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Abstract
We propose Power Slow Feature Analysis, a gradient-based method to extract temporally
slow features from a high-dimensional input stream that varies on a faster time-scale,
as a variant of Slow Feature Analysis (SFA) that allows end-to-end training of arbitrary
differentiable architectures and thereby significantly extends the class of models that can
effectively be used for slow feature extraction. We provide experimental evidence that
PowerSFA is able to extract meaningful and informative low-dimensional features in the
case of (a) synthetic low-dimensional data, (b) ego-visual data, and also for (c) a general
dataset for which symmetric non-temporal similarities between points can be defined.
Keywords: Slow Feature Analysis, Temporal Coherence, Spectral Embeddings, Deep
Learning, Representation Learning

1. Introduction

Finding meaningful representations in data is a core challenge in modern machine learning
as the performance in many goal-directed frameworks, such as reinforcement learning or
supervised learning, is strongly influenced by the quality of the underlying representation.
Usually, these representations are either domain specific, heuristically chosen, or acquired
through task-specific adaptation of parameterized models. Many currently successful ap-
proaches for either deep supervised learning (Goodfellow et al. (2016)) or reinforcement
learning (Sutton and Barto (1998) and Mnih et al. (2013)) fall in the latter category, as they
rely on a labeled data or a reward signal to provide sufficient indication which features of
the input data should be extracted to increase performance. However, in most real-world
scenarios labels have to be provided by expert knowledge and reward signals are sparse and
thus an inefficient driver to adapt large models. In unsupervised representation learning one
typically tries to find and apply a principle, such as the minimization of reconstruction error,
by which to extract meaning from data without assuming the availability of any goal-driven
metrics.

We focus on the principle of temporal coherence as applied in slow feature analysis (SFA,
Wiskott and Sejnowski (2002)) or regularized slowness optimization (Bengio and Bergstra
(2009)) which has been shown to provide a useful proxy for extracting underlying causes
from data. For example, Franzius et al. (2007) have used SFA to learn a representation
from ego-visual data that sparsely encodes position, head direction, or spatial view, similar
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to activities observed in rodent brains. SFA has also been successfully applied to determin-
ing object configuration (identity, position, angle) from a tabletop view of moving objects
(Franzius et al. (2011)).

A graph-based generalization allows for arbitrary neighborhood-respecting embeddings
and achieved (at that time) state-of-the-art age estimation results in Escalante-B. (2017).
An experiment utilizing the same generalized perspective is described Section 6.3.

Until recently, the class of models and training algorithms that could be used for SFA
have been limited. While the original proposal of SFA by Wiskott and Sejnowski (2002)
uses non-linear basis functions as a method to introduce non-linearity to the otherwise
linear model, this classical approach has two limitations: (a) The basis functions have
to be chosen beforehand by experience or heuristics, and (b) as the resulting model is
shallow, its expressivity tends to scale unfavorably in the dimension of the expansion (Raghu
et al. (2016)) compared to hierarchical extensions discussed later. In the case of polynomial
expansion, expanding to degree d on e-dimensional input data results in

(
d+e
d

)
-dimensional

expanded data, e.g., quadratically expanding grayscale images of 180 × 90 pixels results in
an output dimension > 131 · 106. Extracting a single feature with a linear model would
thus require 5.7-times more parameters than the modern and powerful Xception network
(Chollet (2016)). A kernelized version of SFA introduced by Böhmer et al. (2011) solves this
problem by implicit expansion (the kernel trick), but shares the typical limitations of other
kernel methods, namely poor scaling in the number of training points as well as a necessity
for finely-tuned regularization.

An alternative approach to increase expressivity is to apply low-degree non-linearities
repeatedly in a receptive-field fashion, interlacing them with projection steps. This has been
done in Hierarchical SFA (HSFA, Franzius et al. (2007) and Escalante-B. andWiskott (2016))
and deep architectures in general. But while the latter are typically trained in an end-to-end
fashion by variants of stochastic gradient-descent, HSFA is trained in a greedy layer-wise
procedure, solving the linear SFA problem consecutively for each layer as closed-form solution
and thereby assuming that globally slow features can be composed of (decreasingly) local
slow features. Escalante-B. and Wiskott (2016) shows that this assumption is sub-optimal
and can be partially relaxed by adding information by-passes to the model.

