Supplementary Materials for Hyperbolic Ordinal Embedding

Appendix A. Proof of Theorem 3

We first introduce a Sarker's $(1+\epsilon)$ distortion embedding given by Algorithm 5 in (Sarkar, 2011), before we prove that the embedding is a concrete instance of Theorem 3. In the following, the geodesic path in \mathcal{H}^{2} from $\boldsymbol{x} \in \mathbb{H}^{2}$ to $\boldsymbol{y} \in \mathbb{H}^{2}$ is denoted by $c(\boldsymbol{x}, \boldsymbol{y})$. Let $\mathcal{G}=([N], \mathcal{E})$ be a tree. Let $\operatorname{deg}(v)$ denotes the degree of $v \in[N]$, defined by

$$
\begin{equation*}
\operatorname{deg}(v):=|\{u \in[N] \mid(u, v) \in \mathcal{E}\}| . \tag{27}
\end{equation*}
$$

Let the maximum degree of any vertex in \mathcal{G} denoted by $\operatorname{deg}(\mathcal{G})$, which is defined by

$$
\begin{equation*}
\operatorname{deg}(\mathcal{G}):=\max \{\operatorname{deg}(v) \mid v \in[N]\} . \tag{28}
\end{equation*}
$$

We denote the graph distance of graph $\mathcal{G}=([N], \mathcal{E})$ by $d_{\mathcal{G}}:[N] \times[N] \rightarrow \mathbb{Z}_{\geq 0}$. In the following, we introduce Sarker's $(1+\epsilon)$ distortion embedding for tree \mathcal{G}, with distortion parameter $\epsilon \in \mathbb{R}_{>0}$. By regarding object N as the root, we can regard \mathcal{G} as a rooted tree. For $v \in[N-1]$, let the parent of v be denoted by $\operatorname{ch}(1 ; v)$ and let the $k-1$-th child of v be denoted by $\operatorname{ch}(k ; v)$. For the root, let the k-th child of v be denoted by ch $(k ; v)$. Here $k \in[\operatorname{deg}(v)]$ if $v=N$, and $k \in[\operatorname{deg}(v)-1]$ otherwise. In particular, $k \in[\operatorname{deg}(\mathcal{G})]$. $\operatorname{Fix} \beta \in\left(0, \frac{\pi}{\operatorname{deg}(\mathcal{G})}\right)$. Let $\alpha=\frac{2 \pi}{\operatorname{deg}(\mathcal{G})}-\beta, \nu=-2 \ln \left(\tan \frac{\beta}{2}\right)$, and $\tau=\nu \frac{1+\epsilon}{\epsilon}$. For the root $v=N$, first, arbitrarily place \boldsymbol{x}_{N} in \mathbb{H}^{2}, then $\boldsymbol{x}_{\mathrm{ch}(1 ; v)}$ so that $d_{\mathbb{H}^{2}}\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{\mathrm{ch}(1 ; v)}\right)=\tau$. Then, recursively, for all objects $v \in[N]$ whose embedding has been already placed, we place the embeddings $\boldsymbol{x}_{\mathrm{ch}(k ; N)}(k=2,3, \ldots, \operatorname{deg}(N))$ of the children of v so that the following conditions are satisfied.

- $d_{\mathbb{H}^{2}}\left(\boldsymbol{x}_{v}, \boldsymbol{x}_{\mathrm{ch}(k ; v)}\right)=\tau$.
- The angles $\left\{\angle \boldsymbol{x}_{\mathrm{ch}(k ; v)} \boldsymbol{x}_{v} \boldsymbol{x}_{\mathrm{ch}(1 ; v)} \mid k=2,3, \ldots,[\operatorname{deg}(v)]\right\}$ are mutually exclusively located in open intervals $\left\{\left.\left(\frac{2 \ell \pi}{\operatorname{deg}(\mathcal{G})}-\alpha, \frac{2 \ell \pi}{\operatorname{deg}(\mathcal{G})}+\alpha\right) \right\rvert\, \ell \in[\operatorname{deg}(\mathcal{G})-1]\right\}$, where $\angle \boldsymbol{x}_{\mathrm{ch}(k ; v)} \boldsymbol{x}_{v} \boldsymbol{x}_{\mathrm{ch}(1 ; v)}$ is the angle that $c\left(\boldsymbol{x}_{v}, \boldsymbol{x}_{\mathrm{ch}(k ; v)}\right)$ makes with $c\left(\boldsymbol{x}_{\mathrm{ch}(1 ; v)}\right)$.

