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Abstract

In capsule networks, the routing algorithm connects capsules in consecutive layers,
enabling the upper-level capsules to learn higher-level concepts by combining the concepts
of the lower-level capsules. Capsule networks are known to have a few advantages over con-
ventional neural networks, including robustness to 3D viewpoint changes and generalization
capability. However, some studies have reported negative experimental results. Nevertheless,
the reason for this phenomenon has not been analyzed yet. We empirically analyzed the
effect of five different routing algorithms. The experimental results show that the routing
algorithms do not behave as expected and often produce results that are worse than simple
baseline algorithms that assign the connection strengths uniformly or randomly. We also
show that, in most cases, the routing algorithms do not change the classification result but
polarize the link strengths, and the polarization can be extreme when they continue to
repeat without stopping. In order to realize the true potential of the capsule network, it is
essential to develop an improved routing algorithm.

1. Introduction

(Sabour et al., 2017) and (Hinton et al., 2018) introduced a novel deep learning architecture
called capsule network, which was inspired by the mechanism of the visual cortex in biological
brains. The capsule network aims to achieve equivariance to variations, such as pose change,
translation, and scaling. A capsule is composed of a group of neurons, each of which, hopefully,
represents an attribute of the object. The orientation of a capsule denotes the pose of an
object, while the length of the capsule represents the probability of the object’s existence.
To make this possible, the capsule network uses routing algorithms to determine the link
strength between each capsules. The connection links between the capsules in consecutive
layers represent the part-whole relations among the objects represented by the capsules.

(Hinton et al., 2018) extends the concept of (Sabour et al., 2017) to separate the activation
of capsules from their poses. The agreement between capsules in consecutive layers contributes
to strengthening the activation of the higher capsules; the connection between two capsules
becomes fortified as they are activated together, as in the case of the Hebbian rule. The
concept of the expectation-maximization procedure is employed to estimate the connection
strength between capsules.

After the first proposition, many new routing algorithms (Bahadori, 2018; Wang et al.,
2018; Xiang et al., 2018; Lenssen et al., 2018; Zhang et al., 2018; Zhou et al., 2019; Wang
and Liu, 2018; LaLonde and Bagci, 2018) and applications (Mobiny and Van Nguyen, 2018;
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Rawlinson et al., 2018; Duarte et al., 2018) have been proposed, and results that surpass
those of existing CNNs have been reported. However, some studies have reported negative
results on reinforcement learning (Andersen, 2018) and image classification (Xi et al., 2017;
Mukhometzianov and Carrillo, 2018). It is still necessary to investigate issues such as what
the routing algorithm really does and what it can and cannot do.

Although many experiments have been conducted on routing algorithms, there have been
few experiments that directly show the effect and behavior of the routing algorithm. For
example, most of the previous studies limited the number of routing iterations to a small
number, such as 3. In this study, we performed a detailed analysis of the behavior of the
two original routing algorithms (Hinton et al., 2018; Sabour et al., 2017) as well as three
other algorithms that were proposed recently (Wang and Liu, 2018; Lenssen et al., 2018;
Zhou et al., 2019). For convenience, in this paper, we will refer to each network as follows:
CapsNet (Sabour et al., 2017), EMCaps (Hinton et al., 2018), OptimCaps (Wang and Liu,
2018), GroupCaps (Lenssen et al., 2018), and AttnCaps (Zhou et al., 2019).

2. Routing Algorithms

In a capsule network, neurons are grouped into units called capsules, and the routing
algorithm determines the strength of the links between them by iterations of update steps.
Although the detailed formulae of the routing algorithms differ, routing algorithms roughly
work as follows:

1. Determine the initial output value of capsules(y; ) from the values of the lower-level

capsules.
2. Calculate the ’agreement’(b;;) between the input(x;) and output(y;) capsules.
3. Reinforce the link strength between ’agreed’ capsules (cg-) — cgﬂ)).