We propose an SFA-variant that approximately enforces the similar constraints while
being differentiable and thereby allowing training by gradient-descent. This makes it possible
to leverage the representational power of complex models, such as deep neural networks,
and useful ideas from that domain to extract slow and informative features from data by
optimizing a global slowness objective. To demonstrate the applicability of this approach,
we provide three distinct experimental evaluations.

2. Related work

2.1. Slowness-based Methods

Apart from being strongly related to closed-form SFA and its variants/extensions, our al-
gorithm is in line with recent work harnessing the temporal coherence prior (Bengio et al.
(2013)) in deep, self-supervised feature learning. This can be done by having a slowness term
in the loss function, but adding regularizing terms to avoid trivial (constant) solutions. For
example, a reconstruction loss (Goroshin et al. (2015a)) or one-step latent code prediction
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loss (Goroshin et al. (2015b)). Deep temporal coherence has also been considered via the
lens of similarity metric learning, for example by optimizing a contrastive loss (Jayaraman
and Grauman (2016), Mobahi et al. (2009)) or a triplet loss (Jansen et al. (2017), Wang and
Gupta (2015)). These metric learning approaches manage to avoid degenerate solutions by
pushing points away from each other (in feature space) that are not temporal neighbors, as
opposed to our work, where informativeness is ensured by the architecture instead of the
objective function.

2.2. Graph-based Methods

SFA has been generalized from temporally-coherent embeddings to respecting arbitrary sim-
ilarities in graph-based SFA (GSFA, Escalante-B. and Wiskott (2013)) and generalized SFA
(Sprekeler (2011)). The former adapts only the objective function, while the latter addi-
tionally generalizes the constraints to D-orthogonality (D being the degree matrix of an
underlying graph). Following generalized SFA, SFA can be shown to be a special case of
Laplacian Eigenmaps. The generalization of PowerSFA proposed in Section 6.3 is close to
GSFA, assuming regularity in the graph for the orthogonality constraint.

Spectral Inference Networks (SpIN, Pfau et al. (2018)) utilize this connection to success-
fully derive a gradient-based SFA training as a special case. They are based on correcting a
biased gradient when directly optimizing the Rayleigh-Quotient with respect to the model’s
parameters. The constraints are implicitly enforced through the loss function as opposed to
directly whitening the output. Similar to our work, SpINs allow for employing any architec-
ture to find these embeddings. However, the whitening proposed in this paper is applicable
to any loss function as it is part of the model architecture and not inherently a part of the
optimized objective.

SpectralNets (SN, Shaham et al. (2018)) are another closely related approach in which
a differentiable approximator is trained to learn spectral embeddings used in subsequent
k-means clustering. Opposed to PowerSFA and SpINs, they split a single optimization step
into two parts: an ortho-normalization step based on explicitly calculating the Cholesky
decomposition of the batch covariance matrix to set and freeze the weights of a linear output
layer, followed by a stochastic optimization step. While this might be considered end-to-end
depending on the definition of the paradigm, Shaham et al. (2018) do not indicate if and
how this can be implemented as single architecture.

2.3. Other Related Approaches

In Section 6.3, we consider a generalization of PowerSFA’s loss similar to GSFA and apply
it to the NORB dataset (LeCun et al. (2004)). We thereby loosely follow the experimental
procedure in Hadsell et al. (2006). The authors use a siamese neural network architecture
(Bromley et al. (1993)) for optimizing pair-wise distances of embedded points to reflect a
(provided) similarity and dissimilarity structure in the data. By including dissimilarity, they
provide incentive for the optimization procedure to ensure informativeness of the embedding
instead of enforcing decorrelation through constraints.
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3. Slow Feature Analysis

Slow Feature Analysis (SFA) is based on the hypothesis that interesting high-dimensional
streams of data that vary quickly in time are typically caused by a low number of underlying
factors that vary comparably slow. Therefore, slowness can be used as a proxy criterion by
which to extract meaningful representations of these low-dimensional underlying causes,
even in the absence of labels.

