops. We denote loop info vector as vloop.

Calculation instructions generate SDCs are relatively higher than that of other instruc-
tions. Our fault injection experiments show that the SDC vulnerability of ADD, SUB, etc.
are above most instructions. Furthermore, instruction SDC vulnerability depends on the
basic block and function info (e.g., block size, function call number), code structure info
(e.g., number of predecessor successor block, whether it is in a loop). These characteristics
are intended as a supplement to our previous content which are denoted as varith and vbasic.
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Table 2: Description of instruction features
Feature cluster Feature Description

Transfer and branch
related features

is branch whether the instruction generate a
branch

is fuction call whether the operation call a function
is return whether the operation return a value

Comparison operations
related features

is int cmp whether the operation is a int compar-
ison operation

is float cmp whether the operation is a float com-
parison operation

Address related feature
is used in add whether the variable is used in address

related instruction
dest op width the width of destnation operation
is used store whether the varable is used in store in-

struction

Error Masked related
features

is and whether the operation is AND
is or whether the operation is OR
is sh whether the operation is a shift oper-

ation(e.g., shl,lshr)
is conv whether the operation is conversion

operation(e.g., trunc,fptosi)

Loop info related
features

is in loop whether the instruction is in loop
structure

loopdepth the loopdepth of the instruction

Arithmetic related
features

is add wether the instruction is addition in-
struction

is sub wether the instruction is subtraction
instruction

is mul/div wether the instruction is multiplica-
tion or division instruction

Basic block related
features

bb length basic block size
bb remaining ins num the number of instructions to be exe-

cuted
pred bb num the number of predecessor basic blocks
suc bb num the number of successor basic blocks

In summary, we define the origin input vector as Eq. 3,

vorigin = {vtran, vcomp, vaddr, vmask, vloop, varith, vbasic}. (3)

4.3. Deep Forest Model

The deep forest is a decision tree ensemble approach with performance highly competitive to
deep neural networks in a broad range of tasks. Our predicting model mainly contains two
parts: improved sliding window scanning and cascade regression forest. Cascade regression
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Figure 3: Cascade regression forest structure.

forest is the main structure of the deep forest, using multiple random forest layers to improve
prediction accuracy. Improved sliding window scanning is a pretreatment process that is
used to get sequential or spatial characteristics.

In order to make the training model adaptive to the data set and problem space, we
choose the deep forest algorithm for the following reasons:

• Most of the features we extract are Boolean data type, and the features within one
sample are not highly correlated. Random forest based deep forest is competent to
such data type.

• Deep forest performs well on samples with few features, while other regression models,
such as deep neural network needs a large number of samples. Further, deep forest
requires fewer parameters adjustment which will provide better generalization ability.

• Our data set is sequential. SDC vulnerability is susceptible to instruction sequences in
propagation path. Extracting instruction sequence features can improve the prediction
accuracy. Deep forest is effective on sequence data where sequential relationships are
critical by using window sliding.

4.3.1. Cascade Regression Forest Structure

We employ a cascade regression structure to train the predictor, as illustrated in Fig. 3.
Each level receives feature information processed by its preceding level and outputs its
processing result to the next level.

Each level is composed of multiple random regression forests, in other words, it is a type
of ensemble learning. Bronevetsky et al. (2009) has showed sufficient diversity is critical
for ensemble learning, therefore, we introduce different types of random regression forests
to increase diversity. In this paper, we use two extremely random forests denoted as φextr
and two normal random forests denoted as φnorm at each level. Each extremely random
forest contains 200 decision trees, generated by randomly selecting one feature among all
features to split at each node of the tree, and selecting all samples to train each tree. The
normal random forest also contains 200 decision trees, generated by randomly selecting

√
n

number of features (n is the number of input features) at each node but chose the one with
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Figure 4: Improved sliding window scanning.

the best MSE value to split, at the same time, randomly selecting part of the samples to
train each tree.

Fig. 3 shows the details of the cascade structure. The initial input vector are defined as
Eq. 4:

vinput = [vorigin, vexpanded], (4)

where vorigin is defined in Section 4.2, vexpanded is generated by the sliding widow scanning
that will be introduced in the next sub-section. Each regression forest φ will produce a
regression result φ(vinput) called enhanced feature, by searching for a best-split value on the
selected features at each node and calculating the average value at each split space. The
final output of this forest is the average value among all trees.

The enhanced features, which is then concatenated with the original feature vector,
denoted as the Eq. 5:

vninput = [φn−1extr1
(vn−1input), φ

n−1
extr2

(vn−1input), φ
n−1
norm1

(vn−1input), φ
n−1
norm2

(vn−1input), vorigin], (5)

will be used as input to the next cascade level. V n
input means the nth level input vector. In

our case, we get four enhanced features at the ensemble layer, then the next cascade layer
will receive four extra features.

