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Abstract

As a new occurring unsupervised method, multi-view clustering offers a good way to in-
vestigate the hidden structure from multi-view data and attracts extensive attention in
the community of machine learning and data mining. One popular approach is to iden-
tify a common latent subspace for capturing the multi-view information. However, these
methods are still limited due to the unsupervised learning process and suffer from consid-
erable noisy information from different views. To address this issue, we present a novel
multi-view subspace clustering method, named self-supervised deep multi-view subspace
clustering (S2DMVSC). It seamlessly integrates spectral clustering and affinity learning
into a deep learning framework. S2DMVSC has two main merits. One is that the cluster-
ing results can be sufficiently exploited to supervise the latent representation learning for
each view (via a classification loss) and the common latent subspace learning (via a spec-
tral clustering loss) for multiple views. The other is that the affinity matrix among data
objects is automatically computed according to the high-level and cluster-driven representa-
tion. Experiments on two scenarios, including original features and multiple hand-crafted
features, demonstrate the superiority of the proposed approach over the state-of-the-art
baselines.

Keywords: Multi-View Clustering, Subspace Clustering, Deep Learning, Unsupervised
Learning

1. Introduction

Nowadays, data with multiple views are becoming more and more popular in many real-
world applications. For example, one specific news is described by multilingual forms; an
image can be characterized by color, edge, texture, etc. As each view usually contains
different and partly independent information, the multi-view learning is beneficial to boost
the performance of data analysis such as clustering, classification, retrieval, etc. by fully
exploiting the complementary and consistency among different views. In this work, we
mainly focus on multi-view clustering, which is a challenging problem for lacking supervised
information to guide the learning process.

Multi-view clustering aims to divide the multi-view data into different groups. It has
received considerable attention in the area of artificial intelligence and machine learning,
because multi-view clustering is superior to single-view clustering by utilizing the comple-
mentary information from different views. To make use of the multi-view information, a
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surge of common latent subspace methods have been proposed based on different tech-
niques, e.g., canonical correlation analysis (CCA) Chaudhuri et al. (2009); Rupnik and
Shawe-Taylor (2010), matrix factorization Gao et al. (2013); Zhang et al. (2014); Zhao
et al. (2017) and self-expressive learning Cao et al. (2015); Luo et al. (2018); Cheng et al.
(2018). Even though the existing approaches have led to the state-of-the-art multi-view
clustering performance, their applicability to real applications is still limited due to the
lack of effective supervision. Besides, noise and outlying entries are generally mixed in
original data, which adversely degenerate the clustering performance.

To address the above issues, in this paper, we attempt to integrate deep multi-view sub-
space representation learning and spectral clustering into one unified optimization frame-
work (S2DMVSC) as shown in Figure 1. More specifically, to learn better representation
for each view and the common latent subspace, S2DMYVSC supervises such process via
two losses, i.e., a spectral clustering loss and a classification loss. To denoise the imperfect
correlations among data points, S2DMVSC constructs the affinity matrix according to
the high-level and cluster-driven representation. These two parts are alternately refined in
the learning procedure so that an improved common latent representation can be generated
and consequently produces a better data segmentation.

The key contributions of our work are summarized as follows:

e S2DMVSC has the ability to obtain a better latent representation by designing a
self-supervision framework.

e S2DMVSC can seamlessly capture the relationships among multiple views by de-
signing a self-expressive layer between encoder and decoder.

e S2DMVSC integrates affinity learning and spectral clustering into a unified frame-
work, which can denoise the imperfect similarity metrics and further improve the final
clustering performance.

e Extensive experiments on both the original features and multiple hand-crafted features
scenarios demonstrate its superiority by comparing it with the state-of-the-art multi-
view clustering methods.

The rest of this paper is organized as follows. A brief survey of multi-view clustering
methods is given in section 2. Section 3 shows the proposed model. Section 4 presents
experiment results and discussions. Finally, section 5 concludes this paper.