There is strong evidence in favor of this hypothesis, as it has been shown that features
extracted by SFA tend to encode highly relevant information about the data-generating
environments (Franzius et al. (2011), Franzius et al. (2007)).

The notion of extracting slow, informative features from a time-series dataset can be
formalized as an optimization problem. Given a time-series {xt}t=0...N−1 with xt ∈ Rd,
sequentially find a continuous function g : Rd → Re with:

min
g

〈
‖g(xt+1)− g(xt)‖2

〉
t

(1a)

s.t.
〈
g(xt)

〉
t

= 0, (1b)〈
g(xt)g(xt)

T
〉
t

= Ie (1c)

where
〈
·
〉
t
is the time-average and Ie is the e-dimensional identity. Typically, an ordering

of the extracted features is assumed. That is

∆(gi) =
〈
‖gi(xt+1)− gi(xt)‖2

〉
t
≤
〈
‖gj(xt+1)− gj(xt)‖2

〉
t

= ∆(gj)

for i < j. In this work, we mainly consider unordered features, but, if needed, the ordering
can be established after optimization as briefly explained in Section 4.

The constraints ensure that each of the extracted features is informative (decorrelated to
all others, equation (1c)) and non-trivial (unit variance, equation (1c)). Originally, solutions
to SFA were proposed for the space of linear/affine functions g, for which a closed-form
solution exists, and later in a kernelized version that requires strong regularization Böhmer
et al. (2011).

For convenience, we will also refer to datasets/mini-batches in matrix notation, i.e., X =[
x0 · · · xN−1

]
∈ Rd×N and by a slight abuse of notation g(X) =

[
g(x0) · · · g(xN−1)

]
∈

Re×N .
If the data is mean-free, the covariance matrix can be calculated asC = 1

NXXT . Further,
we assume it to be positive definite and decomposable into C = UDUT with U’s columns
containing its eigenvectors and D containing the corresponding positive eigenvalues on the
diagonal.

4. (Approximate) Whitening

The standard implementation of linear SFA (Zito et al. (2008)) is based on computing the
closed-form solution to a generalized eigenvalue problem (Berkes and Wiskott (2005)). An
equivalent approach is to first whiten the data, followed by a projection onto the minor
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components of the time-series of differences {ẋt = xt+1 − xt}t=0...N−2. If all components
are used and the eigenvectors are ordered by eigenvalues, the second part corresponds to a
rotation that produces output features that are ordered by slowness. This rotation will not
change the slowness performance of a solution, as defined in equation 1a, and thus we can
apply it after training our model to establish an ordering, e.g., for visual presentation. We
indicate when we have done so.

Whitened data has three important properties: (a) it is mean-free (constraint (1b)),
(b) has unit variance if projected onto an arbitrary unit vector (constraint (1c)), and (c)
projections onto orthonormal vectors are decorrelated (constraint (1c)).

Given a mean-free dataset X̃ ∈ Rd×N of size N and dimension d, a corresponding
whitened dataset is given by

X =W(X̃) = WX̃

where W = UD−
1
2UT is called the whitening matrix. As C is assumed to be positive

definite, D−
1
2 is well-defined.

One widely used method to calculate an eigen-decomposition is power iteration. It
utilizes the fact that repeatedly applying

u[i+1] =
Cu[i]

λ[i]
with λ[i] = ‖Cu[i]‖

will converge to the eigenvector u corresponding to the largest eigenvalue λ of the matrix
C for a random vector u[0] ∈R Rd. Subsequently, the spectral component corresponding to
this eigenvector can be removed as

C← C− λuuT .

allowing to extract all eigenvector/-value pairs (λj ,uj) in descending eigenvalue order by
repeating the procedure.

The corresponding whitening matrix W can be calculated as:

W =
d−1∑
j=0

1√
λj

uju
T
j

We used a fixed number of power iterations which resulted in sufficient whitening without
explicitly checking for convergence (see Section 6.1). Furthermore, the full decomposition
is based on differentiable operations. Thus, the whitened output X is differentiable with
respect to the input X̃.