In the following, the embedding given by the above algorithm is called Sarker's $(1+\epsilon)$ distortion embedding. For any Sarker's $(1+\epsilon)$ distortion embedding, the following holds.

Theorem 12 (Theorem 6 in (Sarkar, 2011)) Let $\mathcal{G}=([N], \mathcal{E})$ be a tree. For all $\epsilon \in$ $\mathbb{R}_{>0}$ and all embeddings $\left(\boldsymbol{x}_{n}\right)_{n \in[N]}$ given by Sarker's $(1+\epsilon)$ distortion embedding, the following holds: for any object pair $(u, v) \in[N] \times[N], \frac{1}{1+\epsilon} \tau d_{\mathcal{G}}(u, v)<d_{\mathbb{H}^{2}}\left(x_{u}, x_{v}\right)<\tau d_{\mathcal{G}}(u, v)$, where $\tau=\nu \frac{1+\epsilon}{\epsilon}$.

The previous theorem directly proves Theorem 3 .
Proof [Proof of Theorem 3] Let diam (\mathcal{G}) denote the diameter of \mathcal{G}, defined by

$$
\begin{equation*}
\operatorname{diam}(\mathcal{G}):=\max \left\{d_{\mathcal{G}}(u, v) \mid u, v \in[N]\right\} . \tag{29}
\end{equation*}
$$

According to Theorem 12 in (Sarkar, 2011), for any $\epsilon>0$, there exists embedding $\left(\boldsymbol{x}_{n}\right)_{n \in[N]}$ and factor $\tau>0$ such that for any object pair $(u, v) \in[N] \times[N], \frac{1}{1+\epsilon} \tau d_{\mathcal{G}}(u, v)<d_{\mathbb{H}^{2}}\left(x_{u}, x_{v}\right)<$ $\tau d_{\mathcal{G}}(u, v)$. By setting $\epsilon=\frac{1}{\operatorname{diam}(\mathcal{G})}$, we have embedding $\left(\boldsymbol{x}_{n}\right)_{n \in[N]}$ such that for any object pair $(u, v) \in[N] \times[N], \tau\left[d_{\mathcal{G}}(u, v)-1\right]<d_{\mathbb{H}^{2}}\left(x_{u}, x_{v}\right)<\tau d_{\mathcal{G}}(u, v)$, which completes the proof.

Appendix B. Proof of Theorem 8

Definition 13 We say that $\mathcal{G}=([N], \mathcal{E})$ includes a m-star if there exists a set of vertices $v_{0}, v_{1}, \ldots, v_{m} \in[N]$ such that for all $i=1,2, \ldots, m,\left(v_{0}, v_{i}\right) \in \mathcal{E}$ and for all $i, j=1,2, \ldots, m$ such that $i \neq j,\left(v_{i}, v_{j}\right) \notin \mathcal{E}$.