2. Related work

Multi-view clustering is an important and hot research topic in multi-view data analysis.
To date, various methods have been proposed by assuming the data points are drawn
from multiple low-dimensional subspaces. Based on different techniques, existing subspace
methods can be roughly divided into three groups. The first kind of method takes advantage
of canonical correlation analysis (CCA) to exploit the consistency of different views by
maximizing their correlation. The second kind of method applies non-negative matrix
factorization to seek a common latent factor among all views. The third kind of method
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Figure 1: Architecture of the proposed Self-Supervised Deep Multi-View Subspace Clus-
tering (S2DMVSC). It consists of mainly four parts: a) representation learning
part, which consists of multiple auto-encoders and used to implement non-linear
mapping and learn powerful representations by minimizing reconstruction errors;
b) view-shared self-expressive layer, which is used to learn the self-representation
coefficient matrix and also takes the self-supervision information from the result
of spectral clustering to refine the self-expression coefficient matrix; ¢) unified
FC classifier, which builds a self-supervision path back to the encoder part of
deep auto-encoders; d) spectral clustering part, which provides self-supervision
information to guide the learning of data representation and view-shared self-
expression coefficient.

takes advantage of self-expressive learning to learn the relationship between data points,
then the affinity matrix can be constructed to perform spectral clustering.

Chaudhuri et al. (2009) took advantage of the canonical correlation analysis (CCA)
to ensure that the new low-dimensional representations of different views are maximally
correlated. Rupnik and Shawe-Taylor (2010) extended CCA to more than two views sce-
nario. In the real world, practical data do not necessarily conform with the linear subspace
model. Bach and Jordan (2003) took advantage of kernel trick to tackle this drawback,
however, how to choose proper kernel is another problem. The other straightforward rem-
edy is based on the matrix factorization technique. Gao et al. (2013) exploited non-negative
matrix factorization (NMF) to learn the view-specific new representation of each view and
then made a consensus low-dimensional representation. Zhao et al. (2017) took advantage
of Semi-NMF' to construct multi-layer mapping then get a common latent factor. How-
ever, these methods only focus on the low-level relationship among the original features
in different views. Another method is to exploit self-expressive learning so that the rela-
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tionship between data points can be obtained. Gao et al. (2015) gained a common cluster
indicator matrix after learning view-specific self-expression coefficients. Cao et al. (2015)
exploited the Hilbert Schmidt Independence Criterion to constrain the diversity among dif-
ferent views. Luo et al. (2018) divided the self-expression coefficient into view-shared and
view-specific parts to exploit the complementary and consistent information of multi-view
data simultaneously. However, these methods still suffering from the linear mapping which
cannot capture complex structures of real-world data.

Andrew et al. (2013) exploited simple fully-connected neural networks to seek non-linear
transformation, then utilized CCA to maximize the correlation among different views. Wang
et al. (2015) took advantage of deep auto-encoders to learn better latent representations for
its reconstruction constraint. Tang et al. (2018) utilized two auto-encoders that introduce
the self-expressive layer after CCA at the junction of them. However, it limited to two
views. Recently, Abavisani and Patel (2018) exploited multiple deep auto-encoders with
one common self-expressive layer to get the unified self-expressive coefficient.

Even though the aforementioned methods obtain promising results, they didn’t take the
noise ubiquitous in real-world datasets into account. The noise and outlying entries in the
real-world datasets will impair the clustering performance. Thus, in this paper, we aim
to simultaneously capture complex structures and reduce the effect of noise on clustering
performance by introducing supervised information.

3. Self-Supervised Deep Multi-View Subspace Clustering

Self-expressive-based methods Ji et al. (2014, 2017); Zhou et al. (2018) has been proved to
be working well for subspace clustering. Given the multi-view dataset {X®) € Rd(q))xn}ﬁzl
which has n data points and is described by k views, each data point in v-th view is
represented by d®)-dimensional feature vector, and all data points belong to ¢ clusters. If
we perform simple self-expressive-based method on each view independently, for v-th view,
we have

1
m(n)mnc*(”)H?F + §||X(”) —XWeW |2 st. diag(C™Y)) =0, (1)
C v

where C(*) is the v-th view subspace representation, ||C(")||2 is a regularization term,
diag(C™)) = 0 is the constraint to avoid the trivial solution of C*) = I, and A > 0
is the trade-off parameter. Once subspace representation C(*) for each view is obtained,
how to combine them is challenging. To exploit the consistency among different views,
we directly learn an view-shared subspace representation C'. Therefore, our model can be
reformulated as:

k
: 1 v . .
mCmAHcH% +3 ;1: | X® — X2 st. diag(C) = o, (2)

where C is the view-shared subspace representation, ||C||% is a regularization term, diag(C) =