5. Gradient-based Slow Feature Analysis

The key idea for gradient-based SFA is that such a whitening layer can be applied to any
differentiable architecture (such as deep neural networks) to enforce outputs that approxi-
mately obey the SFA constraints, while the architecture stays differentiable. Therefore, it
can be trained using gradient-descent, allowing for hierarchical architectures in which every
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parameter is modified iteratively towards optimizing a global slowness objective, as opposed
to assuming a local-to-global slowness as the greedy-training of HSFA. To formalize, if

g̃θ : Rd → Re

is a differentiable function approximator, such as a neural network, parameterized by θ and

W : RN×e → RN×e

denotes the approximate whitening procedure, then the output

Y =W(H) with H = g̃θ(X)

approximately obeys the SFA constraints for a given dataset or mini-batch X ∈ Rd×N . We
are using the slight abuse of notation introduced in Section 3 for X, H and Y

The approximation error is defined by a general differentiable loss function as

E = LS(Y) =
1

N

∑
i

∑
j

sij‖yi − yj‖2 (2)

where sij is the similarity between two points xi and xj comparable to weights in spectral
graph embeddings (cf. Sprekeler (2011) and Escalante-B. and Wiskott (2013)).

For optimizing slowness, the similarity is provided by temporal proximity and can be
written as the Kronecker delta

sij = δi,j+1

thereby connecting consecutive steps in the time-series.

Figure 1: An illustration of the overall architecture given processing a dataset X with
similarity S. The θ are the only trainable parameters and are learned end-to-end via error
back-propagation.

The approximator can be trained to minimize eq. 2 by following the negative gradient
(or an estimate) of E with respect to θ, −∇θE. As W is part of the architecture, the
idea is that g̃θ learns to produce features that minimize the loss after being whitened. For
our experiments, the whitening is implemented as a layer in the widely-used Keras-package
(Chollet et al. (2015)) and utilizes the underlying reverse-mode automatic-differentiation of
Tensorflow (Abadi et al. (2015)). This allows us to conveniently train a network through
the whitening layer without explicitly formalizing the gradient of the whitening operation.
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Note, that the training is end-to-end as the optimization procedure does not have distinct
phases, except the typical forward-pass/backward-pass as illustrated in Figure 1.

In our experiments, we used the ADAM optimization algorithm (Kingma and Ba (2014))
with Nesterov-accelerated momentum (Dozat (2015)) to train the g̃θ.

6. Experiments

6.1. Synthetic Trigonometric Data

To show the general feasibility of this approach, we first demonstrate that PowerSFA finds
near-optimal solutions in the linear case for synthetic data. Standard SFA is a linear method
that relies on (a) non-linear basis function expansion and (b) hierarchical processing to
induce non-linearity. This means that PowerSFA could hypothetically be used in a similar
fashion (even though a gradient-based approach allows for more complex models in a natural
way).

(a) (b)

Figure 2: Six slow features learned by a linear model with different constraints: (a) shows
the individual features found for different constraints, with ∆-values as defined in 3, and (b)
shows the corresponding covariance matrices. Approximate whitening and the closed-form
solution find decorrelated, informative output signals with comparable slowness.

The data is generated by trigonometric polynomials of degree M as:

x(t) = εt +
M∑
m=1

αn cos (mt)

with x, ε,α ∈ RD and coefficients αin ∼ N (0, 1). A noise term εit ∼ N (0, 0.01) is added
to avoid numerical instabilities in the implementation of closed-form SFA we compared our
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method to, as singular covariance matrices can cause the underlying eigendecomposition to
break.

We implemented a temporal step-size of 2π
104

, and generated 10000 steps with degree
M = 100 and dimension D = 500. The data is whitened with 100 power iterations.

