
Proceedings of Machine Learning Research 101:956–971, 2019 ACML 2019

Kernel Learning for Data-Driven Spectral Analysis
of Koopman Operators

Naoya Takeishi naoya.takeishi@riken.jp

RIKEN Center for Advanced Intelligence Project, Japan

Editors: Wee Sun Lee and Taiji Suzuki

Abstract

Spectral analysis of the Koopman operators is a useful tool for studying nonlinear dynamical
systems and has been utilized in various branches of science and engineering for purposes
such as understanding complex phenomena and designing a controller. Several methods
to compute the Koopman spectral analysis have been studied, among which data-driven
methods are attracting attention. We focus on one of the popular data-driven methods,
which is based on the Galerkin approximation of the operator using a basis estimated in a
data-driven manner via the diffusion maps algorithm. The performance of this method with
a finite amount of data depends on the choice of the kernel function used in diffusion maps,
which creates a need for kernel selection. In this paper, we propose a method to learn the
kernel function adaptively to obtain better performance in approximating spectra of the
Koopman operator using the Galerkin approximation with diffusion maps. The proposed
method depends on the multiple kernel learning scheme, and our objective function is based
on the idea that a diffusion operator should commute with the Koopman operator. We
also show the effectiveness of the proposed method empirically with numerical examples.

Keywords: dynamical systems; Koopman operator; multiple kernel learning

1. Introduction

Dynamical systems are a concept widely used for building models of dynamic phenomena,
which is referred to in diverse domains such as physics, biology, economics, and engineering,
as well as machine learning and data mining. Building and analyzing a dynamical system
model are essential to understand (summarize), forecast, and control the target phenomena.
However, dynamic phenomena in the world often possess nonlinearity, which makes the
modeling and analysis by conventional methodologies challenging.

The operator-theoretic view of dynamical systems (see, e.g., Dellnitz et al., 2000; Mezić,
2005; Budǐsić et al., 2012) has been attracting attention as it may (partly) overcome the
difficulty of analyzing nonlinear dynamics. In this view, instead of considering possibly
nonlinear flows of a state vector, we consider linear operators that act on measures or
observation functions. In other words, the problem of analyzing nonlinear functions is
“lifted” to the problem of analyzing infinite-dimensional linear operators. An important
branch of the operator-theoretic view of dynamical systems is one based on the Koopman
operator, which is defined as the composition of a flow map and an observation function.
Particularly, spectral analysis of the Koopman operator has been intensively studied in this
decade. One of the main reasons for the preference for the Koopman operator is that one
may estimate its spectra efficiently using data generated from dynamical systems.

c© 2019 N. Takeishi.



Kernel Learning for Data-Driven Spectral Analysis of Koopman Operators

The spectral analysis of the Koopman operator has been utilized in a variety of ap-
plications. To name a few, Budǐsić et al. (2012) suggested to use spectral components of
the Koopman operator for analyzing the geometry of a state space and for measuring the
degree of ergodicity and mixing property of dynamics; Susuki et al. (2016) introduced the
utility of spectra of the Koopman operator for power system analyses such as coherence
identification of swings and stability assessment; and Giannakis et al. (2015) showed an
application of decomposing satellite observations of organized convection in the tropical
atmosphere into meaningful components. Moreover, there are plenty of work in this and
related lines (including Rowley et al., 2009; Schmid, 2010; Bagheri, 2013; Mauroy et al.,
2013; Williams et al., 2015; Proctor and Eckhoff, 2015; Brunton et al., 2016; Mauroy and
Mezić, 2016; Brunton et al., 2017; Fujii et al., 2017; Takeishi et al., 2017). Here we note
that, for successfully applying the spectral analysis of the Koopman operator, it is essential
to estimate the spectral components, i.e., eigenvalues and eigenfunctions of the operator,
using only time-series data generated from dynamical systems.

There are several strings of researches on estimating spectra of the Koopman operator.
One of the most popular working algorithms is called dynamic mode decomposition (DMD)
(Rowley et al., 2009; Schmid, 2010), which is basically an (efficient) eigendecomposition of
an autoregressive coefficient matrix on time-series. It is known that DMD coincides with the
spectral analysis of the Koopman operator under some conditions (Tu et al., 2014; Arbabi
and Mezić, 2017; Korda and Mezić, 2018). DMD and its variants have been utilized in
various areas such as fluid dynamics (e.g., Rowley et al., 2009; Schmid, 2010), neural signal
analysis (Brunton et al., 2016), epidemiological data analysis (Proctor and Eckhoff, 2015),
and foreground separation of video (Kutz et al., 2016; Takeishi et al., 2017).