0 is the constraint to avoid the trivial solution of C' = I, and A > 0 is the trade-off parameter.
However, the above learned linear subspace is not powerful enough to be applied to

complex real-world applications. To address this issue, we introduce the deep auto-encoder
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structure to exploit the non-linear mapping. The auto-encoder structure consists of two
mirror parts: encoder and decoder. For v-th view, given data X (), feed it into encoder,
we can get the latent representation Z(*). To ensure the learned representation Z() has
meaningful information of original data, Z(*) is fed into the mirror decoder to reconstruct
data X (), then X® and X®) are constrained to be consistent. The key idea is that the
learned latent representation Z(*) is a good representation if it can reconstruct original data
via the decoder. Therefore, we add the reconstruction error to Eq. 2, it can be rewritten
as:

k k
1 > 72
min — x @ _ x(©))2 Ol + 22 ZW) _ 7)) 2
i 50 2| I+ il + 3 3 12

s.t. diag(C) =0, (3)

where Z() is the v-th view latent representation corresponding to the output of deep en-
coder, X® is the v-th view reconstructed representation of X (), the first term is recon-
struction error, v; and 7, are the trade-off parameters among three terms. After obtaining
unified subspace representation C, affinity matrix can be constructed as S = (|C|+|CT])/2
and the clustering result can be obtained by performing spectral clustering on S.

Another important issue for multi-view clustering is that multi-view data contains com-
plex noises. To address this issue, we want to design a constraint between the clustering
task and representation learning in a self-supervised way. Fortunately, by observing the fact
that the learned output of deep encoders Z () (v=1,2,...,k) should contain enough informa-
tion to produce pseudo label of data, and the output of spectral clustering also can be used
to form binary label of data by performing k-means clustering, we design a novel constraint
which can guide the learning of latent representations Z(*) (v=1,2,...,k) and the view-shared
subspace representation matrix C. More specifically, we design a unified two-layer fully-
connected classifier, which takes the output of deep encoders as input. To exploit both
complementary and consistent information of different views, we further divide the first
fully-connected layer into k view-specific parts and one view-shared part. We denote the
output of the unified classifier as Y € R™*¢. To obtain the output of spectral clustering
which takes the affinity matrix S as input, we add the spectral clustering loss to Eq. 3. The
objective function of spectral clustering is defined as:

ngnTr(QTLCQ) st. QTQ =1, (4)

where Q € R™*€ is the cluster indicator matrix, Lo = D — S is a graph Laplacian matrix, D
is a diagonal matrix whose diagonal elements are defined as d;; = ), s;;. After obtaining
the output of spectral clustering, we can get the binary clustering label by performing
the k-means algorithm on the row of Q). After Y and @ are obtained, we construct the
classification loss by combining cross-entropy loss and center loss (CEC):

n

1 _Ts
CEC(Y.Q) =~ D (L4 e DB) + 7y — fingy,)l13), (5)
j=1

where y; is the j-th row of Y, ¢; is the j-th row of @, g; is the softmax output of y;,
Kr(y;) is the cluster center which corresponds to yj, m(y;) is the index of y; corresponds
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to output of spectral clustering @, and 0 < 7 < 1 is the trade-off parameter between two

terms. The first cross-entropy loss term to ensure the pseudo label Y and clustering label

Q) be consistent, the second center loss term to minimize the intra-cluster variations.
Finally, we add Eq. 4 and Eq. 5 to Eq. 3, our model can be rewritten as:

v) ) _ 702
L QHZHX 13 +wlCIz + 2 an CII2

+3Tr(QTLeQ) + 2 Y (In(L 4+ e ) + 7ly; — prgy, ),
7j=1

s.t. diag(C) =0,QTQ = 1I. (6)

where 3 and 4 are the trade-off parameters for balance spectral clustering term and CEC
loss.

To investigate the supervision information generated by the output of spectral clustering,
we observe this following formulation which based on the fact that S = (|C| + |CT])/2,

: 1 g — 4513
min Tr(QLeQ) = o 3 syl — a3 = 3 ley 14 912 ™

— — 2
Z’.] Z7-]

once the @ is fixed, ¢;; will be enforced to non-zero value only if ¢; and g; are the same.
We can see the output of spectral clustering can supervise the self-expressive coeflicient
learning. Meanwhile, we observe that it can supervise the representation learning through
the unified FC classifier via CEC loss. Moreover, the output of representation learning
Z® (v =1,2,....k) can directly affect the self-expressive learning, whose output (i.e., the
unified self-expressive coefficient C') is used to construct the input of spectral clustering.
Thus, there is a self-supervision mechanism among representation learning, self-expressive
learning, and spectral clustering. The effect of noise on clustering performance can be
effectively reduced via this self-supervision mechanism.