Figure 2a shows the extracted features for different variants of SFA. If the slowness
loss is optimized without any constraints on the output features, the optimal solution is to
collapse all signals to a noisy constant (∆ ≈ 0), while if unit variance is enforced, only the
features with slowness very close to the smallest ∆ are extracted multiple times and thus
the representation becomes highly redundant across features. When using the approximate
whitening, the quality of the solutions is comparable to the optimal solution gained by solving
a generalized eigenvalue problem. For visualization purposes, the features were ordered by
slowness by rotation as explained in Section 4. In Figure 2b, the covariance matrices of the
extracted signals are visualized.

Note that it is not a sensible approach to use PowerSFA to optimize a linear model
for such low-dimensional data as the optimal solution is easily attainable. For this reason,
this experiment should be understood as a proof-of-concept and a general demonstration of
applicability rather than a recommendation for a use-case.

A very low number of power iterations will render the optimization unstable, but here
seems to be no continuous trade-off between correlation and slowness mediated by the num-
ber of iterations. Thus, we recommend to find a minimal setting that allows for stable
optimization. Supplement S1 contains a small hyper-parameter study illustrating that be-
havior for the linear case.

To provide evidence on how gradient-based SFA can improve on solutions found by
closed-form SFA, we encapsulate the original signal in a component-wise non-linear distor-
tion:

u(t) = cos(ex(t))

This makes it impossible to optimally extract slow signals by linearly unmixing the original
components.

When applying closed-form SFA to non-linear problems, it is common to apply multiple
low-degree polynomial expansions interlaced with linear SFA steps to reduce the dimension-
ality, in a greedy layer-wise training. We use an architecture with three quadratic expansion
layers (normalized to unit norm to avoid exploding gradients), calculate the greedy closed-
form solution and then use this solution as initialization for gradient-based training. We
perform the same comparison for a multi-layer perceptron with three hidden layers and tanh
activation since polynomial expansion functions are uncommon in gradient-trained models.
Both architectures are provided in supplement S2.

Closed-form Gradient-based
Slownessquadratic 1.53 · 10−3 ± 9.00 · 10−5 3.35 · 10−4 ± 4.43 · 10−5

Slownesstanh 1.84 · 10−1 ± 5.96 · 10−3 8.936 · 10−4 ± 5.955 · 10−5

Table 1: Average slowness of five output features over five runs extracted by greedy layer-wise
training and gradient-based training from non-linearly distorted cosine polynomials. Results
for three-layer quadratic expansion network and neural network with tanh activation.
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The results in Table 1 show that gradient-based training can significantly improve slow-
ness in multi-layer architectures compared to greedy layer-wise SFA. Note that increasing
the output dimension of the dimensionality reduction steps (or dropping them altogether)
in the quadratic expansion network will, unsurprisingly, lead to improved performance and
ultimately to convergence to similar optima in both networks. However, this performance
increase comes at the cost of high memory requirements and is usually not applicable in
high-dimensional non-synthetic problems.

6.2. Place Cells from Visual Data

Slowness has been shown to be a useful principle for extracting underlying causes from
high-dimensional data. Franzius et al. (2007) used SFA to learn representations from visual
time-series: Depending only on the movement statistics in a 3D environment, they were able
to extract low-dimensional encodings of either position, direction, or viewpoint from 320◦

ego-perspective images. When additional sparse coding in the form of ICA is applied, these
features become distinctly localized and each one encodes for a particular neighborhood in
space, direction angle, or viewpoints - similar to cell types discovered in the hippocampal
formation of the mammalian brain (O’Keefe and Dostrovsky (1971), Rolls (1999) and Barry
and Burgess (2014)).

We reproduced one such experiment, but replaced HSFA with PowerSFA using an un-
trained MobileNet architecture (Sandler et al. (2018)) as convolutional network model. The
Unity game engine (Unity Technologies (2019)) was used to generate visual data with a
more narrow 90◦ field-of-view. Figure 3 shows the layout of the environment and samples
from different poses.

Figure 3: The data-generating box environment. Each wall has a different texture so that
they can be distinguished from each other when the agent is standing close.