There is another perspective, which our work is based upon, on the data-driven es-
timation of the Koopman operator spectra (Giannakis, 2017; Das and Giannakis, 2019).
The basic idea here is to estimate an orthogonal basis of a state space using the diffusion
maps algorithm (Coifman et al., 2005) with delay coordinates and then use the estimated
basis for the Galerkin approximation of the spectral analysis of the Koopman operator. An
important theoretical feature of this method is that if the diffusion maps algorithm can (ap-
proximately) identify the eigenfunctions of the Laplace–Beltrami operator of a state space,
their eigenspaces (approximately) coincide with those of the Koopman operator. This fact
supports the use of diffusion maps for the Galerkin approximation of the Koopman operator
(Giannakis, 2017; Das and Giannakis, 2019). With a finite amount of data, however, this
property does not hold in general, and thus the method is always suboptimal. Hence, in
a finite data regime, the kernel function used in the diffusion maps algorithm should be
designed carefully so that it well captures the geometry of the state space.

In this paper, we introduce a method to automatically adjust the kernel function of
diffusion maps to improve the performance of the data-driven Galerkin approximation of
the spectral analysis of the Koopman operator. The proposed method is based upon an idea
that the diffusion operator computed by the diffusion maps algorithm should approximately
commute with the Koopman operator to ensure the effectiveness of the approximation. We
develop an objective function to be optimized for adjusting a kernel function and formulate
a convex optimization problem based on the multiple kernel learning scheme. Moreover,
we show that the proposed method improves the estimation accuracy of the spectra with
numerical examples on different datasets.
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2. Related Work

The method proposed by Giannakis (2017); Das and Giannakis (2019), which this paper is
based upon, uses the diffusion maps algorithm (Coifman et al., 2005), which is a well-known
dimensionality reduction technique. In diffusion maps, a kernel function is used to define
the similarity between data points. The use of a kernel function has also been considered
in the context of DMD. Williams et al. (2016) discussed the case where evaluations of
the inner product of observation functions are given via a kernel function, and Kawahara
(2016) discussed the transfer operator that acts on the feature map to the reproducing kernel
Hilbert space associated to a kernel function. The relation between these methodologies is
interesting, but discussing it is out of the scope of this paper.

Kurebayashi et al. (2016) proposed a method to select parameters of a kernel function
for DMD with the kernel trick (Williams et al., 2016). In Kurebayashi et al. (2016), they
regard the Koopman operator as a kind of integral operator and try to minimize the error
between the true and the estimated kernel1 of the integral operator. They approximate
this by cross-validation. Elaborating the connection between this method and our proposed
method is also an interesting topic to be addressed in the future.

In this work, we used the multiple kernel learning scheme for a kind of unsupervised
learning task. Many studies on multiple kernel learning, however, considered supervised
learning tasks (see, e.g., Gönen and Alpaydın, 2011, and reference therein). There are some
attempts to perform multiple kernel learning for unsupervised tasks. One of them is the
work by Zhuang et al. (2011), in which they learn a kernel with which data points can be
well expressed with local bases and whose values agree well with the geometry of a data
space. Our method is somewhat similar to this method in the sense that both methods try
to adjust a kernel so that it well captures the geometry of a data space. However, while the
method by Zhuang et al. (2011) is not explicitly aware of the dynamics generating data,
our method is dedicated to the problem of approximating spectra of dynamics behind data.

3. Preliminary

We introduce technical preliminaries on dynamical systems, the Koopman operators, and
their data-driven estimation methods.

3.1. Dynamical Systems

Let (M,Σ) be a measurable space. We consider a dynamical system defined by a flow
φ : T ×M → M for t ∈ T and x ∈ M . Here, M and x are called a state space and a
state vector, respectively. Also, T is the class of time index, and we consider T = R≥0

throughout this paper. Note that the value of the flow, φ(t, x), is the state vector evolved
for time interval t from the initial state x. Moreover, we denote φ(t, x) by φt(x) for a fixed
t. A common way to construct such a dynamical system is via an ordinary differential
equation like dx/dt = v(x), whose flow is given by solving

φt(x) = x+

∫ t

0
v(φ(τ, x)) dτ.

1. This means the kernel of an integral operator, not a kernel function used in kernel DMD.
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We assume the following property on dynamical systems.

Assumption 1. There exists a measure µ on (M,Σ) such that µ is invariant to φt, i.e.,

µ({φ−t(A)}) = µ(A) ∀t ∈ T, A ∈ Σ, (1)

where {φ−t(A)} denotes the preimage of A by φt.

Remark 1. Assumption 1 is a common premise in dynamical system studies and known as
the measure-preserving property. It implies that we are interested in on-attractor (post-
transient) behavior of dynamics. This may be relaxed while it is out of our scope.