The following trivial proposition states the relation between Definition 13 and tree.
Proposition 14 If a graph \mathcal{G} is a tree and $\operatorname{deg}(\mathcal{G})=m$, then \mathcal{G} includes a m-star.
Proof [Proof of Theorem 8] Assume that the embedding $\left(\boldsymbol{x}_{n}\right)_{n \in[N]}$ in \mathbb{R}^{D} that is noncontradictory to the complete ordinal triplet data of \mathcal{G}. According to Proposition 14, \mathcal{G} includes a m-star. In this proof, the center of the sub m-star is relabeled $m+1$ and the vertices that has an edge to $m+1$ are relabeled $1,2, \ldots, m$. In the following, $\|\cdot\|_{2}$ denotes the 2-norm defined by $\|\boldsymbol{x}\|_{2}:=\sqrt{\boldsymbol{x}^{\top} \boldsymbol{x}}$, and the closed ball with center $\boldsymbol{x} \in \mathbb{R}^{D}$ and radius $R \in \mathbb{R}_{\geq 0}$ is denoted by $B_{R}[\boldsymbol{x}]$, defined by $B_{R}[\boldsymbol{x}]:=\left\{\boldsymbol{x}^{\prime} \in \mathbb{R}^{D} \mid\left\|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right\|_{2} \leq R\right\}$. Without loss of generality, we can set $\boldsymbol{x}_{m+1}=\mathbf{0}$. Let $R:=\min \left\{\left\|\boldsymbol{x}_{n}\right\|_{2} \mid n \in[m]\right\}$. By the assumption of non-contradiction of embedding, for all $n, n^{\prime} \in[m]$ such that $n \neq n^{\prime}$, it holds that $\boldsymbol{x}_{n^{\prime}} \notin B_{\left\|\boldsymbol{x}_{n}\right\|_{2}}\left[\boldsymbol{x}_{n}\right]$. Define $\tilde{\boldsymbol{x}}_{n}:=\frac{1}{\left\|\boldsymbol{x}_{n}\right\|_{2}} \boldsymbol{x}_{n}$. For fixed $n, n^{\prime} \in[m]$ such that they satisfy $n \neq n^{\prime}$ and $\left\|\boldsymbol{x}_{n}\right\|_{2} \geq\left\|\boldsymbol{x}_{n^{\prime}}\right\|_{2}$, define $\boldsymbol{x}_{n}^{\prime}:=\frac{\left\|\boldsymbol{x}_{n^{\prime}}\right\|_{2}}{\left\|\boldsymbol{x}_{n}\right\|_{2}} \boldsymbol{x}_{n}$. As $\boldsymbol{x}_{n^{\prime}} \notin B_{\left\|\boldsymbol{x}_{n}\right\|_{2}}\left[\boldsymbol{x}_{n}\right]$ and $B_{\left\|\boldsymbol{x}_{n}^{\prime}\right\|_{2}}\left[\boldsymbol{x}_{n}^{\prime}\right] \subset B_{\left\|\boldsymbol{x}_{n}\right\|_{2}}\left[\boldsymbol{x}_{n}\right]$, it follows that $\boldsymbol{x}_{n^{\prime}} \notin B_{\left\|\boldsymbol{x}_{n}^{\prime}\right\|_{2}}\left[\boldsymbol{x}_{n}^{\prime}\right]$. By multiplying factor $\frac{1}{\left\|\boldsymbol{x}_{n}^{\prime}\right\|_{2}}$, we have $\tilde{\boldsymbol{x}}_{n^{\prime}} \notin B_{1}\left[\tilde{\boldsymbol{x}}_{n}\right]$. Hence, it holds that $d_{\mathbb{R}^{D}}\left(\tilde{\boldsymbol{x}}_{n}, \tilde{\boldsymbol{x}}_{n^{\prime}}\right)>1$. If we regard $\tilde{\boldsymbol{x}}_{1}, \tilde{\boldsymbol{x}}_{1}, \ldots, \tilde{\boldsymbol{x}}_{m}$ as points in the $D-1$ dimensional unit sphere, for all $n, n^{\prime} \in[m]$ such that $n \neq n^{\prime}$, it holds that $d_{\mathbb{S}^{D-1}}\left(\tilde{\boldsymbol{x}}_{n}, \tilde{\boldsymbol{x}}_{n^{\prime}}\right)>\frac{\pi}{3}$. Therefore, m cannot be larger than the $\frac{\pi}{3}$-packing number of \mathbb{S}^{D-1}.