In order to improve the accuracy and reduce the cost of training, the performance of the
whole cascade will be estimated on validation after expanding a new layer. Once the per-
formance of the whole model does not improve, the training process will be terminated. In
this way, the number of the layer will be automatically determined. The SDC vulnerability
prediction function can be denoted as Eq. 6:

F (vinput) =
1

m

m∑
i=1

φi(v
N
input), (6)

where N represents the total number of cascade forest levels, m represents the number of
random forests in the Nth level.

4.3.2. Improved Sliding Window Scanning

The traditional sliding window method can only extract sequence features of one sample,
because it slides the window within the sample. However, in our work, correlations of
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features within one sample are weak, while the correlations between samples are strong.
To addressed this problem, an improved sliding window method is illustrated as shown in
Fig. 4.

As shown in Fig. 4, a new vector is produced by connecting ten instances. To reduce
the impact of sliding on one sample, we set the widow dimension and the step length to be
integer multiple of number of features. In our case, the window dimensions are ranged from
21 to 105, and the step length is set to be 21. For example, suppose there is a 21-dimensional
window that will slide across the new vector, and take 21 steps forward each time, then
9 instances are produced. The instances extracted from the same size of windows will be
used to train an extremely random forest and a normal random forest, then the regression
values are generated and concatenated as transformed features. In total, 60-dimensional
features will be produced, and lead to a 60-dimensional expanded feature vector denoted as
vexpanded. For the expanded vector is generated by 10 instances, finally, we concatenate the
expanded vector with the tenth original feature vector and use the tenth instance’s SDC
vulnerability as the predictive value. The final vector will be used as the initial input of the
cascade forest.

4.4. Instruction Redundancy Strategy

Instructions can be processed at different granularity, where high SDC vulnerability instruc-
tions are preferred for redundancy protection. The designed strategy is as follows:

4.4.1. Select target instructions

The instructions will be sorted in a descending order by their SDC vulnerability denoted
as Isort, then we select instructions to perform redundancy processing with a granularity
value of Z. The instructions set selection is described as Eq. 7:

Iselected = {I1, I2..., Is|s = dN × Ze, 0 ≤ Z ≤ 1}, (7)

where Iselected is the first S instructions selected from Isort, Z is redundant granularity that
specified by users, and N is the total number of instructions in the program.

4.4.2. Instruction fault tolerance

The selected instructions set Iselected will be duplicated to obtain fault tolerance instructions
set Idup.For all instructions in Idup, if Idupi depends on Idupj and i > j, we insert compar-
ison instruction into the end of the basic block, comparing the execution result of original
instruction with redundancy instruction. Besides, if the instruction in Idup can not form a
relationship with other instructions, a unique comparison instruction will be inserted. If an
error occurs when the program is running, the detector will generate inconsistent results;
on the contrary, it means that the program is running normally.

5. Experiment

In this section, experiments are designed to validate our proposed method. Our evaluation
experiments use a PC with Intel i7 8750H CPU and 16G memory running Ubuntu Linux
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Figure 5: The SDC vulnerability prediction accuracy of testing programs.

16.04. We randomly select part of the benchmarks in Mibench2 as the training set, and
the rest as the test set. The selected Mibench benchmarks are firstly compiled using LLVM
to obtain the Intermediate Representation(IR) instructions and then an LLVM Pass is
performed to extract instruction features. For each selected program, we conduct automatic
fault injections to get SDC vulnerability of each instruction using a script on LLFI. LLFI
is an LLVM based fault injection framework and operates at the IR instruction level. In
total, we collect 3400 SDC vulnerability training samples.

This paper simulates the impact of soft error by injecting faults into a single bit of
instruction destination registers. We only discuss the program running in a single thread
mode, and we chose 6 benchmarks, Qsort (Quick sorting), Dijkstra (Shortest path algo-
rithm), FFT (Fast Fourier Transformation), Isqrt (Int square root calculations), Bitstring
(Bit pattern of bytes formatted to string) and Rad2deg (Radians to degrees).

In reference to previous works Shivakumar et al. (2002); Wang et al. (2015); Wei et al.
(2014), we make the following assumptions for fault injection experiments: (1) We consider
single flip error, and assume that only one failure occurs during the execution of the program.
(2) This paper focuses on the soft error that occurred in registers (eg, ALU, LSU, GPR,
etc.) of a processor, therefore, only the error in the instruction operand is considered.

We evaluate our approach in two aspects: (1) the accuracy of SDC vulnerability predic-
tion; (2) the effectiveness of SDC-causing error detection.

5.1. Instruction SDC vulnerability Prediction Experiment

Predicting the SDC vulnerability of instructions is the most critical part of the machine
learning based protection method. The parameters of the model are set as described in
section 4.3.1. 200 trees are used in each forest for cascade regression forest and 30 trees
for sliding window forest. The calculation method of the instruction SDC vulnerability is
shown as Eq. 2, which is used as our prediction criteria.