3.2. Koopman Operator

Analyzing a flow map φt plays a fundamental role to study behaviors of dynamical systems.
However, φt is a nonlinear function in general, which makes the direct analysis challenging.
In order to avoid this difficulty, the operator-theoretic view on dynamical systems (see, e.g.,
Mezić, 2005; Budǐsić et al., 2012, and references therein) has been attracting attention. In
this paper, we focus on the theory regarding the Koopman operator, which is an operator
defined on observation functions (so-called observables).

Let us consider an observable on a state space and denote it by g : M → C or R. We
suppose that g is in the Hilbert space of square-integrable functions on M with inner product
defined with the invariant measure µ; namely, g ∈ L2(M,µ). The Koopman operator
Ut : L

2(M,µ)→ L2(M,µ) is defined by composition:

Utg(x) = g
(
φt(x)

)
. (2)

Because of the linearity of the observable space, Ut is a linear operator. This fact enables
us to analyze nonlinear dynamical systems using the theory of linear operators.

A popular way to utilize it is via the spectral decomposition of Ut. It is known that, for
measure-preserving dynamical systems (Assumption 1), the Koopman operator is unitary
and has a well-defined spectral decomposition (Mezić, 2005). Now let λ ∈ C and ϕ : M →
C or R be an eigenvalue and an eigenfunction of Ut, i.e.:

Utϕ(x) = λϕ(x), (3)

where we can write λ = exp(iωt) using ω ∈ R, where i is the imaginary unit, because of the
unitarity of Ut. Hereafter, we term ω an eigenfrequency of the Koopman operator. If the
eigenvalues of Ut are simple and g is in the span of the eigenfunctions of Ut, we have the
following spectral decomposition (Budǐsić et al., 2012):

Utg(x) =
∑
j

exp(iωjt)ϕj(x)cj(g) +

∫ 2π

0
exp(iθt)Ec(dθ)g(x), (4)

where ω1, ω2, . . . are (possibly a countable number of) eigenfrequencies corresponding to
the point spectra of Ut, and cj(g) is the coefficient of the projection of g onto the space
spanned by ϕj . Moreover, Ec(θ) is the projection-valued measure (i.e., its value acts on g)
corresponding to the continuous spectra of Ut.
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An intuitive understanding of Eq. (4) is as follows. From Eq. (4), a dynamical system can
be decomposed into the point spectra part (the first term) and the continuous spectra part
(the second term). In fact, the point spectra part corresponds to quasiperiodic components
of the dynamics (notice dϕ/dt = iωϕ), whereas the continuous spectra part corresponds
to a mixing (chaotic) component of the dynamics. Therefore, if one would like to focus on
quasiperiodic components of a dynamical system, which are easy to estimate and forecast
numerically, it is useful to compute the point spectra and associated eigenfunctions of the
Koopman operator. Moreover, the projection coefficients {cj} are referred to as Koopman
modes in literature (Budǐsić et al., 2012) and have been utilized for summarizing data
from dynamical systems to understand the characteristics of phenomena. On applications
of the Koopman eigenfunctions and the Koopman modes, see, e.g., Budǐsić et al. (2012),
Bagheri (2013), Mauroy et al. (2013), Giannakis et al. (2015), Williams et al. (2015), Susuki
et al. (2016), Mauroy and Mezić (2016), Giannakis (2017), Brunton et al. (2017), and Fujii
et al. (2017). We note that, in contrast, computing the continuous spectra is generally
numerically unstable and has been attracting less attention. However, it will be of great
interest in future researches (see., e.g., Korda et al., 2018).

As the Koopman operator is infinite-dimensional in general, its estimation should be ap-
proximated in a weak form in some finite-dimensional space, which is the so-called Galerkin
approximation. Williams et al. (2015) proposed a method that uses a predefined func-
tion dictionary to enrich data and then computes DMD on them, which converges to the
Galerkin approximation in the predefined function space in large data limit (Williams et al.,
2015; Korda and Mezić, 2018). Besides, Giannakis (2017) proposed another methodology,
i.e., the Galerkin approximation using a basis computed in a data-driven way; we review
it in Section 3.3. In this paper, we focus on the latter perspective because its formulation
enables us to design a kernel learning criterion naturally as introduced in Section 4.

3.3. Data-Driven Galerkin Approximation Using diffusion maps

In this subsection, we briefly review the method discussed in Giannakis (2017) and Das and
Giannakis (2019) to estimate point spectra of the Koopman operator. In a nutshell, they
compute a finite number of eigenfunctions of an estimation of the Laplace–Beltrami operator
of a state space using diffusion maps (Coifman et al., 2005) with delay coordinates and use
these eigenfunctions as a basis of a Galerkin approximation of the Koopman operator.