3.1. Training Strategy

In the training procedure, we first pre-train all deep auto-encoders only using reconstruction
error by setting the trade-off parameters 71, v2, 73 and 4 to be zero. Once we obtained
pre-trained deep auto-encoders, we can initialize the whole network and train the end-to-
end trainable complete model with self-supervision using overall loss in Eq. 6. Because the
binary label obtained from the cluster membership @, i.e., the output of spectral clustering,
is based on an unknown permutation, the label information obtained from two successive
clusterings might not be consistent. To address this issue, Hungarian algorithm Munkres
(1957) is exploited to align the current clustering result with the last one. Besides, we
update the output of spectral clustering () every Ty iterations and stop training by setting
a maximum iteration Ty,q,. Furthermore, we use Adam algorithm Kingma and Ba (2015) to
minimize the loss function for pre-training and fine-tuning procedures with a learning rate
of 1.0 x 1073 in all our experiments. For clarity, we present the detailed training procedure
of proposed S2DMVSC in Algorithm 1.
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Algorithm 1 Training procedure of proposed S2DMVSC

Input: Input data {X(”) € Rd(u)xn}ﬁ:l, trade-off parameters 1, o2, 3, V4, 7, update
iteration Ty and maximum iteration T}, ..

Output: trained S2DMVSC and Q.
Pre-train the deep auto-encoders by setting Ay = Ao = A3 = Ay = 0;
Initialize other parts of model network using random initialization;
Set t = 0;
while t < T,,,. do

if t%Ty == 0 then

‘ Update @ by solving Eq. 4;

end

Update whole network via Adam algorithm;

t—1t+1;
end

3.2. Computational Complexity Analysis

In this section, we analyze the computational complexity of S2DMVSC. Our deep subspace
model is composed of two stages, i.e., pre-training and fine-tuning, so we analyze them
separately. To simplify the analysis, we assume the settings of all deep auto-encoders (e.g.,
SAE Vincent et al. (2010)) are the same, and the dimensions of all the layers in each auto-
encoder are the same, denoting p. m is the number of encoder layers. The original feature
dimensions of each view are the same, denoting d. k is the number of views. n is the number
of samples.

In pre-training stage, the complexity of training k m-layer auto-encoders is of order
O(knT,(dp+(m—1)p?)), where T}, is the maximum number of training iterations. Normally,
p < d, so the time cost of pre-training stage is Tpre = O(knTp.mdp). In fine-tuning
stage, the training of auto-encoders and spectral clustering are the time consuming parts.
Similar to pre-training stage, the time cost of training k m-layer auto-encoders is of order
O(knTmazmdp). The time cost of the eigenvalue decomposition in spectral clustering is of
order O((|Tynaz/To] +1)n3), where Tpa, is the maximum number of Iterations. so the time
cost of fine-tuning stage is Tfine = O(knTimazmdp + (| Tmaz/To] + 1)n3). To sum up, the
overall computational cost is Tiotat = Tpre + Tfine-

4. Experiments and Analysis

We implement our method in Python with MXNet-1.4.1 Chen et al. (2015), and conduct
a series of experiments to validate the performance of the proposed S2DMVSC model by
comparing with several the-state-of-the-art baseline methods. To validate the effectiveness
of our model, we set two kinds of scenarios: original features and multiple hand-crafted
features. For original features scenario, to validate that multiple features can help the
clustering task, we use raw image pixels as the input and use three different types of auto-
encoders to learn three different types of latent representations, which can be seen as three
views even though the input is raw image pixels. For hand-crafted features scenario, we use
the multiple hand-crafted features as the input to validate the effectiveness of the proposed
S2DMYVSC model when dealing with multiple heterogeneous views.

1007



SUN CHENG MIN JING

4.1. Datasets

For the two different experiment scenarios, different datasets are adopted to evaluate the
clustering performance. For original features scenario, we adopt five widely-used image
datasets: Extended Yale B Georghiades et al. (2001), ORL Samaria and Harter (1994),
UMIST Woodall et al. (2007), COIL20 S. A. Nene and Murase (1996a) and COIL100 S. A. Nene
and Murase (1996b). For hand-crafted features scenario, four benchmark datasets, includ-
ing ORL, COIL20, UCIHD Asuncion and Newman (2007) and Yale Belhumeur et al. (1996),
are used to validate the performance. The statistics of two types datasets are summarized
in Table 1 and Table 2, respectively. Following is the detail information of these datasets.

Table 1: Statistics of benchmark datasets for original features scenario.

Dataset Type Samples Image size  Classes
Extended Yale B Face 2432 48x42 38
ORL Face 400 32x32 40
UMIST Face 480 32x32 20
COIL20 Generic Object 1440 32x32 20
COIL100 Generic Object 2880 32x32 40

Table 2: Statistics of benchmark datasets for hand-crafted features scenario.

