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Abstract

Crowd flow forecasting plays an important role in risk assessment and public safety. It
is a difficult task due to complex spatial-temporal dependencies as well as missing values in
data. A number of models are proposed to predict crowd flow on city-scale, yet the missing
pattern in city complex environment is seldomly considered. We propose a crowd flow
forecasting model, Imputed Spatial-Temporal Convolution network(ISTC) to accurately
predict the crowd flow in large complex buildings. ISTC uses convolution layers, whose
structures are configured by graphs, to model the spatial-temporal correlations. Meanwhile
ISTC adds imputation layers to handle the missing data. We demonstrate our model on
several real data sets collected from sensors in a large six-floor commercial complex building.
The results show that ISTC outperforms the baseline methods and is capable of handling
data with as much as 40% missing data.

Keywords: city complex, crowd flow forecasting, missing value, Graph Convolutional
Network

1. Introduction

Crowd flow control is essential in public safety. When a large number of people rush in to
a small region, events like stampede are more likely to happen.

November 11, 2007, 3 people were killed and more than 30 injured at the Supermarket
Carrefour in Chongqing, China when the shop was offering 20% discounts on cooking oil
[BBC News (2007)]. June 14, 2017, a fire broke out in the 24-storey Grenfell Tower and
caused 72 deaths [Mynewsdesk (2017)]. December 31, 2014, a deadly stampede occurred in
Shanghai, near Chen Yi Square on the Bund, where around 300,000 people had gathered
for the new year celebration. In total, 36 people were killed and 49 injured in the stampede
[BBC News (2014)]. September 17, 2018, five people are killed, and seven injured, when
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the crowd left CAF Champions League Quarterfinal Match in Luanda, Angola [Winning
(2018)].

To prevent such accidents, public safety authorities usually implement strong emergency
protocols in large building complexes, including police resource re-allocation and building
exits controls, to prevent overly high crowd flow. In practice, the implementation of such
protocols is usually costly as it requires a significant amount of additional police resource.
In tradition, allocation of police resource is mainly based on empirical experience, which
is subjective and error-prone. With the development of urban infrastructure, decisions can
be made with knowledge of current crowd flow state. However, since it requires some time
for the deployment to take place, the re-allocation strategy should be made with not only
current condition, but also future state. Thus, it is extremely important to accurately
predict high crowd flow ahead of time.

The prediction, however, is a difficult task because of complex spatial-temporal depen-
dency in crowd flow and missing values. The future crowd flow is relevant to both short-term
and long-term history in many nearby regions, which complicates the spatial-temporal de-
pendencies. To capture the nonlinear time correlations, methods including RNN, LSTM,
GRU are applied to crowd flow forecasting. As for spatial correlation, partitioning an large
area into grids is a easy way to handle the spatial relation of regions, which is used in many
studies on large metropolitan scales [Zhang et al. (2017); Zheng et al. (2018); Zhang et al.
(2019)]. However, it can’t be directly applied to the regions inside a building because of
their 3d structures.

Modern large commercial building complex is typically consists of several skyscapers
which may function as market, office building, hotel and apartment. There can be thousands
of sensors collecting data from everywhere in the buildings. Malfunction of the sensors,
manual system closure and network errors are inevitable in such complex systems. Most
problems can be fixed automatically and only makes some random missing values. Some
hardware failures, on the other hand, may require hours to be discovered and fixed. During
this time period, the crowd flow data comes with a long period of missing values.

These missing values make the data difficult to explore with high efficiency. Most ap-
proaches use only valid data to train their model, which dramatically decreases the training
set size and make the model less applicable in practice. Another solution is to infer the
missing values according to its periodic characteristics, which is known as data imputation,
with methods like temporal smoothing [Lipton et al. (2015)], or modified LSTM model
[Tian et al. (2018)]. However, these methods use only temporal dependency, and are not
able to capture the spatial correlations in crowd flow data.

The crowd flow data have obvious spatial correlations. For example, the sum of inflow
and outflow for nearby regions are similar. We can utilize this feature to infer missing values
even when a long period of data is missing.

In Impute Spatial-Temporal Convolution (ISTC) model, we use the missing patterns
explicitly and impute missing values with spatial correlations. The impute layer is capable
of handling the complex pattern of the spatial correlation and the graph nature of crowd
flow data in city-complex. Then, convolution on both spatial and temporal dimensions are
applied for future crowd prediction. The main contributions of this paper are as follows:

1. We propose a variant of GCN to impute missing crowd flow data by learning spatial
correlations.
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2. We use the proposed GCN variant to build a crowd flow forecasting model which can
use data with missing values in both training and testing stages.