First, consider a set of observables2 {g1, . . . , gd} and denote the concatenation of them
by g := [g1 · · · gd]T : M → Rd. Now let kq : M ×M → R be a square-integrable kernel
function on a state space M defined as3

kq(x, x
′) = h(dq(x, x

′)), (5)

where h : R→ R>0 is a strictly positive function, and dq : M ×M → R≥0 is a pseudo-metric
on M defined using delay coordinates:

d2
q(x, x

′) =
1

q

q−1∑
l=0

∥∥∥g(φl∆t(x)
)
− g
(
φl∆t(x

′)
)∥∥∥2

2
. (6)

2. Hereafter, we consider only real-valued observables for simplicity.
3. This definition of kernel functions may be too restrictive and different types of kernels may be useful.

However, we limit the scope for ease of discussion.
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In words, kq is a kernel function defined with a shape function h and a pseudo-metric dq,
and dq is defined as the distance in the delay coordinates of lag q ∈ N and a vector-valued
observable g. Note that, though kq is defined on a state space, its values can be computed
without knowing state vectors x owing to the observable in the definition.

Then, an integral operator Pq is defined as

Pqg(x) =

∫
M
pq(x, x

′)g(x′)µ(dx′), (7)

where pq(x, x
′) = kq(x, x

′)/
∫
x′ kq(x, x

′)µ(dx′) is the normalized version of the kernel defined
in Eq. (5). A dimensionality reduction technique known as diffusion maps (Coifman et al.,
2005) utilizes the eigendecomposition of this operator. The operator, Pq, can be considered
as an estimation of the Laplace–Beltrami operator, and hereafter we refer to it as a diffusion
operator. It is known (Giannakis, 2017; Das and Giannakis, 2019) that Pq converges in
q → ∞, and in this limit, P∞ commutes with the Koopman operator Ut. An important
fact here is that the space spanned by eigenfunctions is the same for commuting operators.
Therefore, it is efficient to solve the eigenvalue problem of the Koopman operator Ut in
the space spanned by eigenfunctions of the diffusion operator P∞. However, note that in
q < ∞, Pq does not commute with Ut, which makes the method suboptimal in practice.
This is the motivation of this paper, and we revisit this issue in Section 4.

In Giannakis (2017) and Das and Giannakis (2019), they compute a basis using diffusion
maps and then compute the Galerkin approximation of the Koopman operator using it. We
omit details on the Galerkin approximation and the empirical estimations because of the
length limit of the paper; consult Giannakis (2017) for more details. The overall procedures
are summarized in Algorithm 1, and the codes are attached as the supplementary materials.

Algorithm 1. Given data {g(x), g(φ∆t(x)), . . . , g(φ(m−1)∆t(x))},
1. Define a matrix K ∈ Rm′×m′

(m′ = m− q + 1) by [K]i,j = kq(φ(i−1)∆t(x), φ(j−1)∆t(x)),
and then normalize the rows of K as in the diffusion maps algorithm to obtain P .

2. Compute top-n eigenvalues {κi ∈ R>0} and corresponding normalized eigenvectors {ψ̃i ∈
Rm′} of P , and sort them in decreasing order of κi. As P is normalized, κ1 is always 1.

3. Scale the eigenvectors by ψi = ψ̃i/
√
ηi, where η1 = 1 and ηi = ln(κi)/ ln(κ2) for i ≥ 2.

4. Calculate a matrix V ∈ Rn×n by [V ]i,j = 〈[ψi]2:m′−1, ([ψj ]3:m′ − [ψj ]1:m′−2)/2〉, where
[ψ]d:d′ denotes the column vector comprising from d-th to d′-th elements of ψ.

5. Define A = V − εI and B = diag{η1, . . . , ηn} for some small value ε, and solve the
generalized eigenvalue problem for (A,B); let the resulting eigenvalues and eigenvectors
be {λi ∈ C} and {ci ∈ Cn}. Here, ωi = Imag(λi) is an estimated eigenfrequency of the
Koopman operator.

6. Compute ϕi =
∑n

j=1ψj [ci]j for i = 1, . . . , n, where ϕi ∈ Cm′
comprises the values of the

eigenfunction of the Koopman operator corresponding to an eigenfrequency ωi, evaluated
at the m′ data points.