Dataset Type Samples  Classes Viewl View2 View3
ORL Face 400 40 Intensity(4096) LBP(3304) Gabor(6750)

COIL20 | Generic Object 1440 20 Intensity(1024) LBP(3304) Gabor(6750)

UCIHD Digit 2000 10 FAC(216) FOU(76) PIX(240)
Yale Face 165 15 Intensity(4096) LBP(3304) Gabor(6750)

o Fxtended Yale B: it contains 2432 face images of 38 subjects, the images of each
subject were taken under different illumination conditions. Following Ji et al. (2017),
each image is down-sampled to 48 x 42.

e ORL: it composed of 400 face images taken from 40 individuals. For original features
scenario, following Ji et al. (2017), each image is down-sampled to 32 x 32. For hand-
crafted features scenario, each image is represented by three kinds of features (4096
Intensity, 3304 LBP and 6750 Gabor).

e UMIST: it contains 480 images of 20 persons, each person with only 24 images is
taken under very different poses. Each image of the dataset is down-sampled to 32 x
32.

e COIL20: it contains 1440 gray-scale images of 20 objects. For original features sce-
nario, each image is down-sampled to 32 x 32. For multiple hand-crafted features
scenario, three types of features are extracted including Intensity, LBP and Gabor.
Their feature size is (1024, 3304 and 6750).

e COIL100: it is composed of 7200 images taken from 100 objects. Due to the compu-
tational memory limit, following Zhou et al. (2018), we select the first 40 classes of
2880 data points in COIL100 for our experiments. Each image is down-sampled to 32
x 32.
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e UCIHD: it contains 2000 images of 10 categories, and each image is represented
by three kinds of features: 216 Profile-correlation, 76 Fourier-coefficient and 240
Intensity-averaged.

e Yale: it is composed of 165 images taken from 15 individuals. Three types of features
are extracted including Intensity, LBP and Gabor. Their feature size is (4096, 3304
and 6750) respectively.

4.2. Methodology

To prove the effectiveness of proposed S2DMVSC, we compare it with several state-of-the-
art baselines under two different experiment scenarios. In original features scenario, i.e.,
raw image pixels as the input, six baselines, which use original features as input data, are
adopted for comparisons. Among them, SSC Elhamifar and Vidal (2013) and EDSC Ji et al.
(2014) to learn the self-expression coefficient matrix by using sparsity prior, LRR Liu et al.
(2010) and LRSC Vidal and Favaro (2014) to pursue better self-expression coefficient by
constraining it as low-rank as possible, all these methods are using shallow features with lin-
ear mapping. Meanwhile, three deep subspace clustering networks are compared: DSC-Nets
(including DSC-Net-/; and DSC-Net-ly) Ji et al. (2017) and DASC Zhou et al. (2018). DSC-
Nets introduce the self-expression method to deep auto-encoders, utilize deep auto-encoder
to exploit non-linear mapping and learn the self-expression coefficient to perform spectral
clustering. DASC improves DSC-Nets by introducing Generative Adversarial Nets Good-
fellow et al. (2014) to refine the feature representations learned from auto-encoder.

In multiple hand-crafted features scenario, i.e., multiple hand-crafted features as the in-
put of model, six state-of-the-art baselines, including DiMSC Cao et al. (2015), CSMSC Luo
et al. (2018), SWMC Nie et al. (2017), MCGC Zhan et al. (2019), DMF-MVC Zhao et al.
(2017) and DMSC Abavisani and Patel (2018). Among them, DiMSC first learns the view-
specific self-expression coefficient and then introduces the Hilbert Schmidt Independence
Criterion Gretton et al. (2005) to constrain the diversity among different views. CSMSC
divides the self-representation coefficient matrix into view-shared and view-specific parts
so as to exploit the complementary and consistent information of multi-view data simul-
taneously. SWMC and MCGC aim to fusion multiple view-specific affinity matrix so as to
exploit the complementary and consistency information among different views. Meanwhile,
DMF-MVC constructs multi-layer semi-non-negative matrix factorization to learn a deep
consensus latent representation for all views. DMSC extends DSC-Nets to multi-view ap-
plications, and uses multiple auto-encoders with a common self-expressive layer to exploit
the consistency among multiple views. Because the original DMSC uses multiple deep auto-
encoders to solve multimodal image clustering, which is not the same as our experiment
setting, we keep its network settings the same as ours for fair comparison. Besides, recently
published DMVSSC Tang et al. (2018) adopts two convolutional auto-encoders to extract
the feature, then utilizes CCA to fusion the feature representations, finally performs affinity
learning by self-expression layer. However, it is limited to two views cases, so we do not
take it as baselines.