From this environment, we generated a 2.5× 105-step time-series with 240× 120 RGB-
pixels to train the SFA network. This time-series is driven by two independent stochastic
processes - one generating a movement sequence and an other one generating a sequence
of rotations in parallel. In each step, position and rotation are used to generate an ego-
perspective image (Figure 3). When the position changes more slowly than the rotation,
the former will be encoded in the slowest features of a sufficiently powerful model and vice
versa, leading to either a low-dimensional representation of place or orientation. The details
of this procedure can be found in Franzius et al. (2007).
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In line with their experiments, we applied independent component analysis (ICA, Comon
(1994)) after training to acquire a sparse representation. Figure 4 shows the activation of
the individual slow/sparse features at each position in the environment. Every feature is
averaged over a full rotation in 16 steps for a compact presentation. The slow features have
been ordered by slowness through a rotation as explained in Section 4 for visualization and
easier comparison to the responses found in Franzius et al. (2007).

(a)

(b)

Figure 4: The activation of the 16 output features for all positions in the environment, aver-
aged over 16 equiangular directions. 4a shows the slow features (after subsequent ordering)
and 4b shows the sparse features. Each sparse feature is active in a distinct part of the
environment and mainly inactive in all other parts.

The features for all positions in each of the directions can be found in the supplemen-
tary material to justify the averaging in Figure4. Representative for all features, Figure 5
shows the activation map of the first sparse feature under rotation. All features are largely
invariant to rotation of the agent, despite its narrow field of view, and clearly encode a
specific location, independent of the current viewing direction, resembling place-cells in the
mammalian Hippocampus (O’Keefe and Dostrovsky (1971)).

Figure 5: The first sparse feature under 20◦ rotations. Location is encoded independent of
the current view.

Such a specific, low-dimensional representation is likely to be an appropriate foundation
for faster goal-directed learning, for example, when locating rewards in a connected envi-
ronment or general navigation tasks. Furthermore, as the architecture is a CNN as often
used in modern reinforcement learning Mnih et al. (2013), the trained network (without
the whitening layer) might also be further utilized as efficient initialization for subsequent
training in such a setting. Neither assumption is tested in this work and both should be
considered promising hypothetical benefits although not far-fetched.
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6.3. NORB

While gradient-based SFA is the main contribution of this work, previous work on generaliz-
ing SFA (Sprekeler (2011)) has shown that the SFA optimization problem is strongly related
to a special case of the problem solved by a more general spectral embedding method, i.e.,
Laplacian Eigenmaps (Belkin and Niyogi (2003)), or, with small differences, graph-based
SFA (Escalante-B. and Wiskott (2013)). For this reason, we defined a more general loss
function in equation 2.

(a) (b) (c)

Figure 6: The embedded object from the NORB dataset. Samples differ in azimuth, elevation
and lighting.

Similarities sij can be defined between any two points xi and xj of a given data-set,
not just consecutive ones, thus allowing to optimize neighborhood-respecting embeddings
for general graphs. This is similar (but not fully equivalent) to spectral embeddings on
graph data, as used in algorithms such as Laplacian eigenmaps. Our approach exhibits four
significant differences:

1. Features do not have an order,

2. the found solution is a local optimum (or saddle point),

3. like in GSFA, the graph regularity is ignored when enforcing the orthogonality con-
straint, and

4. it allows for a natural and scalable way to embed unseen points.

Computing an out-of-sample embedding is no different than embedding a training point,
except for a frozen whitening matrix. In particular, its complexity does not scale with the
number of training points used as is often the case in other out-of-sample schemes, such as
Nyström approximation (Williams and Seeger (2001)).

We demonstrate the usefulness of such an approach by embedding an object of the NORB
data-set, a collection of photographs of toys taken at different elevations, azimuths, and
under different lighting conditions with the MobileNet architecture (Sandler et al. (2018))
scaled with α = 0.5 and a depth multiplier of 2 in the Keras implementation. Following
Hadsell et al. (2006), we embed a toy plane (Figure 6) in 972 configurations (18 azimuths
× 6 lighting conditions × 9 elevations angles) that were randomly split into a train- and
test-set of sizes 660 and 312 ,respectively. The similarities sij were chosen as 1 if xi and xj
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(a) (b) (c) (d)

Figure 7: Cylindrical embedding of NORB plane with azimuth colored. 7a and 7b show the
embedded training data from the front and the side of the cylinder respectively, while 7c
and 7d show the test data for the same configuration. Circumference of the cylinder encodes
the rotation of the plane.