3. Experiments show that the proposed approach is able to achieve high accuracy with
missing values in input data.

The remainder of the paper is as follows: Section 2 discusses related works on human
mobility pattern, time-series forecasting, spatial-temporal data forecasting and prediction
with missing values. Section 3 formulates the crowd flow prediction problem. Section 4 pro-
poses the Impute Spatial-Temporal Convolution model. Section 5 shows our experimental
results and section 6 concludes the paper.

2. Related Work

In this section, we will introduce studies involved in forecasting crowd flow and handling
missing data.

2.1. Classical Models and Neural Networks for Time-series Forecasting

Forecasting crowd flow can be viewed as a time-series problem. Some approaches take ad-
vantage of statistical methods like auto-regressive integrated moving average model (ARIMA)
[Moayedi and Masnadi-Shirazi (2008)], seasonal ARIMA [Williams and Hoel (2003)]. How-
ever, it’s difficult for these approaches to effectively explore the nonlinear dependency in
the time-series data. It’s also a known challenging task to incorporate spatial-dependency
in these time-series models.

Neural networks have been applied with great success in many fields such as computer
vision [Redmon et al. (2016); Joo et al. (2018)], speech recognition [Graves et al. (2013);
Amodei et al. (2016)], and natural language processing [Devlin et al. (2018)], etc. Models
built on deep neural networks have also been used successfully for time-series data, including
stacked autoencoder (SAE) [Wang (2015)], long short term memory(LSTM) [Lipton et al.
(2015); Tian et al. (2018)] and gated recurrent unit (GRU) [Che et al. (2018)], etc. Although
these models are capable of handling the complex patterns in time-series data, they lacks
the ability to capture specific spatial relations of crowd flow.

2.2. Spatial-Temporal Data Forecasting

To model both the spatial and temporal dependencies of crowd flow, many approaches
[Zhang et al. (2017); Zheng et al. (2018); Zhang et al. (2019)] split traffic network into
rectangle grids and treat them as images, where each grid donates a pixel. However, these
approaches ignore the irregular nature of geographical regions.

Piatkowski et al. (2013) and Hoang et al. (2016) use Markov Random Fields to model
the spatial and temporal correlations. Similar to our work, Howard et al. (2017) tackle this
problem using graph-CNNs. Regions are generated from segments segmented by roads, and
crowd flow are calculated according to trajectories of individuals. However, neither of grid
split nor road segment split can be directly applied to the regions inside a building because
of their 3d structure.
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Most of the previous works focus on spatial-temporal prediction in a large scale, e.g.
city level. These works seldom consider the 3d structure of buildings, which is important for
predicting in-building crowd flows. To the best of our knowledge, forecasting crowd flows
has never been done at the scale of in-building level and in a data-driven way.

2.3. Prediction with missing values

Most approaches discard samples with missing values and use only valid data, which may
cause significant loss of training data size. With the consideration of noisy and missing data,
Hoang et al. (2016) use Intrinsic Gaussian Markov Random Fields (IGMRF) to model both
the period flow and trend flow, which makes the model robust against noise and missing
data. The missing pattern, however, is not take into account in the model design. Che
et al. (2018) use informative missing patterns to make predictions based on Gated Recurrent
Unit(GRU). They make use of missing patterns in the input features, but it is not suitable
for time-series forecasting task where missing value appears both in input and output data.
Tian et al. (2018) proposed a variant of LSTM which can be trained with missing values
by explicitly combining the missing pattern. However, this method use only temporal
dependency, and is not able to capture the spatial relations in crowd flow data.

3. Problem Statement

The goal in this research is to accurately predict future inflow and outflow in each region
inside the shopping mall of a city complex.

Suzhou Center is a large scale city complex located in the heart of the city at Suzhou
Industrial Park. It combines shopping malls, offices, residence buildings, movie theatres
and hotels with a total construction area of 1.13 million sqm. Crowd flow data are gathered
from numerous cameras located in the shopping mall of Suzhou Center.

The Shopping Mall has a gross floor area of 350,000 sqm, with over 1,000 shops, in-
cluding flagship stores of international brands, fashion brands, shopping and leisure brands,
children’s entertainment, and cultural experiences. The combination of multi-purpose cen-
tral courtyard, aerial corridor, building bridge, rooftop platform, basement passageway and
observation terrace highlights the architecture but also raises significant concerns in public
safety, especially in crowd flow monitoring, forecasting and control.