4. Recalculate the value of the output capsules using the updated link strength (yj(-t) — yj(-tﬂ)).

5. Repeat steps 2-4.

Usually, the initial value of an output capsule is calculated from uniformly assigned link
strengths (except AttnCaps (Zhou et al., 2019), where the initial output is calculated from
separate input). For each routing cycle, the upper capsules compute their activation based
on the current link strengths. Then, the routing algorithm measures the agreement between
capsules and updates the link strength based on the degree of agreement. Agreement between
capsules can be calculated by the inner product (Sabour et al., 2017; Wang and Liu, 2018;
Zhou et al., 2019; Mobiny and Van Nguyen, 2018), Gaussian probability (Hinton et al., 2018;
Duarte et al., 2018; Bahadori, 2018), or distance measure (Lenssen et al., 2018). Once the
link strengths have been updated, the cycle starts again. In practice, routing is repeated
only a fixed number of times (usually three) rather than until convergence.

3. Questions and Empirical Verification

It is challenging to observe what really happens inside a neural network and to examine the
positive and negative effects of new methods. We carefully planned controlled experiments

1. Please refer to (Lenssen et al., 2018) for an exact definition.
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Algorithm 1 The routing-by-agreement algorithm by (Sabour et al., 2017) (CapsNet)
x; : inputs

Wi; : weights

Uiy = Wmml

bij ~0

for r iterations do :

exp (bs;)
Cij < exp (bir)
8j < D ChjUkj

ls;lls;
P
Yi 7 1l

bij — bij + Uij - y]-
return y;

,_.
e

Algorithm 2 Expectation-maximization routing algorithm by (Hinton et al., 2018) (EMCaps)

1: X;,a; : inputs
2: Wij,ﬁl,ﬂg : weights
3: A, € : hyperparameter
4: Uij = Wini
5: UZ := h-th component of U;;
6: bjj < 1/(number of upper capsules)
7. for r iterations do :
8 Cij b,‘jai
C 'Uh-
9: y;? 422’“::;;@]
2k Chj (“ZJ _yjh)2

. h\2
10 (0})" < S e +e

11: costh < 2_n(B1 +log(a} ")) S ckj
12: af « logistic(A(B2 — Zh costh)

13: sy < ([1,27(cM)?) 2 exp(— Y, zlft;hyfz )

. g “jsw
14: by < > akslk
15: return Y],aj
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Algorithm 3 Routing-by-agreement algorithm by (Wang and Liu, 2018) (OptimCaps)

x; : inputs
Wi = weights
A : hyperparameter
Ui5 = Wijz/HWz]HF * Frobenius norm
bij 0
for r iteratior(lg ()io :
exp(b;;
Cij < >k eXp(jbz’k)
Sj Zsk Clj Uk
J
’Uj — m
bij < )\uij " Uy
s — lls;ll
J 7 14+mawzl skl
: yj = ijj
creturn y;

e e
O O

Algorithm 4 Group equivariant routing algorithm by (Lenssen et al., 2018) (GroupCaps)

x;,a; : inputs
Wij, o, B weights
M, d : weighted average operator, distance measure
u;j = Wi;x;
Y; M (uj, ay)
for r iterations do :
cij < sigmoid(—ad(yj, ui;) + B)
Y; — M(uij, cij)ai
; = Sing’id(—a(# inputlcapsules) Zk 5('!/3, ukj) + B)
return y;, a;

1

a

—_
=4

Algorithm 5 Routing algorithm with attention by (Zhou et al., 2019) (AttnCaps)

x;, h; : inputs
W;, M; : weights
Ui5 = Wjil)i
yj — Mjhj
bij ~0
for r iterations do :
i S ot
Yj Yy 2 kiU
bij — bij + g - Y,
return y;, cij

H
=4
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to answer the following questions about the routing algorithms. These questions are listed
from the most challenging one to the least challenging ones.