(a) (b)

Figure 8: Embedding from Figure 7 with elevation colored. 8a shows the embedded training
data from the side of the cylinder, while 8b shows the test data for the same configuration.
Height on the cylinder encodes the photograph’s elevation angle (from low to high when
moving through it).

differed only in one step either in rotation (i.e., one azimuth) or elevation (i.e., one level)
and 0 otherwise. The sij were independent of lighting condition.

Figures 7 and 8 show the three-dimensional embedding that was found in this setting.
The data was embedded in a cylindrical shape in which the circumference encodes the rota-
tion angle of the embedded object, and the length along the cylinder encodes the elevation
configuration of the object for the train-set and in the out-of-sample case of the test-set.
Hadsell et al. (2006) found a similar cylindrical encoding but include a maximization of dis-
tance for dissimilar samples in the objective function instead of a decorrelation constraint.

7. Discussion

We propose a new way of extracting informative slow features from quickly varying inputs
based on differentiable whitening of processed batches of the input data. To experimen-
tally show the feasibility of the method, we trained a linear and two non-linear models to
extract slowly varying output signals from synthetic time-series by gradient-descent, and
find that the differentiable whitening ensures informativeness of the extracted features when
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optimizing a slowness loss function by gradient-descent. Furthermore, the linear features
corresponded closely to the optimal solutions found by closed-form SFA. 1

To show applicability to visual data, we trained a CNN on an input stream of an ego-
perspective time-series generated from a 3D environment. Gradient-based SFA could suc-
cessfully extract the slowly changing position in the environment invariant to the quickly
changing rotation from the images alone, despite a narrow field-of-view. By subsequently
applying ICA, we were able to show that the place-cell phenomenon that has been found
in the mammalian Hippocampus and that has been successfully modelled by HSFA could
also be acquired with deep neural networks by the means of our method. We consider
evaluating the efficacy of either directly using this representation or using it as model ini-
tialization for goal-directed learning a promising direction for future research, in particular,
when concerned with navigation tasks.

The last experiment was conducted on a non-time-series image dataset on which sym-
metric similarity relations between the data are defined. We show that by the generalization
of gradient-based SFA in the spirit of graph-based SFA is able to extract a low-dimensional
representation that preserves and disentangles the configuration parameters used to define
the similarity, in this case, azimuth and elevation of a photographed toy. This representation
generalizes well to previously unseen configurations of the object.

While the algorithm is still in a prototypical state, the proof-of-concept results presented
in this paper show promise for gradient-based SFA by differentiable whitening to extract
meaningful representations for goal-oriented learning while leveraging the expressive power
of modern architectures. Futhermore, differentiable whitening ensures non-redundancy of
output features regardless of the optimized loss function and can be used for other unsuper-
vised principles as well.

One limitation of PowerSFA is that it currently does not scale favorably in the number
of output features e. We see two main reasons for this: the necessary batch size to get a
meaningful estimate of the batch-covariance estimate and its calculation. The latter is due
to the complexity of a naive Re×Nbatch · RNbatch×e matrix-multiplication being O(Nbatche

2),
while the former is due to the whitening procedure expecting a covariance matrix of full
rank and thus Nbatch ≥ e samples.

To reduce the lower bound on the batch-size at batch t, a convex mixture with the
covariance matrix of the previous

Ct = (1− γ)Cθ + γCt−1

Note, that only the current batch’s covariance matrix Cθ is considered parameter-dependent
and allows to propagate a gradient for training. Thus, large values for γ might cause a
significant bias in the gradient-estimate. This has not been used to generate the proof-of-
concept results for this paper.

1. We put the Keras implementation of PowerSFA as well as implementations for qualitatively reproducing
the synthetic data and NORB experiments online at https://s3.amazonaws.com/acml2019/powersfa_
code.zip.
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