Fig. 1 shows sensors in first floor. Thousands of cameras have been installed in the
shopping mall areas for surveillance purpose. Cameras near entrances and elevators are
also used as crowd flow counter, with specific hardware and software installed.

We formulate the crowd flow forecasting problem as a spatial-temporal graph (STG)
prediction problem. Our goal is to predict the future crowd inflows and outflows in each
node of a STG based on historical observations and meta info. Such predictions can be
sent to safety authorities in real time to provide crucial information regarding the safety
situation in immediate future. Table 1 lists the notation used in the paper.

Definition 1 (STG) A spatial-temporal graph (STG) denotes as G = (V,A), where V is
the N vertices in the graph, and A ∈ RN×N is a binary adjacency matrix. Each sensor is
viewed as a vertex associated with time-varying inflow and outflow, and the edges represents
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Figure 1: Sensors in first floor

Table 1: Notation
Symbol Description

G = (V,A) spatial-temporal graph
V = {vi|i = 1, 2, 3, · · · , N} N sensors
A ∈ RN×N binary adjacency matrix
pi = (lati, lngi) geographical position of sensor vi
floori floor index of sensor vi
T available timestamp set
Xt ∈ RN×C matrix of node feature vectors at timestamp t ∈ T

the connectivity of different sensors. Specifically, each vertex vi ∈ V has a geo-spatial posi-
tion pi = (lati, lngi) and a floor index floori, and time-varying attributes. These attributes
at time t can be viewed as Xt ∈ RN×C , where C is the count of attributes for each vertex.

As observation of each sensor have only direct connection with nearby sensors in the
same floor and adjacent floors, we construct a static graph adjacency matrix A based on the
geographical distance and floor index of each sensor as follows:

Aij =


1, if i 6= j, |floori − floorj | = 0, dist(pi, pj) < κ0,

1, if i 6= j, |floori − floorj | = 1, dist(pi, pj) < κ1,

0, otherwise.

(1)

κ0 and κ1 are two parameters to determine the distance threshold of neighbors and
control sparsity of the adjacency matrix.

Definition 2 (Missing mask)
Every 10 minutes, each sensor in the shopping mall reports the accumulated inflow and

outflow since midnight to the server. If the interval between a timestamp and latest record
is larger than 15 minutes, data at this timestamp is marked as a missing value. The crowd
flow is defined as the total number of people that pass through the specified entrance during a
fixed period, i.e, the subtraction of accumulated crowd flow count at consecutive timestamps.
The subtraction is marked as missing if any of the consecutive timestamps is missing.
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Since the inflow and outflow are collected by one sensor, missing values always appears at
same nodes in each timestamp. Thus, the missing mask at time stamp t can be represented
as Mt ∈ {0, 1}N , where

Mt[i] =

{
1, if observation of node vi at timestamp t is valid,

0, if observation of node vi at timestamp t is missing.
(2)

Definition 3 (STG forecasting with missing values) Given a graph G = (V,A), his-
tory observation {Xt|t = 1, 2, · · · , T}, and missing value mask {Mt|t = 1, 2, · · · , T}, predict
XT+1.

4. Method

4.1. Observation

Missing data in the crowd flow occurs for many different reasons, such as malfunction of
the sensor, manual system closure and network errors. Regardless of the cause, we found
that most missing values can be divided into two categories based on statistical analysis.

More than 70% of the consecutive missing values have missing duration less than 1
hour, but there are also many consecutive missing values that last for several hours, with
the longest one duration of 23 hours and 20 minutes.

[00:30,01:00) [01:00,02:00) [02:00,05:00) [05:00,10:00) [10:00,23:30)
Duration

0

10

20

30

40

50

60

70

Fr
en

qu
en

cy
(%

)

Figure 2: Duration of consecutive missing values

Fig 3 shows the distribution of cosine similarity between all node pairs. More than 60%
of node pairs have a similarity higher than 0.7, which indicates a strong correlation between
the nodes. Thus, we can impute the missing values based on the spatial correlation between
different sensors. This imputation method can be applied to both random missing values
and long-term missing values.

4.2. Impute Spatial Temporal Convolution

Based on these observations, we propose the Impute Spatial Temporal Convolution(ISTC)
model to predict future crowd flow. The architecture of ISTC is introduced in Figure 4.
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Figure 3: Distribution of Nodes Similarity

Figure 4: The structure of proposed Imputed Spatial-Temporal Convolution model.