(Q1) Is the routing algorithm generally better than the simple weighted sum operation?
There have been a few general improvements in deep learning. For example, using batch
normalization (Ioffe and Szegedy, 2015) or residual connection (He et al., 2016) in image
classification generally leads to improvement, almost regardless of the choice of model and
dataset. Does the routing algorithm of the capsule network provide such general improvement?

Many previous studies have reported results using the capsule network that surpass those
of baseline CNNs. However, since the architecture and computational complexity of the
capsule network differ significantly from those of ordinary CNNs, this is still an open question.
Since our study focuses on the routing algorithm rather than the overall effect of the capsule
network, we directly compared between using and not using the routing algorithm without
changing the architecture of the capsule networks to minimize the interference of other
factors. Specifically, we implemented two alternative routing algorithms named uniform
routing and random routing for each of the five routing algorithms. The uniform routing
algorithm assigns all link strengths uniformly and never updates. In this case, the capsule
network behaves similarly to ordinary neural networks, as the inference is mainly performed
by the weighted sum operations. In random routing, link strength(c;;) is sampled from a
random distribution (U(0.8,1.2)) at every iteration, making the inference stochastic.

The experimental results are presented in Table 1. All routing algorithms exhibited
the best performance when they were repeated 2~3 times. Increasing the number of
routing iterations did not improve the performance, but slightly degraded the performance.
Unexpectedly, the best performances of most routing algorithms were not superior to those of
the uniform or random routing algorithms. The only exception was GroupCaps, whose best
performance was slightly superior to those of the uniform and random routing algorithms.

(Q2) Does the routing algorithm help the capsule network achieve equivariance or
invariance to 3D transforms such as 3D pose change, and thereby improves robustness to 3D
transform?

The capsule network was motivated by a 3D pose change matrix to obtain equivariance
to 3D viewpoint changes (Hinton et al., 2018). In order to minimize the influence of other
factors such as a complex background, we experimented on the smallNORB (Krizhevsky
and Hinton, 2009) dataset, which contains gray-scale images of a few objects taken at many
different angles, with a carefully designed pure shape recognition task not disturbed by
context or color (Hinton et al., 2018).

The results are presented in Table 2. As in the previous experiment, all routing algorithms
exhibited superior performance when they were repeated 3 times rather than 10 times. None
of the routing algorithms outperformed the uniform and random routing algorithms.

(Q3) Does the routing algorithm help the capsule network achieve equivariance or
invariance to 2D transform such as translation and rotation, thereby improving robustness
to 2D transform?

To evaluate robustness to 2D rotation, we experimented on the rotated MNIST (Y. LeCun
and Haffner, 1998) dataset; In this experiment, we trained the model by rotating the training
data randomly within the [-30, 30| degree range. We then tested with randomly rotated
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images over a wider range of [-180, 180] degrees. We also ran a similar experiment for
translation by placing the 28 x 28 digit images at random coordinates on 36 x 36 white
images. The results are exhibited in Table 3 and Table 4. In both cases, the routing
algorithms did not exhibit any improvement compared to the uniform routing algorithm.

(Q4) Is the capsule network heavily reliant on the routing algorithm, or is it capable of
adapting to a variety of routing algorithms?

In general, neural networks with sufficient capacity can learn tolerance to noise or variation.
Moreover, adding noise in training often improves the generalization capability. From this
perspective, it is possible that the capsule network is not very sensitive to the choice of
routing algorithm unless the routing algorithm plays a key role, since it can adapt to the
connection links even when they are not optimally assigned.

To verify this, we conducted an experiment that uses the routing algorithms normally
during training and uses the uniform or random routing algorithms during evaluation. The
results are presented in the 5th and 7th columns of Table 2. Surprisingly, replacing the
routing algorithms with the uniform or random routing algorithms did not severely degrade,
but rather improved the performance of the capsule networks that were trained with the
routing algorithms. One possible reason is that the five routing algorithms tend to overly
polarize the link strengths as described in Section 5, while the uniform and random routing
algorithms make the distribution of the link strength less sharp, allowing the network
represent uncertainty.