In our experiments, the optimal parameter settings keep the same as previous sugges-
tions or determined by the experiments. For all baseline methods, we use the source codes
released by the corresponding paper authors, and tune parameters to get the best results.
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Note that we directly cite the results of some baselines, including SSC, EDSC, LRR, LRSC,
DSC-Net-l;, DSC-Net-l, and DASC, from DASC under the original features scenario due
to the same experiment settings. In all our experiments, we choose ReLU Krizhevsky et al.
(2012) as the non-linear activation function, we set the learning rate to 1.0 x 102 and we
set the trade-off parameter 7 = 1 between cross-entropy loss and center loss. For learning
the self-expression coefficient matrix, the whole dataset is fed into the model as one batch.
In addition, for the unified FC layers, the first hidden layer consists of three view-specific
parts which have n/3 neurons each, and one view-shared part which has n/50 neurons,
51n/50 neurons in total, and the second FC layer has ¢ neurons.

To measure the clustering performance, we use the following popular clustering metrics:
clustering accuracy (ACC), normalized mutual information (NMI) Vinh et al. (2010) and
purity (PUR) Manning et al. (2008). The values of all the three metrics are in the range
[0, 1], and the higher the better.

4.3. Performance Evaluation

In this section, we evaluate the proposed S2DMVSC from four aspects. Firstly, we present
the effect of parameters on our S2DMVSC. We show the effectiveness of S2DMVSC when
dealing with the original features scenario by comparing it with several baselines in the
second part. The third one is to present the superiority of S2DMVSC on multiple hand-
crafted features scenario by comparing with six baselines. Finally, we check the convergence
of our proposed S2DMVSC.

4.3.1. EFFECT OF PARAMETERS

In our model, the architecture of deep auto-encoder networks followed by the previous
suggestions or determined empirically. There are five trade-off parameters, including =1,
Y2, V3, 74 and 7, may affect the performance of S2DMVSC. 7 is fixed to 1 in experiments.
For the common parameters 77 and -2 on all datasets (except for UCIHD and Yale due to
absence), we keep the same as Zhou et al. (2018) and Ji et al. (2017). For other experiments,
we tune 1, y2, 3 and 74 in {0.01,0.05, 0.1, 0.5, 1, 10, 30, 50, 70, 100}. The detailed parameter
settings are reported on Table 5 and Table 6.

4.3.2. EVALUATION UNDER ORIGINAL FEATURES SCENARIO

For original features scenario, three different deep auto-encoders, including SAE Vincent
et al. (2010), CAE Guo et al. (2017), and CVAE Kulkarni et al. (2015), are adopted to
learn latent representations as three views, and the kernel stride of deep convolutional
auto-encoders (i.e., CAE and CVAE) is fixed to 2. The detailed architecture information
of CAE, CVAE is summarized in Table 7. Note that the main architectures of CVAE are
the same as CAE and the latent dimension of CVAE is fixed to 256. The architecture of
SAE is fixed to three-layer with {500,500,2000} dimensions for all datasets. For clarity, the
detailed setting information of parameters, including trade-off parameters v1, 2, 3, V4 in
Eq. 6, update iteration Ty and maximum iteration 7}, is summarized in Table 5.

In this subsection, we will evaluate the effectiveness of our proposed method when
dealing with original features scenario, where raw pixels of image datasets are used as
the input of model, by comparing with six baselines on five benchmark datasets. For all

1010



S2DMVSC

Table 3: Clustering results of original features scenario.

Datasets Metrics | SSC EDSC LRR LRSC | DSC-Net-l1 DSC-Net-l;, DASC | S2DMVSC
ACC 0.7354 0.8814 0.8499 0.7931 0.9681 0.9733 0.9856 0.9906
Extended Yale B | NMI 0.7796 0.8835 0.8636 0.8264 0.9687 0.9703 0.9801 0.9912
PUR 0.7467 0.8800 0.8623 0.8013 0.9711 0.9731 0.9857 0.9908
ACC 0.7425 0.7038 0.8100 0.7200 0.8550 0.8600 0.8825 0.8960
ORL NMI 0.8459 0.7799 0.8603 0.8156 0.9023 0.9034 0.9315 0.9425
PUR 0.7875 0.7138 0.8225 0.7542 0.8585 0.8625 0.8925 0.9065
ACC 0.6904 0.6937 0.6979 0.6729 0.7242 0.7312 0.7688 0.7900
UMIST NMI 0.7489 0.7522 0.7630 0.7498 0.7556 0.7662 0.8042 0.8352
PUR 0.6554 0.6683 0.6670 0.6562 0.7204 0.7276 0.7688 0.7908
ACC 0.8631 0.8371 0.8118 0.7416 0.9314 0.9368 0.9639 0.9796
COIL20 NMI 0.8892 0.8828 0.8747 0.8452 0.9353 0.9408 0.9686 0.9806
PUR 0.8747 0.8585 0.8361 0.7937 0.9306 0.9397 0.9632 0.9788
ACC 0.7191 0.6870 0.6493 0.6327 0.8003 0.8075 0.8354 0.8660
COIL100 NMI 0.8212 0.8139 0.7828 0.7737 0.8852 0.8941 0.9196 0.9456
PUR 0.7716 0.7469 0.7109 0.6981 0.8646 0.8740 0.8972 0.9295

