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Appendix A. Proof of Theorem 3

We first introduce a Sarker’s (1 + ε) distortion embedding given by Algorithm 5 in (Sarkar,
2011), before we prove that the embedding is a concrete instance of Theorem 3. In the
following, the geodesic path in H2 from x ∈ H2 to y ∈ H2 is denoted by c(x,y). Let
G = ([N ], E) be a tree. Let deg (v) denotes the degree of v ∈ [N ], defined by

deg (v) := |{u ∈ [N ] | (u, v) ∈ E}|. (27)

Let the maximum degree of any vertex in G denoted by deg (G), which is defined by

deg (G) := max {deg(v) | v ∈ [N ]} . (28)

We denote the graph distance of graph G = ([N ], E) by dG : [N ] × [N ] → Z≥0. In the
following, we introduce Sarker’s (1 + ε) distortion embedding for tree G, with distortion
parameter ε ∈ R>0. By regarding object N as the root, we can regard G as a rooted tree.
For v ∈ [N − 1], let the parent of v be denoted by ch (1; v) and let the k − 1-th child of
v be denoted by ch (k; v). For the root, let the k-th child of v be denoted by ch (k; v).
Here k ∈ [deg (v)] if v = N , and k ∈ [deg (v)− 1] otherwise. In particular, k ∈ [deg (G)].

Fix β ∈
(

0, π
deg (G)

)
. Let α = 2π

deg (G) − β, ν = −2 ln
(

tan β
2

)
, and τ = ν 1+ε

ε . For the root

v = N , first, arbitrarily place xN in H2, then xch (1;v) so that dH2

(
xN ,xch (1;v)

)
= τ . Then,

recursively, for all objects v ∈ [N ] whose embedding has been already placed, we place
the embeddings xch (k;N) (k = 2, 3, . . . ,deg (N)) of the children of v so that the following
conditions are satisfied.

• dH2

(
xv,xch (k;v)

)
= τ .

• The angles
{
∠xch (k;v)xvxch (1;v)

∣∣ k = 2, 3, . . . , [deg (v)]
}

are mutually exclusively lo-

cated in open intervals
{(

2`π
deg (G) − α,

2`π
deg (G) + α

) ∣∣∣ ` ∈ [deg (G)− 1]
}

, where ∠xch (k;v)xvxch (1;v)

is the angle that c
(
xv,xch (k;v)

)
makes with c

(
xch (1;v)

)
.

In the following, the embedding given by the above algorithm is called Sarker’s (1 + ε)
distortion embedding. For any Sarker’s (1 + ε) distortion embedding, the following holds.

Theorem 12 (Theorem 6 in (Sarkar, 2011)) Let G = ([N ], E) be a tree. For all ε ∈
R>0 and all embeddings (xn)n∈[N ] given by Sarker’s (1 + ε) distortion embedding, the fol-

lowing holds: for any object pair (u, v) ∈ [N ]× [N ], 1
1+ετdG(u, v) < dH2(xu, xv) < τdG(u, v),

where τ = ν 1+ε
ε .

The previous theorem directly proves Theorem 3.
Proof [Proof of Theorem 3] Let diam (G) denote the diameter of G, defined by

diam (G) := max {dG(u, v) | u, v ∈ [N ]} . (29)
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According to Theorem 12 in (Sarkar, 2011), for any ε > 0, there exists embedding (xn)n∈[N ]

and factor τ > 0 such that for any object pair (u, v) ∈ [N ]×[N ], 1
1+ετdG(u, v) < dH2(xu, xv) <

τdG(u, v). By setting ε = 1
diam (G) , we have embedding (xn)n∈[N ] such that for any object

pair (u, v) ∈ [N ]×[N ], τ [dG(u, v)− 1] < dH2(xu, xv) < τdG(u, v), which completes the proof.

Appendix B. Proof of Theorem 8

Definition 13 We say that G = ([N ], E) includes a m-star if there exists a set of vertices
v0, v1, . . . , vm ∈ [N ] such that for all i = 1, 2, . . . ,m, (v0, vi) ∈ E and for all i, j = 1, 2, . . . ,m
such that i 6= j, (vi, vj) /∈ E.

The following trivial proposition states the relation between Definition 13 and tree.

Proposition 14 If a graph G is a tree and deg (G) = m, then G includes a m-star.

Proof [Proof of Theorem 8] Assume that the embedding (xn)n∈[N ] in RD that is non-
contradictory to the complete ordinal triplet data of G. According to Proposition 14, G
includes a m-star. In this proof, the center of the sub m-star is relabeled m + 1 and the
vertices that has an edge to m + 1 are relabeled 1, 2, . . . ,m. In the following, ‖·‖2 de-

notes the 2-norm defined by ‖x‖2 :=
√
x>x, and the closed ball with center x ∈ RD and

radius R ∈ R≥0 is denoted by BR[x], defined by BR[x] :=
{
x′ ∈ RD

∣∣ ‖x′ − x‖2 ≤ R
}

.
Without loss of generality, we can set xm+1 = 0. Let R := min {‖xn‖2 | n ∈ [m]}. By
the assumption of non-contradiction of embedding, for all n, n′ ∈ [m] such that n 6= n′,
it holds that xn′ /∈ B‖xn‖2 [xn]. Define x̃n := 1

‖xn‖2
xn. For fixed n, n′ ∈ [m] such that

they satisfy n 6= n′ and ‖xn‖2 ≥ ‖xn′‖2, define x′n :=
‖xn′‖2
‖xn‖2

xn. As xn′ /∈ B‖xn‖2 [xn] and

B‖x′n‖2 [x′n] ⊂ B‖xn‖2 [xn], it follows that xn′ /∈ B‖x′n‖2 [x′n]. By multiplying factor 1
‖x′n‖2

, we

have x̃n′ /∈ B1[x̃n]. Hence, it holds that dRD(x̃n, x̃n′) > 1. If we regard x̃1, x̃1, . . . , x̃m as
points in the D−1 dimensional unit sphere, for all n, n′ ∈ [m] such that n 6= n′, it holds that
dSD−1(x̃n, x̃n′) >

π
3 . Therefore, m cannot be larger than the π

3 -packing number of SD−1.
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