Additionally, we conducted an experiment to know how frequently the routing algorithm
changes the classification result. We trained CapsNet (Sabour et al., 2017) on MNIST dataset
(Y. LeCun and Haffner, 1998) for few epochs, and compared two experimental classifiers :
one selects the class whose output capsule was assigned the largest initial activation value
uj = Y, u;; which are computed before the routing of the output layer, and the other selects
the class whose capsule was assigned with the largest link strength ¢; = ", ¢;; which is
directly computed by the routing algorithm. Then, we compared the accuracy of the two
classifiers. The results are presented in Figure 1. As learning progresses, the capsule with
the largest initial activation value is also assigned with the largest link strength in most
cases. This result suggests that the classification results are mainly determined by the initial
activation values of the output capsules and rarely changed by the routing algorithm.
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Algorithm Routing iteration

Uniform Random 2 iterations | 3 iterations | 5 iterations 10 iterations
OptimCaps | 93.39(0.11) | 93.31(0.12) | 93.13(0.23) | 93.16(0.21) | 92.60(0.05) 92.32(0.31)
GroupCaps | 91.36(0.84) | 91.27(0.61) | 91.19(1.16) | 91.51(0.79) | 90.90(0.95) 90.29(0.68)
CapsNet 90.86(0.29) | 91.09(0.13) | 88.93(0.11) | 88.41(0.16) | 87.40(0.13) 86.49(0.14)
EMCaps 93.03(0.01) | 93.17(0.16) | 92.76(0.18) | 92.56(0.17) | 92.27(0.14) 92.35(0.22)
AttnCaps 93.20(0.11) | 93.08(0.14) | 83.16(1.31) | 70.27(5.36) | 57.46(15.98) | 42.57(13.88)

Table 1: The accuracy of the five routing algorithms for CIFAR10 varying with the number
of routing iterations, compared to the uniform and random algorithms. This is the
result of the experiment to verify Q1. In the Uniform option, the link strength
between capsules is uniformly assigned and never updated. In the Random option,
the link strengths between capsules were sampled from U(0.8,1.2) each time. We
found no evidence that any of the five algorithms generally improves the performance
of the deep learning model. See section 4 for the experimental details.

Routing iteration
Algorithm Uniform Random 3 iteration 3 1t‘ers " 10 iterations 10 iters +
Uniform Random
OptimCaps | 91.21(1.13) | 91.75(0.65) | 90.90(1.07) | 90.94(0.68) | 89.31(0.50) 90.96(1.18)
GroupCaps | 90.05(0.56) | 91.64(0.83) | 90.14(1.17) | 89.96(0.07) | 89.19(0.44) 89.67(0.36)
CapsNet 91.93(1.05) | 90.93(1.05) | 91.11(0.40) | 91.39(0.96) | 91.67(0.33) 91.16(0.93)
EMCaps 90.73(0.43) | 91.17(0.42) | 91.17(0.43) | 91.61(0.96) | 90.54(1.01) 91.23(0.53)
AttnCaps 90.73(0.45) | 90.37(1.34) | 84.01(2.79) | 84.10(1.14) | 58.35(16.2) 58.23(31.2)

Table 2: The accuracy of the routing algorithms for SmallNORB varying with the number
of routing iterations. This is the result of the experiment to verify Q2 and Q4. The
5th and 7th columns display the results of the experiments in which the networks
were trained using the corresponding routing algorithms, and then, evaluated using
the uniform or random routing algorithms. The capsule network worked fine even
if we used different routing algorithms for training and evaluation. These results
suggest that the model can learn to produce consistent results no matter how the
link strengths are assigned, similarly to as if it adapts to random perturbations like
(Srivastava et al., 2014; Gastaldi, 2017).