Table 4: Clustering results of multiple hand-crafted features scenario.

Datasets | Metrics | DIMSC SwMC CSMSC MCGC DMF-MVC DMSC | S2DMVSC
ACC 0.8380 0.7075 0.8680  0.7975 0.7780 0.8732 0.9004
ORL NMI 0.9400 0.8237 0.9420 0.9006 0.8768 0.9402 0.9500
PUR 0.8875 0.7675 0.8900  0.8350 0.8080 0.8940 0.9020
ACC 0.8007 0.8639 0.7729  0.9951 0.8105 0.9512 0.9965
COIL20 | NMI 0.8505 0.9429 0.8548  0.9945 0.9160 0.9503 0.9963
PUR 0.8021 0.8986 0.7979  0.9951 0.8590 0.9515 0.9967
ACC 0.7965 0.8555 0.8880  0.9705 0.8112 0.9542 0.9715
UCIHD | NMI 0.7471 0.8910 0.8134  0.9301 0.8311 0.9020 0.9374
PUR 0.7965 0.8800 0.8880  0.9705 0.8543 0.9542 0.9715
ACC 0.7090 0.6545 0.7520 0.7152 0.7467 0.7273 0.7750
Yale NMI 0.7270 0.6872 0.7840 0.6734 0.7820 0.7678 0.7922
PUR 0.6970 0.6545 0.7621  0.7152 0.7558 0.7273 0.7785

Table 5: Parameter settings under origi- Table 6: Parameter settings under mul-
nal features scenario tiple hand-crafted features sce-
nario.
Layers 71 2 73 Y4 To Trmax
Extended Yale B | 1 T 30 70 5 1000 Tayers [ or 5 5 a T Ton
ORL 01 001 10 1 5 1240
ORL 0.1 001 10 1 5 360
UMIST 1 01 10 30 5 560 com=o | 1 15 10 10 & 10
COIL20 1 15 10 10 4 320
COIL100 1 15 10 10 8 720 UCIHD | 1030 10 = 30 4 205
Yale 1 3 005 30 5 30

experiments, we run ten times and get the average results. The best result is marked in
bold and the second is underlined for each metric.

Table 3 reports the comparison experiment results. The improvements that S2DMVSC
achieves relative to seven baselines on five datasets in terms of NMI are presented in Fig-
ure 2. The relative improvement in terms of NMI between two methods is calculated by
Relative Improvement = (NMI; — NM1I;)/NMIy, where NMI; refers to the NMI result
obtained by our proposed S2DMYVSC and N M I, indicates the NMI obtained by the cor-
responding baselines. From the above comparison experiment results, we can obtain the
following points. 1) On each benchmark dataset, the improvement of deep structure-based
methods (i.e., DSC-Net-l;, DSC-Net-ly, DASC and S2DMVSC) over the traditional mod-
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Table 7: Network settings of CAE and CVAE for original features scenario.

Datasets Layers encoder-1 encoder-2 encoder-3 decoder-1 decoder-2 decoder-3
channels 10 20 30 30 20 10
Extended Yale B | ) ol size|  5x5 3x3 3x3 3x3 3x3 55
ORL channels 5 3 3 3 3 5
kernel size 5x5H 3x3 3x3 3x3 3x3 5x5
channels 15 10 5 5 10 15
UMIST kernel size 5x5 3x3 3x3 3x3 3x3 5x5
channels 15 - - 15 - -
COIL20 kernel size 3x3 - - 3x3 - -
channels 20 - - 20 - -
COIL100 kernel size 3x3 - - 3x3 - -

els (i.e., SSC, EDSC, LRR and LRSC) shows that deep structure network can effectively
exploit the non-linear mapping of complex real-world datasets and extract powerful fea-
ture representations. 2) As expected, S2DMVSC counsistently outperforms all the deep
structure baselines in terms of ACC, NMI, and PUR on each benchmark dataset. The
main reason is that the multiple different deep auto-encoders designed in our model can
learn diverse features from different views, the complementary information can significantly
improve the clustering performance.