Remark 2. In Step 2, the number of computed eigenvalues, n, can be determined according
to the value of κ; for example, retaining only eigenvalues (and eigenvectors) larger than
some threshold κth is a working practice. Also in Step 5, the generalized eigenvalue problem
may be computationally heavy. If it is the case, computing only a part of the eigenvalues
according to some criteria is enough.
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Remark 3. In Step 4, we can consider that V approximates the generator of the Koopman
operator group, V s.t. V g = limt→0(Utg − g)/t, using the second-order difference. The use
of different orders of difference is possible.

Remark 4. The regularization by ε > 0 in Step 5 is to prevent too high eigenfrequencies.
This is important because if λ1 and λ2 are eigenvalues of the Koopman operator, λi1λ

j
2 for

i, j ∈ Z is also an eigenvalue, and thus there exist countably many eigenvalues, while we
would like to focus only “basic” eigenfrequencies.

4. Kernel Learning for Data-Driven Galerkin Approximation

In this section, we first introduce the main idea of the proposed method. Then, we present
a heuristic remedy to improve solutions. Finally, we formulate an optimization problem to
learn kernels for data-driven Galerkin approximation of the Koopman operator.

4.1. Commuting Property of U and P

Recall that an essential feature of the data-driven Galerkin approximation method reviewed
in Section 3.3 is the commutative property of the Koopman operator, Ut, and a diffusion
operator, P∞, in the limit of infinite delay lag, q → ∞. As Pq does not commutes with
Ut in q < ∞, the method becomes much less efficient with a small value of q. In practice,
taking q large enough is not always possible because the amount of data is finite and often
very limited. To alleviate the suboptimality due to small q, we propose to adjust the kernel
function, kq, adaptively. Of course, even if the kernel function is adjusted in some sense,
Ut and Pq are still noncommutative. However, the discrepancy from the optimal case (i.e.,
q →∞) will be reduced compared to the case without adjusting the kernel.

First, it is known that an integral operator Kq such that

Kqg(x) =

∫
M
kq(x, x

′)g(x′)µ(dx′), (8)

has properties similar to Pq, e.g., it also commutes with Ut in the limit of q →∞ (Das and
Giannakis, 2019). The only difference between the definition of Kq in Eq. (8) from that
of Pq in Eq. (7) is that the kernel is not normalized in Eq. (8). Hereafter, we consider Kq

instead of Pq because an optimization problem introduced later becomes simpler without
the normalization part.

Our main idea is to minimize the norm of commutator UtKq −KqUt by adjusting the
kernel function. As it is impossible to evaluate the norm of the commutator directly, we
consider its upper bound as follows.

Proposition 1. Let ‖ · ‖ be a norm of operators that is submultiplicative, and suppose that
Ut is bounded. Then,

‖UtKq −KqUt‖ ≤ ‖Dq‖‖Ut‖, (9)

where Dq is an integral operator defined as

Dqg =

∫
M

(
kq
(
φt(x), φt(x

′)
)
− kq(x, x′)

)
g(x′)µ(dx′). (10)
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Proof. From Assumption 1, we have

UtKqg(x) =

∫
M
kq
(
φt(x), x′

)
g(x′)µ(dx′)

=

∫
M
kq
(
φt(x), φt(x

′)
)
g
(
φt(x

′)
)
µ(dx′)

=

∫
M
kq
(
φt(x), φt(x

′)
)
Utg(x′)µ(dx′),

(11)

where the second equality is due to the invariance of µ. Thus, we can express the commu-
tator by

(UtKq −KqUt)g = DqUtg, (12)

and Dq is bounded because kq is square-integrable. Therefore, from the submultiplicativity
of the norm, Eq. (9) holds.

From Eq. (9), our objective to adjust a kernel function can be designed as the norm of
operator Dq. Empirically, we try to minimize the norm of an empirical estimation of Dq,
namely D. That is, we try to minimize

`(kq) = ‖D‖2 = ‖K+ −K−‖2, (13)

where K+,K− ∈ R(m′−1)×(m′−1) are diagonally-adjacent submatrices of the matrix K,
which appeared in Step 1 of Algorithm 1, i.e.,

[K+]i,j = [K]i+1,j+1 = kq
(
φi∆t(x), φj∆t(x)

)
and

[K−]i,j = [K]i,j = kq
(
φ(i−1)∆t(x), φ(j−1)∆t(x)

)
, for i, j = 1, . . . ,m′ − 1.

For the norm of operators, ‖·‖, we used the Hilbert–Schmidt norm in the numerical examples
in Section 5, while other types of norm can also be utilized.

