Supplementary Materials for Hyperbolic Ordinal Embedding

Appendix A. Proof of Theorem 3

We first introduce a Sarker's $(1 + \epsilon)$ distortion embedding given by Algorithm 5 in (Sarkar, 2011), before we prove that the embedding is a concrete instance of Theorem 3. In the following, the geodesic path in \mathcal{H}^2 from $\boldsymbol{x} \in \mathbb{H}^2$ to $\boldsymbol{y} \in \mathbb{H}^2$ is denoted by $c(\boldsymbol{x}, \boldsymbol{y})$. Let $\mathcal{G} = ([N], \mathcal{E})$ be a tree. Let deg (v) denotes the degree of $v \in [N]$, defined by

$$\deg\left(v\right) \coloneqq \left|\left\{u \in [N] \mid (u, v) \in \mathcal{E}\right\}\right|. \tag{27}$$

Let the maximum degree of any vertex in \mathcal{G} denoted by deg (\mathcal{G}), which is defined by

$$\deg\left(\mathcal{G}\right) \coloneqq \max\left\{\deg(v) \mid v \in [N]\right\}.$$
(28)

We denote the graph distance of graph $\mathcal{G} = ([N], \mathcal{E})$ by $d_{\mathcal{G}} : [N] \times [N] \to \mathbb{Z}_{\geq 0}$. In the following, we introduce Sarker's $(1 + \epsilon)$ distortion embedding for tree \mathcal{G} , with distortion parameter $\epsilon \in \mathbb{R}_{>0}$. By regarding object N as the root, we can regard \mathcal{G} as a rooted tree. For $v \in [N-1]$, let the parent of v be denoted by ch(1; v) and let the k - 1-th child of v be denoted by ch(k; v). For the root, let the k-th child of v be denoted by ch(k; v). Here $k \in [\deg(v)]$ if v = N, and $k \in [\deg(v) - 1]$ otherwise. In particular, $k \in [\deg(\mathcal{G})]$. Fix $\beta \in \left(0, \frac{\pi}{\deg(\mathcal{G})}\right)$. Let $\alpha = \frac{2\pi}{\deg(\mathcal{G})} - \beta$, $\nu = -2\ln\left(\tan\frac{\beta}{2}\right)$, and $\tau = \nu \frac{1+\epsilon}{\epsilon}$. For the root v = N, first, arbitrarily place \boldsymbol{x}_N in \mathbb{H}^2 , then $\boldsymbol{x}_{ch(1;v)}$ so that $d_{\mathbb{H}^2}(\boldsymbol{x}_N, \boldsymbol{x}_{ch(1;v)}) = \tau$. Then, recursively, for all objects $v \in [N]$ whose embedding has been already placed, we place the embeddings $\boldsymbol{x}_{ch(k;N)}$ ($k = 2, 3, \ldots, \deg(N)$) of the children of v so that the following conditions are satisfied.

- $d_{\mathbb{H}^2}(\boldsymbol{x}_v, \boldsymbol{x}_{\mathrm{ch}\,(k;v)}) = \tau.$
- The angles $\left\{ \angle \boldsymbol{x}_{\operatorname{ch}(k;v)} \boldsymbol{x}_v \boldsymbol{x}_{\operatorname{ch}(1;v)} \mid k = 2, 3, \dots, [\deg(v)] \right\}$ are mutually exclusively located in open intervals $\left\{ \left(\frac{2\ell\pi}{\deg(\mathcal{G})} \alpha, \frac{2\ell\pi}{\deg(\mathcal{G})} + \alpha \right) \mid \ell \in [\deg(\mathcal{G}) 1] \right\}$, where $\angle \boldsymbol{x}_{\operatorname{ch}(k;v)} \boldsymbol{x}_v \boldsymbol{x}_{\operatorname{ch}(1;v)}$ is the angle that $c(\boldsymbol{x}_v, \boldsymbol{x}_{\operatorname{ch}(k;v)})$ makes with $c(\boldsymbol{x}_{\operatorname{ch}(1;v)})$.

In the following, the embedding given by the above algorithm is called Sarker's $(1 + \epsilon)$ distortion embedding. For any Sarker's $(1 + \epsilon)$ distortion embedding, the following holds.

Theorem 12 (Theorem 6 in (Sarkar, 2011)) Let $\mathcal{G} = ([N], \mathcal{E})$ be a tree. For all $\epsilon \in \mathbb{R}_{>0}$ and all embeddings $(\boldsymbol{x}_n)_{n \in [N]}$ given by Sarker's $(1 + \epsilon)$ distortion embedding, the following holds: for any object pair $(u, v) \in [N] \times [N], \frac{1}{1+\epsilon} \tau d_{\mathcal{G}}(u, v) < d_{\mathbb{H}^2}(x_u, x_v) < \tau d_{\mathcal{G}}(u, v),$ where $\tau = \nu \frac{1+\epsilon}{\epsilon}$.