To prove the advantage of our method when dealing with multiple hand-crafted features
scenario, we further evaluate the clustering performance of S2DMVSC on multiple hand-
crafted features datasets next subsection.

NMI improvements (%)
NMI improvements (%)

0

4 i Ll i |
Extended Yale B ORL umIsT colL20 COIL100 colL20
Datasets Datasets

Figure 2: The improvement percentage be-  Figure 3: The improvement percentage be-

tween S2DMVSC and baselines tween S2DMVSC and baselines
under original features scenario under multiple hand-crafted fea-
in terms of NMI. tures scenario in terms of NMI.

4.3.3. EVALUATION UNDER MULTIPLE HAND-CRAFTED FEATURES SCENARIO

For multiple hand-crafted features scenario, we use the same SAE for all views to exploit
non-linear mapping. For ORL, UCIHD and Yale, we use one-layer SAE with {400}, {300}
and {400} dimensions respectively, and use three-layer SAE for COIL20 with {500,500,2000}
dimensions. Besides, the detailed setting information of the trade-off parameters 1, v2, 3
and 74 in overall loss function Eq. 6, update iteration Tj and maximum iteration Th,q; is
summarized in Table 6.
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In this subsection, we will evaluate the effectiveness of our proposed method when
dealing with multiple hand-crafted features scenario, where data points are described by
multiple handcrafted features, by comparing with six baselines on four benchmark datasets.
For all experiments, we run ten times and get the average results. The best result is marked
in bold and the second is underlined for each metric.

Table 4 reports the comparison experiment results between S2DMVSC and six base-
lines on four benchmark datasets. From the comparison results, we can observe that our
method outperforms DMSC, which keeps the same deep auto-encoders and unified self-
expressive layer with our model. It is because the self-supervision information produced by
the output of spectral clustering can effectively help the training of representation learn-
ing and unified self-expression layer, leading to better clustering performances. In most
cases, CSMSC outperforms DiMSC, SwMC, and DMF-MVC. It shows the importance of
exploiting the complementary and consistency among all views simultaneously. Comparing
with MCGC, we can show the strength of deep auto-encoders used in our model to learn
effective representations in an unsupervised manner. Besides, we can further observe that
our S2DMVSC yields the best results comparing with all the baselines in terms of all
three metrics on each dataset. The improvements that S2DMVSC achieves relative to six
baselines on four datasets in terms of NMI are shown in Figure 3. These comparison results
show the effectiveness of our method.

4.3.4. CONVERGENCE OF S2DMVSC

To verify the efficiency of proposed S2DMVSC, we record the objective value (Eq. 6)
and the clustering performance (NMI) of the fine-tuning stage along with the iterations
on UCIHD dataset in Figure 4. We can observe that the objective value decreases quickly
with the increasing of iterations in general even though there are some shocks within 30
iterations. This result verifies that the proposed method converges quickly, and yields good
clustering results. Similar convergence can be obtained on other datasets.

le8

=
ES
L

0.9

=
~

r 0.8

=
o
L

r 0.7

I
o

—r— Objective value —— NMI

NMI

e
=

F 0.6

Objective value

e
S

r0.5

o
[N}

- 0.4

o
o

I T T T T T T T T
o] 25 50 75 100 125 150 175 200
Number of iterations

Figure 4: The objective value (blue line) and NMI (red line) with respect to number of
iterations on UCIHD dataset.
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5. Conclusions

In this paper, we proposed a novel end-to-end trainable multi-view subspace clustering
method, named self-supervised deep multi-view subspace clustering (S2DMVSC). It seam-
lessly integrates spectral clustering and affinity learning into a deep learning framework.
More specifically, to learn better representation for each view and the common latent
subspace, S2DMYVSC supervises such process via two losses, i.e., a spectral clustering
loss and a classification loss. To denoise the imperfect correlations among data points,
S2DMVSC constructs the affinity matrix according to the high-level and cluster-driven
representation. These two parts are alternately refined in the learning procedure so that
an improved common latent representation can be generated and consequently produces a
better data segmentation. Experiments on two scenarios, including original features and
multiple hand-crafted features, demonstrate the superiority of the proposed approach over
the state-of-the-art baselines.
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