4.2. Preventing Trivial Solutions

Simply minimizing `(kq) in Eq. (13) with regard to kq may yield trivial solutions, e.g., kq
that makes K be almost an identity matrix or a constant matrix. Such trivial solutions may
appear, for example in the case of Gaussian kernel with width parameter σ, when σ → 0
and σ → ∞, respectively. In order to prevent them, we propose an additional heuristic
term to the optimization problem. Our idea is simple; to prevent K from being an identity
matrix or a constant matrix, we try to make the variance of the off-diagonal elements of K
large to some extent on the way of minimizing `. Formally, we would like to prevent the
following quantity from being zero:

r(kq) =
1

m′(m′ − 1)

m′−1∑
i=1

m′∑
j=i+1

{
kq
(
φ(i−1)∆t(x), φ(j−1)∆t(x)

)
− k̄
}2
, (14)

where k̄ denotes the mean of the first term inside the summation. Note that the effect
of this term would be usually noticeable only marginally because it would be not much
meaningful once the trivial solutions are avoided.
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4.3. Multiple Kernel Learning

The methodology known as multiple kernel learning (see, e.g., Gönen and Alpaydın, 2011;
Zhuang et al., 2011, and references therein) is a popular tool for learning kernel functions
adaptively. The basic idea of multiple kernel learning is to represent a target kernel function
as a linear combination of base kernel functions and optimize the coefficients of the linear
combination based on some objective.

In our case, we express the kernel function kq by

kq(x, x
′) =

b∑
s=1

wsk
(s)
q (x, x′), (15)

with b base kernels {k(1)
q , . . . , k

(b)
q } and nonnegative weights {w1, . . . , wb}. The base ker-

nels must be square-integrable (in the state space equipped with some invariant measure),
symmetric, and strictly positive-valued. Here, the last two requirements are from those of
the diffusion maps algorithm. Given the formulation in Eq. (15), we solve the following
problem:

minimize
w1,...,wb

`(kq)− βr(kq) subject to w1, . . . , wb ≥ 0,

b∑
s=1

ws = 1, (16)

where β > 0 is a hyperparameter balancing ` and −r. The constrained optimization prob-
lem in Eq. (16) is a convex problem. Therefore, we can utilize many efficient solvers; in the
numerical examples below, we used a solver based on the sequential least squares program-
ming implemented in SciPy library.

5. Numerical Examples

In this section, we show the effects of the proposed method with numerical examples.

5.1. Datasets

Torus We created a dataset similar to the one used in Giannakis (2017). We computed
a flow on the 2-torus following dx/dt = [1 +

√
2 cos[x]1,

√
30(1−

√
2 sin[x]2)]T, and then

computed its embedding into R3 by

g(x) =
[
(1 + 0.5 cos[x]2) cos[x]1 (1 + 0.5 cos[x]2) sin[x]1 sin[x]2

]T
.

From the values of g(x) with ∆t = 2π/300 and x0 = [0 0]T, we created a long dataset of
length 5,000 and 40 short datasets of length 1,000 by taking subsets of the long dataset
starting at indices 100, 200, . . . , 4,000. We show a part of the long dataset in Figure 1(a).

Lorenz We created a dataset similar to the one used in Das and Giannakis (2019). We
computed a flow of state x in R3 × S1, where S1 is a circle. The first three components of
x ∈ R3 follow the well-known Lorenz equation d[x]1:3/dt = [−10([x]1− [x]2), −[x]1[x]3 +
28[x]1 − [x]2, [x]1[x]2 − 8/3[x]3]T, and the last element is simply φt([x]4) = mod(t, 2π).
We then computed the values of a nonlinear observable

g(x) =
[
sin
(
[x]4 + 0.1[x]1

)
cos
(
2[x]4 + 0.1[x]2

)
cos
(
[x]4 + 0.1[x]3

)]T
.

964



Kernel Learning for Data-Driven Spectral Analysis of Koopman Operators

0 5 10 15
time

-2

-1

0

1

2

(a)

52 54 56 58
time

-1

-0.5

0

0.5

1

(b)

0.2 0.4 0.6 0.8 1 1.2
time

-1

-0.5

0

0.5

1

(c)

Figure 1: (a) Part of the Torus dataset (three dim.). (b) Part of the Lorenz dataset
(three dim.). (c) Part of the MOCAP dataset (62 dim.).

As the flow of [x]1:3 has continuous spectra, this system has both a point spectrum and the
continuous spectra. We computed the flow of x with ∆t = 0.01 and x0 = [0 1 1.05 0]T for
6,000 steps and discarded the first 1,000 steps. From the remaining values of the computed
g(x), we created a long dataset of length 5,000 and 40 short datasets of length 1,000 by
taking subsets of the long dataset starting at indices 100, 200, . . . , 4,000. We show a part
of the long dataset in Figure 1(b).