This model imputes missing data with learned spatial correlation, and predicts future crowd
flow with a temporal convolution layer. The model consists of three parts: imputation layer,
Spatial-Temporal convolution, and fusion with embedded meta data.

4.3. Impute Layer

Assume that we are predicting crowd flow at timestamp TF , the impute layer takes the
historical data Z l = {XTF−1, XTF−2, ..., XTF−TP

} ∈ RTP×N×C and corresponding missing
mask {MTF−1,MTF−2, ...,MTF−TP

} as inputs. TP here means the length of input historical
steps.

History data at each timestamp is concatenated with corresponding missing pattern,
and the output of impute layer X

′
is calculated from history data and missing mask as:

X
′
t = σ

(
W1X

†
tW2

)
(3)
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Figure 5: The structure of Spatial-Temporal Convolution, which consists of two convolu-
tions applied on spatial and temporal dimensions respectively

where X†t = concat(Xt,Mt) ∈ RT×N×(C+1) is the concatenated input, W1 ∈ RN×N and
W2 ∈ R(C+1)×C are trainable weights that donate the spatial correlation between different
sensors and the affect of missing values respectively, and σ is the activate function, e.g.
LeakyReLU.

The weight W is initialized as W0 = concat(IC , 01,C) so that the model does not use
missing patterns at start, and learns from the missing pattern during training steps. IC is
the identity matrix, 01,C is zero matrix.

The same imputation is applied to each historical timestamp, results in an imputed his-
torical data with the same shape as input historical data: Z l+1 = {X ′

TF−1, X
′
TF−2, ..., X

′
TF−TP

} ∈
RTP×N×C .

4.4. Spatial-Temporal Convolution

In the Spatial-Temporal Convolution layer, we first fuse features of every nodes with graph
convolutional network, then features of multiple timestamps are convolved in temporal
dimension to extract the spatial-temporal feature representation of the graph.

4.4.1. Spatial Convolution

To handle spatial correlation, we use the graph convolutional network as in the work of
Kipf and Welling (2016):

?G X = σ
(
D̂−

1
2 ÂD̂−

1
2XW l

)
(4)

where Â = A + IN is the adjacency matrix of G with added self-connections as in eq 1,
D̂ =

∑
j Âij is the degree matrix for Â, W l ∈ RCl×Cl+1 is the trainable weight, and σ is the

activate function, e.g. ReLU.
This layer captures 1-hop spatial correlations, and we stack multiple such layers to model

multi-hop correlations and interactions. Just like the impute layer, graph convolutional
network is also applied to each timestamp, results in an output Z l ∈ RTP×N×Cl

4.4.2. Temporal Convolution

After the spatial convolution, crowd flows are fused on the graph. The information across
timestamps, however, is still isolated. To obtain spatial-temporal features, convolution with
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kernel Kl of size [Cl, Cl+1, Q, 1] is performed on each node,

Z l+1
i = Z l

i ∗Kl (5)

where Zi ∈ RTP×Cl represents extracted features of node i, and Q donates the size of time
window. Then, a max-pooling is applied on the time dimension, make the STC layers
capable of handling random missing values. Multiple such temporal convolutional layers
are stacked to capture the complex temporal correlation.

4.5. Meta Data Embedding

Mon Tue Wed Thu Fri Sat Sun

Time

100

50

0

50

100
InFlow
OutFlow

Figure 6: Weekly average crowd flow. X-axis is the index of 30 minutes interval time slots
during a week. Y-axis is the average of all nodes at all historical time-slots.

As shown in Figure 6, the crowd flow pattern in weekdays and weekends are very differ-
ent, and the time slot of a day also influence the crowd flow pattern greatly. To utilize this
affect, we fuse the meta data (e.g. time of the day, day of the week) with a fusion layer.

The time of the day and day of the week are encoded into two class index, and then feed
into two separate embedding layer whose embedding size are both the same as node number
N , and then the outputs are stacked as Ometa ∈ R2×N , so that it can be concatenated with
the output of STC layer. Then, Ometa is feeded into the fusion layer along with the output
of STC layer.

Since the meta data is embedded to match the shape of prediction, we uses a full
connected layer to produce the final forecasting crowd flow, with Relu activation to ensure
non-negative predictions.