4. Experimental details

4.1. Experimental Settings

We used a ResNet-34 model (He et al., 2016) without a classification layer as a feature
extractor, and added a capsule layer. Global average pooling was applied for (Sabour et al.,
2017; Wang and Liu, 2018; Zhou et al., 2019), but not for (Hinton et al., 2018; Lenssen et al.,
2018), which requires spatial information. The length of each capsule was fixed to 16. We set
the batch size to 128 in most experiments, except in the multi-layer experiment of GroupCaps
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Routing iteration

Algorithm Uniform 3 iterations 10 iterations

[-30, 30] [-180, 180] [-30, 30] [-180, 180] [-30, 30] [-180, 180]
OptimCaps | 99.57(0.02) | 61.64(0.47) | 99.51(0.07) | 59.77(0.67) | 99.53(0.02) | 59.78(0.59)
GroupCaps | 99.47(0.04) | 62.06(0.66) | 99.44(0.04) | 57.76(1.65) | 99.43(0.07) | 60.32(0.48)
CapsNet 99.60(0.01) | 61.68(0.65) | 99.51(0.04) | 59.07(0.57) | 99.42(0.05) | 59.09(1.01)
EMCaps 99.56(0.04) | 60.43(0.34) | 95.21(2.12) | 52.32(1.67) | 88.16(1.60) | 45.47(1.63)
AttnCaps 99.54(0.02) | 60.42(0.22) | 99.21(0.25) | 57.93(1.67) | 89.86(7.98) | 45.66(8.79)

Table 3: The accuracy of the routing algorithms for rotational MNIST dataset. This is
the result of the experiment to verify Q3. All models were trained with images
randomly rotated in the range of [-30, 30| degrees, and then, evaluated with images
randomly rotated in the range of [-30, 30] degrees and [-180, 180] degrees. We found
no evidence that the routing algorithms improve the generalization capability to 2d

rotation.
Routing iteration
Algorithm Uniform 3 iterations 10 iterations
Center Random Center Random Center Random
OptimCaps | 99.67(0.02) | 97.46(0.24) | 99.59(0.04) | 95.09(0.84) | 99.52(0.10) | 96.19(0.53)
GroupCaps | 99.50(0.04) | 95.73(1.63) | 99.59(0.06) | 95.03(1.77) | 99.56(0.05) | 95.13(0.83)
CapsNet 99.69(0.05) | 99.02(0.32) | 99.54(0.12) | 96.36(0.58) | 99.60(0.04) | 97.32(0.61)
EMCaps 99.59(0.26) | 89.38(0.46) | 99.47(0.14) | 88.13(1.93) | 99.37(0.21) | 88.29(2.10)
AttnCaps 99.58(0.05) | 95.44(0.85) | 99.39(0.06) | 93.91(1.70) | 98.55(0.61) | 79.81(7.77)

Table 4: The accuracy of the routing algorithms for translated MNIST dataset. This is the
result of the experiment to verify Q3. In training, each 28 x 28 digit image was
placed at the center of a 36 x 36 white image. In evaluation, it was put at the
center or a random coordinate of the 36 x 36 white image. We found no evidence
that the routing algorithms improve generalization capability to 2d translation.

(Lenssen et al., 2018), in which we used a batch size of 32 because of the excessive demand
for GPU memory. We used the stochastic gradient descent optimizer with a momentum of
0.9. In all experiments, we trained for 50 epochs. The learning rate was initially set to 0.1
and divided by 10 at the 16th and 32nd epochs. We did not use any early stopping criteria.
However, when the training failed completely (for example, training accuracy dropped to
nearly 10%), we restarted the experiment. For the CIFAR10 (LeCun et al., 2004) dataset,
we applied random cropping with a padding size of 4 and random horizontal flip. We resized
SmalINORB (Krizhevsky and Hinton, 2009) images to 48 x 48 and randomly cropped to
sample 32 x 32 regions. For the MNIST (Y. LeCun and Haffner, 1998) dataset, we added
padding to make 32 x 32 images. In our experiments, we set A = 1 for OptimCaps and
A = 0.01 for EMCaps. We empirically searched for the value of A for OptimCaps (Wang and
Liu, 2018) and EMCaps (Hinton et al., 2018) from 10~ to 10%.