MOCAP As an example of real-world datasets, we used the data capturing human mo-
tions. We used a dataset available online4; we downloaded a sequence capturing human
locomotion (Subject No. 2, Trial No. 1) and applied moving average filtering of length 6
(50 [ms]). Hence, the dataset is a sequence of 62-dimensional observations of length 337.
Within this dataset, the target walks five or six steps. We show a part of the dataset in
Figure 1(c).

5.2. Settings

There are some hyperparameters to be tuned. As for the number of bases used in the
Galerkin approximation (see Step 2 of Algorithm 1), we determined it with a threshold κth

for the eigenvalues of the diffusion operator; that is, we set n to be the number of eigenvalues
κ larger than κth. The value of κth can be determined in a trade-off between accuracy and
computational speed. We used κth = 10−6 for the Torus dataset and κth = 10−4 and for
the Lorenz and MOCAP datasets. As for the hyperparameter of the regularization (see
Step 5 of Algorithm 1), we used ε = 10−4 in all the examples, and we found the performance
was not sensitive to ε. As for the delay parameter q, we tried several different settings in
each experiment. Note that the above three hyperparameters, n, ε, and q, also exist in the
original method (Giannakis, 2017; Das and Giannakis, 2019) and are not specific to the
proposed method.

A hyperparameter specific to the proposed method is β in Eq. (16). In order to examine
the sensitivity with regard to β, we report the results with different values of β from 0.05,
0.1, and 0.2. The values smaller and larger than this range yielded almost the same results

4. mocap.cs.cmu.edu/
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Figure 2: Histograms of estimation error of leading Koopman eigenfrequency on the short
Torus datasets with q = 1 (no delay), without or with the kernel learning. (left)
β = 0.05, (center) β = 0.1, and (right) β = 0.2. Best viewed in color.

without KL
with KL

β = 0.05 β = 0.10 β = 0.20

q = 1 9.52× 10−3 1.74× 10−3 1.39× 10−3 2.94× 10−3

q = 3 7.75× 10−3 1.53× 10−3 0.89× 10−3 3.23× 10−3

q = 5 5.94× 10−3 1.65× 10−3 1.64× 10−3 4.49× 10−3

Table 1: Medians of estimation error of leading Koopman eigenfrequency on the short
Torus datasets. The top row (q = 1) corresponds to the histograms in Figure 2.
The histograms of q = 3 and q = 5 are shown in the supplementary materials.

as with β = 0.05 and β = 0.2, respectively. For the base kernels {k(s)
q }, we used Gaussian

kernels with different width parameters {σ(s)} for s = 1, . . . , 30, i.e.,

k(s)
q (x, x′) = exp(−d2

q(x, x
′)/σ(s)), (17)

where d2
q is the pseudo-metric defiend in Eq. (6). We set σ(s) = 0.1s · median(d2

q(x, x
′)).

When the proposed method was not applied, we just used the kernel k
(10)
q that has the

original median value as its width parameter.

5.3. Estimating Leading Koopman Eigenfrequency

We examined the effects of the proposed method by looking at estimation accuracy of leading
eigenfrequencies of the Koopman operator. Here, a “leading” eigenfrequency stands for the
eigenfrequency whose associated eigenfunction has the smallest Dirichlet energy (i.e., the
smallest roughness) within estimated ones. Paying attention to leading eigenfrequencies
with small Dirichlet energy is important to focus on essential parts of point spectra of the
Koopman operator; see Giannakis (2017) for details.

In this example, we approximately investigated the estimation accuracy as follows. We
first estimated a leading eigenfrequency, which we denote ω̂, on a long dataset using Al-
gorithm 1 with large q (without applying the proposed kernel learning method) and set
it as a surrogate “ground truth.” Then, we computed eigenfrequencies also on each short
dataset with much smaller values of q. We denote the eigenfrequencies estimated on a short
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Figure 3: Histograms of estimation error of leading Koopman eigenfrequency on the short
Lorenz datasets with q = 10, without or with the kernel learning. (left) β = 0.05,
(center) β = 0.1, and (right) β = 0.2. Best viewed in color.

without KL
with KL

β = 0.05 β = 0.10 β = 0.20

q = 10 5.34× 10−2 0.68× 10−2 0.60× 10−2 4.33× 10−2

q = 20 1.23× 10−2 0.97× 10−2 0.53× 10−2 0.60× 10−2

q = 30 0.43× 10−2 1.86× 10−2 0.25× 10−2 0.30× 10−2

Table 2: Medians of estimation error of leading Koopman eigenfrequency on the short
Lorenz datasets. The top row (q = 10) corresponds to the histograms in Figure 3.
The histograms of q = 20 and q = 30 are shown in the supplementary materials.

dataset by ω̃1, . . . , ω̃n. We finally computed the error between ω̂ and the nearest one in
{ω̃1, . . . , ω̃n}, i.e., we measured

(error) = min
i

∣∣ |ω̂| − |ω̃i| ∣∣
for each setting and each short dataset. For computing the surrogate truth, we used q = 100
and q = 1, 000 for the Torus and the Lorenz long datasets, respectively. In contrast, in
computation with short datasets, we used q = 1, 3, 5 and q = 10, 20, 30 for Torus and
Lorenz, respectively.