5. Evaluation

In this section, we compare the proposed approach with several baseline models in terms
of effectiveness. The experimental setting, measurements, results and discussion of the
experiments are provided.
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5.1. Experimental Setting

Our crowd flow data set consists of data collected from February 15, 2019 to May 10, 2019.
The data is resampled to time interval of 30 minutes. Since the mall of Suzhou Center is
only open from 10:00 to 22:00, the data at night are meaningless zeros. Thus, we only keep
the data from 9:00 to 23:00. After all these preprocessing steps, we get a dataset with 180
nodes and 2350 timestamps. These data comes with around 5% missing values.

We choose data from February 15, 2019 to April 30, 2019 as the train set, and data from
May 01, 2019 to May 10, 2019 as test set. To evaluate the robustness of our model when
more data are missing, two types of missing values are inserted into test set in evaluation,
and the predictions are always compared to real data with 5% missing values.

Both the random missing dataset and long-term missing dataset are built upon afore-
mentioned data, with extra missing values added in different ways. For random missing
dataset, missing values are added randomly. For long-term missing dataset, missing values
are added as follows: Choose a duration td from 5 hours to 20 hours randomly. Choose a
sensor vi and a start timestamp ts from all possible choices randomly. Delete data of sensor
vi at timestamps t ∈ T |ts <= t <= ts + td.

Our model is build as mentioned in section 4, and it’s implemented using PyTorch
[Paszke et al. (2017)] and trained via backpropagation and Adam optimization [Kingma
and Ba (2014)]. To train our model with missing values in input data, we only calculate
the mse loss on valid data as:

Masked MSELoss =

N∑
i=0

mi · (f̂i − fi)2

N∑
i=0

mi

(6)

where N is the number of test sample, fi is the real crowd flow, f̂i donates the predicted
value, and mi is the binary mask of each value.

We use baselines including:

1. HA: Historical Average which use the weekly historical average at each time-slot as
the future crowd flow. For example, the prediction for each 9:30 at Monday is the
averaged crowd flows from all historical 9:30 at Mondays.

2. ARMA: ARMA model from python packages statsmodels. One model is trained for
each feature on each nodes, with order selected by grid-search.

3. CNN: Convolutional Neural Network with no spatial convolution. We utilizes a two-
layer CNN with the same structure as the temporal convolution layer in our ISTC
model.

4. STC: Spatial-Temporal Convolution which is almost the same as ISTC model except
for that the absence of impute layer.

We use the mean-absolute error (MAE), and the root-mean-squared error (RMSE) to
evaluate the prediction accuracy. Both MAE and RMSE are also calculated with only valid
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data:

MAE =

N∑
i=0

mi ·
∣∣∣f̂i − fi∣∣∣

N∑
i=0

mi

RMSE =


N∑
i=0

mi · (f̂i − fi)2

N∑
i=0

mi


1
2

(7)

5.2. Results with added random missing values

Table 2: Evaluation results with added random missing values
Total missing Metric HA ARMA CNN STC ISTC

5%
RMSE 36.116 25.450 19.865 18.757 16.663
MAE 16.188 13.653 10.932 10.127 9.461

10%
RMSE 36.296 25.877 20.724 19.373 16.756
MAE 16.244 13.823 11.156 10.365 9.536

20%
RMSE 36.527 26.803 21.945 20.332 17.534
MAE 16.347 14.196 11.649 10.832 9.940

40%
RMSE 37.387 30.402 26.086 22.230 17.705
MAE 16.591 15.351 13.087 11.625 10.048

60%
RMSE 39.218 34.055 30.213 26.009 20.716
MAE 17.217 16.995 15.462 13.372 11.368
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Missing Ratio
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HA ARMA CNN STC ISTC

Figure 7: Evaluation results with added random missing values

Table 2 and figure 7 show the results when short-term missing values are added into
the training and testing data. Our ISTC model has best performance at all missing rates.
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The HA model has highest RMSE and MAE because it can not handle the temporal cor-
relation in close history, nor the spatial correlation between different nodes. The ARMA
model and CNN get better result compared to HA, with their ability to handle complex
temporal correlations. And, with the ability to handle spatial correlation based on Graph
Convolutional Network, both STC and ISTC outperforms other models that utilize only
temporal relations. With the increase of missing ratio, there are fewer information which
can be used in both training and predicting stage, and the forecasting accuracy therefore
decreases, appears as increasing RMSE and MAE.