We ran all experiments three times and present the average accuracy in Tables 1-4.
The numbers in the parentheses denote the standard deviations. Since we used the same
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Accuracy

Emm Both classifiers are correct
W Classifier using uy is correct
B Classifier using cj is correct
B Both classifiers are incorrect

¥ y
600 1000
Training step

Figure 1: The accuracy of two experimental classifiers: one classifies using the initial ac-
tivation values u; = ), u;; of the output capsules and the other using the link
strengths ¢; = >, ¢;;. This is the result of the experiment to know how frequently
the routing algorithm changes the classification result. The blue region represents
the ratio that both classifiers are correct. The orange and green regions represent
the ratios that only one of them is correct. The red region represents the ratio that
both classifiers are incorrect. At the end of the experiment, the portion of the four
regions were 95.75%, 1.21%, 0.54%, and 2.50%, respectively. The capsule with the
largest initial activation value is also assigned with the largest link strength in
most cases, which suggests that the classification results are mainly determined
by the initial activation values of the output capsules and rarely changed by the
routing algorithm.

architecture for three different datasets, there was overfitting for smallNORB and MNIST.
However, we did not attempt to minimize overfitting, because our experiments only aimed to
make relative comparisons.

4.2. Minor Observations

e We observed that for OptimCaps, the accuracy was improved as we decreased A, which
leads the behavior of OptimCaps closer to the uniform routing. The performance of
OptimCaps also converged to that of uniform routing as A approaches zero. We also
observed similar tendency for EMCaps (Hinton et al., 2018).

e We found that adding a large € to Variance((U?)Q) in EMCaps (Hinton et al., 2018)
stabilizes learning and prevents divergence. However, no matter how large an ¢ we
added, the performances of the algorithm approached that of the uniform routing. We
used € = 0.01 for all experiments mentioned above.

e We mainly used a ResNet model composed of 34 layers in our experiments. We presume
capsules are more appropriate to represent high-level concepts than low-level concepts
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such as lines and edges, because they are more informative and their part-whole
relations are less ambiguous than those of low-level concepts. Nevertheless, we also
attempted to use a shallow feature extractor composed of only two layers, but did not
obtain improved results.

e We also experimented with multiple (2~5) capsule layers after the ResNet feature
extractor, but did not obtain improved results. In addition, to verify whether the routing
algorithm causes the capsule network to learn capsule-wise feature representation, i.e.,
whether the neurons in a capsule collectively represent the pose and existence of an
entity or not, we attempted to disassemble the neurons in the capsules and reorganized
them into capsules arbitrarily but fixed way. However, we did not observe any negative
impact on the learning of the capsule network.

e We also attempted other techniques such as 1) adding reconstruction loss as CapsNet
(Sabour et al., 2017), 2) pretraining with a different dataset, and 3) blocking the
gradient from c¢;;, in order to hide the routing algorithm from the neural network.
However, we did not obtain meaningful improvement.

5. Polarization Problem

In the experiments, the routing algorithms tended to overly polarize the link strengths,
increasing the strength of a small number of connections while suppressing all other con-
nections, as shown in Figure 2. In particular, when they were repeated multiple times, the
routing algorithm almost always produced a simple route in which each input capsule passed
its value to only one output capsule and all other routes were suppressed. Here we analyzed
the reason for the polarization issue for (Sabour et al., 2017). The behavior of the other
routing algorithms can be analyzed similarly.

Let a connection b;; and its corresponding softmax output ¢;; be stronger than b;;, and c;,
for all k # j, respectively. This draws s; closer to u;;, and as a result, the routing algorithm
increases b;; and ¢;; more rapidly than the other routes. Since the algorithm does not have
any mechanisms to control the feedback loop, b;; increases infinitely if the routing algorithm
is not stopped, drawing c¢;; to 1 and all other routes ¢;; to 0 for all k # j.