In Figure 2 and Table 1, we report the results on the Torus dataset: Figure 2 shows
all the error values for the 40 short datasets as a histogram (only for q = 1), and Table 1
shows the median values of the errors for q = 1, 3, 5. We can observe that the estimation
errors become smaller when using the proposed kernel learning method in every setting,
while the benefit is marginal when, e.g., q = 20, β = 0.2. One possible reason is that the
original estimation error (without kernel learning) decreases in larger q, which makes the
proposed method slightly less meaningful. Another possible reason is that with larger q,
the variance of the off-diagonal elements of kernel matrix becomes relatively small initially,
and thus trying to maximize the term in Eq. (14) becomes harmful.

In Figure 3 and Table 2, we report the results on the Lorenz dataset. The overall
tendency is almost the same with that on the Torus dataset. Note that in q = 30, β = 0.05,
the proposed method seems meaningless. This observation suggests a need to tune β.
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Figure 4: Eigenfunctions estimated on the MOCAP dataset with q = 5, (left) without
and (right) with the proposed method, placed in the ascending order of Dirichlet
energy from the top. The real lines and the dashed lines indicate the real and the
imaginary parts of the eigenfunctions, respectively.
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Figure 5: As in Figure 4, but for q = 20.
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Figure 6: As in Figure 4, but for q = 50.
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We also examined the case of using the base kernel weights {ws} learned on datasets
different from the one on which a Koopman operator is being approximated. That is, we
first compute {ws} on a short dataset and fix it, and afterward, we use the fixed {ws}
to compute kernel values on another short dataset for the Galerkin approximation of the
Koopman operator.5 This resulted in performance similar to the cases reported above.
For example, on the Torus dataset with q = 3, β = 0.1, we fixed {ws} learned on the
short dataset No. 1 and used it for the short datasets from No. 2 to No. 40; the median
of estimation error in this case was 9.9 × 10−4, whereas the median error when learning
{ws} on each short dataset was 8.9× 10−4. Considering that the median error without the
proposed method was 7.8× 10−3, the deterioration is marginal.

5.4. Estimating Koopman Eigenfunctions

As reported in Fujii et al. (2019), the Koopman eigenfunctions would be a useful tool for
analyzing human locomotion. We applied Algorithm 1 with and without the proposed
kernel learning method to the MOCAP dataset to estimate Koopman eigenfunctions. We
tried different delay lags q = 5, 20, and 50, while we fixed β = 0.1. In Figures 4, 5, and 6, we
show the estimated eigenfunctions having the three smallest Dirichlet energies in each case,
for q = 5, 20, and 50, respectively. Regardless of whether the kernel learning is applied
(the right panels of the figures) or not (the left panels), the overall tendency is similar,
that is, quasiperiodically oscillating Koopman eigenfunctions are successfully extracted.
However, we can observe that when the proposed kernel learning is present, the detected
eigenfrequencies with small Dirichlet energies are similar each other, whereas more diverse
eigenfrequencies are detected in the original method (without kernel learning). This is just
a qualitative tendency of the results, but it would be useful in practice in the sense that
estimation is somewhat stable.

6. Conclusion

We developed a kernel learning method for the spectral analysis of the Koopman operator
based on the data-driven Galerkin approximation with diffusion maps (Giannakis, 2017; Das
and Giannakis, 2019). The idea of the proposed method is that a diffusion operator should
be as close to being commutative with the Koopman operator as possible, and we formulated
a convex optimization problem based on the multiple kernel learning scheme. We have
empirically shown that the proposed method enables us to estimate the eigenvalues and the
eigenfunctions of the Koopman operator accurately and stably. Using the objective function
proposed in this paper, it is also possible to consider different types of kernel learning, such as
automatic relevance determination. Moreover, the relations to other kernel-based methods
for the spectral analysis of the Koopman operators should be elaborated.
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5. This is somewhat similar to a common configuration of machine learning, i.e., splitting data into training
and test sets. We note that, however, this is less meaningful in the problem of this work; we do not care
much about generalization. We conducted this experiment just for understanding the proposed method.
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Clarence W. Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S. Henning-
son. Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115–127, 2009.

Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal
of Fluid Mechanics, 656:5–28, 2010.
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