For ISTC model, the increase of RMSE with 40% missing values from 5% is 1.042, while
the increase from 40% to 60% is 3.011, which is a remarkable difference. This difference
shows the limitation of spatial correlation: when too many nodes are out of service, the abil-
ity of spatial convolution decreases. The RMSE of ISTC with 40% missing values(17.705)
is even smaller than the RMSE of CNN model with 5% missing values, which shows the
capability of spatial correlations when handling missing values in crowd flow data.
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Hour
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Figure 8: RMSE of ISTC during a day

Figure 8 shows the RMSE of our model during work hours of Suzhou-Center. Since
there are few crowd flow at morning and night, the RMSE is relatively low at these periods.
It also shows that RMSE near lunch and dinner time, e.g. around 12:00 and 18:00, is higher
than afternoon, with Since cameras are installed at entrances, they are not able to capture
crowd flow inside shops, which can be very high at lunch and dinner time when many people
are inside the restaurants, the forecasting becomes more difficult.

5.3. Results with added long-term missing values

Table 3 and figure 9 show the evaluation results when long-term missing values are added
into the training and testing data. And figure 10 gives a sample of the prediction results
of CNN, STC and ISTC model with added long-term missing values. Our ISTC model still
outperforms all other methods.

Unlike the result with random missing values, long-term missing values have much
stronger influence on forecasting accuracy to all models except HA. Since the HA model
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Table 3: Evaluation results with added long-term missing values
Total missing Metric HA ARMA CNN STC ISTC

5%
RMSE 36.116 25.450 19.865 18.757 16.663
MAE 16.188 13.653 10.932 10.127 9.461

10%
RMSE 36.258 26.762 22.105 19.898 17.638
MAE 16.238 14.077 11.629 10.592 10.003

20%
RMSE 36.020 31.401 27.954 25.854 19.440
MAE 16.250 15.584 13.376 12.472 11.060

40%
RMSE 36.225 37.770 34.884 33.245 22.001
MAE 16.426 18.047 16.235 15.585 12.340

60%
RMSE 38.796 45.985 44.502 42.323 29.882
MAE 17.376 21.015 19.490 18.616 15.672

5% 10% 20% 40% 60%
Missing Ratio

0

10

20

30

40

RM
SE

HA ARMA CNN STC ISTC

Figure 9: Evaluation results with added long-term missing values

use the whole historical data as input, which is much longer than longest missing duration,
affect of these added missing values is similar to random missing values. All other models,
including out ISTC model, however, accept historical data in a much shorter time-period
as input, thus these long-term missing values have greater influence on these models. When
the missing ratio reached 40%, the performance of ARMA becomes worse than HA. With
60% missing values, ARMA, CNN and STC get worse results than HA.

Figure 10 shows a sample prediction of CNN, STC and ISTC with long-term missing
values. CNN model is greatly influenced by close history, thus long-term missing values
make it gives a naive prediction, e.g. the horizontal line in figure 10, which indicates a
failure of forecasting. The STC model manages to capture some trend from the learned
spatial correlation, yet it is still greatly influenced by the missing in close historical data.
It is very clear that ISTC model is the only one that predict the peak of crowd flow at the
noon of May 13, when historical data since evening of May 12 are missing.

Our ISTC model, on the other hand, can minimize the influence of missing values with
the knowledge of explicit missing patterns, and impute the missing data based on spatial
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Figure 10: Prediction of CNN, STC and ISTC for inflow of node 0, with added long-term
missing

correlation between nodes. With these ability, ISTC manages to keeps a relatively low
RMSE with 40% missing values, and still outperforms all other methods for all missing
ratios with added long-term missing values. The RMSE increase is 5.338 with 40% percent
long-term missing values, while that of ARMA, CNN and STC are 12.320, 15.019, 14.488,
respectively. Since long-term missing values are much rare than random missing-values,
this is an acceptable result.

5.4. Discussion

Our ISTC model yields satisfactory results for both random and long-term missing values
with as much as 40% total missing values. The RMSE improvement of ISTC is around 2.1
when original data with 5% missing values compared to STC model. With added random
missing values, the RMSE improvement reaches 4.5 with 40% total missing. With added
long-term missing values, the RMSE improvement reaches 11.2 with 40% total missing.
This result shows that our ISTC model is capable of handling both random and long-term
missing values.

The specifically designed impute layer explicitly uses the missing patterns and spatial
correlations between vertices, making our model capable of handling long-term missing
values.

6. Conclusion

In this paper, we propose an effective and efficient framework ISTC that can predict future
in-building crowd flow with missing data. ISTC can use both temporal and spatial correla-
tions, which makes it able to take advantage of the missing patterns explicitly. Experiments
of our dataset shows our model outperforms all the baselines, and can give accurate pre-
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diction for both random and long-term missing values with as much as 40% total missing
values.
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