Not surprisingly, this is the only realistic steady state of the algorithm, i.e., the only
plausible destination if it converges. It could be even worse if the algorithm does not lead to
convergence, considering the purpose of the routing algorithm. However, we did not observe
divergence or oscillation in the routing algorithms. Let cg-) be the value of ¢;; at the ¢-th
routing iteration and a;; = u;; - y;. Then,

ey e ) e (b)) exp (af))
T S 0™ Syew 0F) exp (o) 0
exp (bg)) exp (az(»jt.)) />, exp (bg?) cg.) exp (ag’-))

Sexp (0) exp (a)/ X exp (BF) Ty cly) exp (aly)
If the algorithm reaches a steady state, CSH) - Cl(;)’ Eq. (2) holds.
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50000 | P 50000 o
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Figure 2: Histogram of link strength (c;;) of five output capsules produced by the routing
algorithms varying with the number of routing iterations. CapsNet (Sabour et al.,
2017) (left top), OptimCaps (Wang and Liu, 2018) (right top), EMCaps (Hinton
et al., 2018) (left bottom), and AttnCaps (Zhou et al., 2019) (right bottom) As the
routing iteration increases, the link strengths were polarized more severely. When
the routing was repeated 10 times, the most of the links fell to zero and only a
small number of links increased to 1.

{exp (af) =Y ¢ exp (al)} or { = 0} W(i,5) 2)
k

(®)

i > 0. If r; = 1, there exists a simple
solution ¢;; = 1 and ¢; = 0 for all k # j, which requires that b;; diverges to infinity or that
all the other routes collapse to 0. This is the what we always observed. If r; > 2, Eq. (2)
requires a condition a;;, = aij, = ... = Qij,, - However, it is not only undesirable state of
routing algorithm but also highly unlikely that the routing algorithm naturally produces
such a singular solution. OptimCaps (Wang and Liu, 2018) and AttnCaps (Zhou et al., 2019)
share the same problem, since they compute c;; similarly.

Let r; be the number of output capsules with ¢

In the case of EMCaps (Hinton et al., 2018), the reason of the polarization is less obvious
because the computation of the link strength is more complicated. However, similar to the
routing-by-agreement algorithm, we observed that repeating the EMCaps (Hinton et al.,
2018) algorithm multiple times also led to a simple solution, allowing a single non-zero outing
route from each capsule. Let there be some g, u;,; >~ p; and suppose o; >~ 0. Then, s;;,
biyj, and c¢;y; are larger than the others, bringing p; closer to w;,; and reducing o;. In the

499



Paik KwaAKk KiMm

end, the distribution approaches a delta function centered at w;,;, and the likelihood diverges
to infinity.

This is similar to the known singularity problem in the Gaussian mixture model, but
this problem seems to appear more serious than usual because the number of data points
(number of capsules in the pre-layer) per distribution (number of capsules in the post-layer) is
extremely low - only nine times the number of distributions, for a 3x3 convolutional capsule
layer, as in EMCaps (Hinton et al., 2018).

Finding a simple solution or even a singular solution is a natural consequence of the
routing algorithms, as they were designed to reinforce the connection between the capsules
that agree with each other. However, such solutions are undesirable for guiding the capsule
network to learn part-whole relations, because they make the network overconfident and
deny uncertainty.

6. Conclusion

We empirically analyzed five recently developed routing algorithms for the capsule network.
The experimental results suggest that the routing algorithms have yet to realize the potential
of the capsule network. We also showed that the routing algorithms overly polarize the link
strengths, and this issue can be extreme when they continue to repeat without stopping. In
order to achieve the design goals of the capsule network, we believe it is essential to continue
searching for an improved routing algorithm that has a mathematical foundation for ensuring
convergence to a desirable state allowing for uncertainty in part-whole relations rather than
polarizing the link strengths.
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