The previous theorem directly proves Theorem 3. **Proof** [Proof of Theorem 3] Let diam (\mathcal{G}) denote the diameter of \mathcal{G} , defined by

diam
$$(\mathcal{G}) \coloneqq \max \{ d_{\mathcal{G}}(u, v) \mid u, v \in [N] \}.$$
 (29)

According to Theorem 12 in (Sarkar, 2011), for any $\epsilon > 0$, there exists embedding $(\boldsymbol{x}_n)_{n \in [N]}$ and factor $\tau > 0$ such that for any object pair $(u, v) \in [N] \times [N]$, $\frac{1}{1+\epsilon} \tau d_{\mathcal{G}}(u, v) < d_{\mathbb{H}^2}(x_u, x_v) < \tau d_{\mathcal{G}}(u, v)$. By setting $\epsilon = \frac{1}{\operatorname{diam}(\mathcal{G})}$, we have embedding $(\boldsymbol{x}_n)_{n \in [N]}$ such that for any object pair $(u, v) \in [N] \times [N], \tau[d_{\mathcal{G}}(u, v) - 1] < d_{\mathbb{H}^2}(x_u, x_v) < \tau d_{\mathcal{G}}(u, v)$, which completes the proof.

Appendix B. Proof of Theorem 8

Definition 13 We say that $\mathcal{G} = ([N], \mathcal{E})$ includes a m-star if there exists a set of vertices $v_0, v_1, \ldots, v_m \in [N]$ such that for all $i = 1, 2, \ldots, m$, $(v_0, v_i) \in \mathcal{E}$ and for all $i, j = 1, 2, \ldots, m$ such that $i \neq j$, $(v_i, v_j) \notin \mathcal{E}$.

The following trivial proposition states the relation between Definition 13 and tree.

Proposition 14 If a graph \mathcal{G} is a tree and deg $(\mathcal{G}) = m$, then \mathcal{G} includes a m-star.

Proof [Proof of Theorem 8] Assume that the embedding $(\boldsymbol{x}_n)_{n\in[N]}$ in \mathbb{R}^D that is noncontradictory to the complete ordinal triplet data of \mathcal{G} . According to Proposition 14, \mathcal{G} includes a *m*-star. In this proof, the center of the sub *m*-star is relabeled m + 1 and the vertices that has an edge to m + 1 are relabeled $1, 2, \ldots, m$. In the following, $\|\cdot\|_2$ denotes the 2-norm defined by $\|\boldsymbol{x}\|_2 \coloneqq \sqrt{\boldsymbol{x}^\top \boldsymbol{x}}$, and the closed ball with center $\boldsymbol{x} \in \mathbb{R}^D$ and radius $R \in \mathbb{R}_{\geq 0}$ is denoted by $B_R[\boldsymbol{x}]$, defined by $B_R[\boldsymbol{x}] \coloneqq \{\boldsymbol{x}' \in \mathbb{R}^D \mid \|\boldsymbol{x}' - \boldsymbol{x}\|_2 \leq R\}$. Without loss of generality, we can set $\boldsymbol{x}_{m+1} = \boldsymbol{0}$. Let $R \coloneqq \min\{\|\boldsymbol{x}_n\|_2 \mid n \in [m]\}$. By the assumption of non-contradiction of embedding, for all $n, n' \in [m]$ such that $n \neq n'$, it holds that $\boldsymbol{x}_{n'} \notin B_{\|\boldsymbol{x}_n\|_2}[\boldsymbol{x}_n]$. Define $\tilde{\boldsymbol{x}}_n \coloneqq \frac{1}{\|\boldsymbol{x}_n\|_2}\boldsymbol{x}_n$. For fixed $n, n' \in [m]$ such that they satisfy $n \neq n'$ and $\|\boldsymbol{x}_n\|_2 \geq \|\boldsymbol{x}_{n'}\|_2$, define $\boldsymbol{x}'_n \coloneqq \frac{\|\boldsymbol{x}_{n'}\|_2}{\|\boldsymbol{x}_n\|_2}\boldsymbol{x}_n$. As $\boldsymbol{x}_{n'} \notin B_{\|\boldsymbol{x}_n\|_2}[\boldsymbol{x}_n]$ and $B_{\|\boldsymbol{x}'_n\|_2}[\boldsymbol{x}'_n] \subset B_{\|\boldsymbol{x}_n\|_2}[\boldsymbol{x}_n]$, it follows that $\boldsymbol{x}_{n'} \notin B_{\|\boldsymbol{x}'_n\|_2}[\boldsymbol{x}'_n]$. By multiplying factor $\frac{1}{\|\boldsymbol{x}_n\|_2}$, we have $\tilde{\boldsymbol{x}}_{n'} \notin B_1[\tilde{\boldsymbol{x}}_n]$. Hence, it holds that $d_{\mathbb{R}^D}(\tilde{\boldsymbol{x}}_n, \tilde{\boldsymbol{x}}_n') > 1$. If we regard $\tilde{\boldsymbol{x}}_1, \tilde{\boldsymbol{x}}_1, \ldots, \tilde{\boldsymbol{x}_m}$ as points in the D-1 dimensional unit sphere, for all $n, n' \in [m]$ such that $n \neq n'$, it holds that $d_{\mathbb{S}^{D-1}}(\tilde{\boldsymbol{x}}_n, \tilde{\boldsymbol{x}}_{n'}) > \frac{\pi}{3}$. Therefore, m cannot be larger than the $\frac{\pi}{3}$ -packing number of \mathbb{S}^{D-1} .