We compare our proposed method with the random forest Liu et al. (2019) consisting
of 800 trees, the lightGBM model with 0.03 learning rate and 800 estimators. We also
compare it with deep neural networks represented by LSTM/GRU Liu et al. (2018) with
64 hidden units and sequence length of 10. ReLU, cross-entropy loss, AdamOptimizer and

2. http://vhosts.eecs.umich.edu/mibench
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Table 3: The MSE performance of the testing programs
Isqrt FFT Dijkstra Bitstrng Qsort Rad2deg Average

RNN 0.1636 0.0531 0.0670 0.0935 0.0752 0.1222 0.0958

GRU 0.1359 0.0432 0.0478 0.0808 0.0560 0.0921 0.0760

LSTM 0.1164 0.0423 0.0494 0.0756 0.0573 0.0912 0.0720

RF 0.0768 0.0342 0.0197 0.0409 0.0313 0.0633 0.0444

lightGBM 0.0677 0.0228 0.0142 0.0491 0.0390 0.0453 0.0397

DFRMR 0.0444 0.0086 0.0042 0.0205 0.0165 0.0284 0.0204

learning rate of 0.02/0.002 are used for training. The SDC-causing error rate obtained
by fault injection (FI) is used as a baseline. Experimental results are shown in Fig. 5.
Compared to other methods, DFRMR performs more accurate and stable in most cases.
We also evaluate the predicting accuracy of our prediction model by calculating the average
squared errors(MSE) of the testing data set. MSEs of test programs are shown in Fig.6. As
we can see in Fig. 6, DFRMR gets the best MSE score on all test programs. The details
are shown in Tab. 3.

We find that the average SDC vulnerability of each test program is highly different. To
be specific, the highest and the lowest SDC vulnerability are obtained for Isqrt and Dijkstra,
respectively. We analyze the types and SDC vulnerabilities of instructions in each program.
The result shows that Isqrt contains more integer and comparison operations which lead
to higher SDC vulnerability, while Dijkstra contains more conversion and address related
operations. Because the former will be masked when an error occurs and the latter will
mainly cause system fault.

5.2. SDC-causing Error Detection Experiment

In this paper, the SDC-causing error detection rate and performance overhead of the pro-
posed method are evaluated. We randomly injected 3000 faults into the benchmarks to
verify the DFRMR method.
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SDC coverage means the rate of errors detected by our error detector. According to
specified granularity, we will flexibly select the instructions with high SDC vulnerability,
and implement redundancy technology on them. To collect the data of SDC coverage, we
inject faults into the protected program using LLFI. Fig. 7 shows the comparison of SDC
coverage between our method and Hotpath Lu et al. (2014). 10per, 20per and 30per, which
mean the SDC coverage of target program with redundancy granularity of 10%, 20%, and
30%. Hotpath is the SDC coverage of the target program with redundancy of frequent
instructions. The frequent instructions are obtained through the LLVM framework by
implemented Pass and this paper selects the first 20% of frequently executed instructions.
As we can see in Fig. 7, the averages SDC coverage for Hotpath, 10%, 20% and 30%
redundancy granularity are 84.5%, 39.5%, 68.3% and 86.2%. Our method acquires high
SDC coverage at 20% and 30% redundancy granularity, and achieves higher SDC coverage
at 30% than Hotpath.

Fig. 8 shows a comparison of performance overhead. The protected programs are com-
pared with the original programs. We record the code size and execution time of each
benchmark under a specified granularity protected. As shown in Fig. 8, the average code
size overhead of Hotpath, 10%, 20% and 30% redundancy granularity are 23.9%, 5.1%,
10.9% and 18.6%, while the average execution time overhead of Hotpath, 10%, 20% and
30% redundancy granularity are 52.8%, 22.5%, 41.2% and 50.3%.

We find that time performance overhead among benchmarks is not uniform. This is
because of benchmark-specific reasons such as the distribution of high SDC vulnerability
instructions. Our method needs to protect instructions with high SDC vulnerability, but
these instructions may execute at a low frequency. In contrast, duplicating instructions
within loops will lead to higher performance overhead. We observe that programs with
deep loops may cause high time overhead, such as FFT and Dijkstra. So programs with
less depth of loops may benefit more from our method, for they will get an efficiency fault
tolerance. Further, the code size overhead mainly depends on the program scale, we will
not discuss too much in this paper.

In summary, our method significantly outperforms Hotpath in providing better fault
tolerance with a lower performance overhead.
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Figure 8: Performance overhead of test programs.

6. Conclusion

This paper proposed a lightweight SDC-causing error detection model named DFRMR to
overcome shortcomings of redundancy, such as expensive time cost and code size cost. We
used the program analysis technique to extract the features indicating the SDC vulnerability
of instructions. Then we developed instructions SDC vulnerability prediction model based
on deep regression forest. To improve prediction accuracy, we employed various regression
forests and improved the sliding window scanning method. We used DFRMR to guide the
selection of instructions under different granularity. Our experiments showed that DFRMR
performed a high accuracy in SDC prediction, and the error detector gave an efficiency fault
tolerance with lower overhead.
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