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1. Details about the regularity hypothesis

In the classical setting the Optimized Certainty Equivalent is defined as

Su(Y ) = sup
z

{
z + E

(
u(Y − z)

)}
,

with u a concave function. Here we assume u is concave and k-lipschitzian (k − Lip). Let
us consider two random variables Yx1 and Yx2 , then

|Su(Yx1)− Su(Yx2)| =
∣∣∣ sup

z

{
z + E

(
u(Yx1 − z)

)}
− sup

z

{
z + E

(
u(Yx2 − z)

)}∣∣∣
≤ sup

z

{∣∣E(u(Yx1 − z)
)
− E

(
u(Yx2 − z)

)∣∣}.
Using the Kantorovich-Rubinstein representation one obtains

sup
z

{∣∣E(u(Yx1 − z)
)
− E

(
u(Yx2 − z)

)∣∣} ≤ k ×W1(Yx1 − z, Yx2 − z)

= k ×W1(Yx1 , Yx2)

with W1 the Wasserstein distance associated with p = 1. Thus if g = Su, then a sufficient
condition to satisfied (1) is W1(Yx∗, Yx) ≤ β

k ‖x
∗ − x‖γ , for all x ∈ X .

To treat the case of the CVaRτ , we use the fact that if u(z) =
min(z, 0)

1− τ
then we have

the equality Su = −CVaRτ .
In the case of the conditional expectation the same kind of condition can be sufficient.

Indeed we have

|E
(
Yx1
)
− E

(
Yx2
)
| ≤ sup

‖f‖∈1−Lip

{∣∣E(f(Yx1)
)
− E

(
f(Yx2)

)∣∣} =W1(Yx1 , Yx2).
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2. Proofs related to the generic analysis of StoROO

Proof of Proposition 2
Let us define Ph∗,j∗ the partition containing x∗. Assume that the partition Ph,j has been

selected, thus
Ūh,jη (t) ≥ Ūh∗,j∗η (t).

By definition Ūh
∗,j∗

η (t) ≥ g∗, thus Ūh,jη (t) ≥ g∗. Conditionally on Aη, Lh,jη (t)) ≤ g(xh,j(t))
that implies

g∗ − g(xh,j) ≤ Ūh,jη (t)− Lh,jη (t) ≤ Uh,jη (t) + β̂ δ(h)γ̂ − Lh,jη (t) ≤ 2 β̂ δ(h)γ̂ .

Note that the last inequality is obtained because the partition is expanded, which implies
that

U(xh,j)(t)− L(xh,j)(t) ≤ β̂ δ(h)γ̂ .

Finally:
g∗ ≤ g(xh,j) + 2 β̂ δ(h)γ̂ ,

thus xh,j belongs to Jh.

Proof of Proposition 3

T =
∑

h,j∈TT

Nh,j(t) ≤
∑

h,j∈TT

nη,h because Nh,j(t) ≤ nη,h

≤
depth(TT )−1∑

h′=0

K|TT ∩ Jh|nη,h′+1 StoROO has not expanded all the sampled nodes

≤
depth(TT )−1∑

h′=0

K|Jh|nη,h′+1 = Sdepth(TT )−1.

Thus SHη ≤ Sdepth(TT )−1 ≤ Sdepth(TT ) so Hη ≤ depth(TT ). There is at least an expanded
node of depth H∗η ≥ Hη after a budget T was used.

Proof of Proposition 4
Proposition 2 implies that the center of an expanded partition is in Jh. Proposition

3 implies that a partition of depth at least H∗η has been expanded. Thus StoROO has
expanded a node in JH∗η . At the end of the budget StoROO returns the node having the
highest LCB among the nodes that have been expanded and not the deepest node among
those that have been expanded. But

g∗ − g(xh,j) ≤ ŪH∗η (T ),j′ − Lh,j ≤ ŪH∗η (T ),j′ − LH∗η (T ),j′ ≤ 2 β̂ δ(H∗η (T ))γ̂ .

That ensure the node having the highest LCB has the same theoretical regret as the node
of maximal depth among those that have been expanded.
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Proof of Proposition 6
According to the assumption 2, each cell Ph,j contains a ball of radius νδ(h) centered in

xh,j that is a `β̂,γ̂-ball of radius β̂(νδ(h))γ̂ centered in xh,j . If d is the ν γ̂/2 near optimality
dimension then there is at most C[2 β̂ δ(h)γ̂ ]−d disjoint `β̂,γ̂- balls of radius β̂(νδ(h))γ̂ inside
X2 β̂ δ(h)γ̂ . Thus if |Jh| = |xh,j ∈ X2 β̂ δ(h)γ̂ | > C[β̂ δ(h)γ̂ ]−d this implies there is more than

C[2 β̂ δ(h)γ̂ ]−d disjoint `β̂,γ̂ balls of radius β̂(νδ(h))γ̂ with center in X2 β̂ δ(h)γ̂ , that is a
contradiction.

Proof of Therorem 7

T ≤
H∗∑
h=0

K|Jh|nη,h+1 by definition of H∗

≤
H∗∑
h=0

KC[2 β̂ δ(h)γ̂ ]−dnη,h+1 using Proposition 6

=

H∗∑
h=0

KC[2 β̂(cρh)γ̂ ]−dnη,h+1 using the exponential decay of the diameter of the cells

≤
H∗∑
h=0

KC[2 β̂(cρh)γ̂ ]−d × κα log(T 2/η)

(β̂(cρh)γ̂)α
using Definition 1

= log(T 2/η)
KCκα[2 β̂ cγ̂ ]−d

β̂ cγ̂ α

H∗∑
h=0

ρh(−d γ̂− γ̂ α)

= log(T 2/η)
KCκα[2 β̂ cγ̂ ]−d

β̂ cγ̂ α
× ρ(H

∗+1)(−d γ̂− γ̂ α) − 1

ρ−d γ̂− γ̂ α − 1
rewriting the sum

≤ log(T 2/η)

(1− ρd γ̂+ γ̂ α)

KCκα[2 β̂ cγ̂ ]−d

β̂ cγ̂ α
× ρH∗(−d γ̂− γ̂ α)

=
log(T 2/η)

(1− ρd γ̂+ γ̂ α)

KCκα[2 β̂]−d

β̂
× δ(H∗)−d γ̂− γ̂ α.

Finally [
KCκα[2 β̂]−d

β̂(1− ρd γ̂+ γ̂ α)

] 1
d γ̂+ γ̂ α

[
log(T 2/η)

T

] 1
d γ̂+ γ̂ α

≥ δ(H∗).

Using Proposition 4 we obtain

rT ≤ c1
[ log(T 2/η)

T

] 1
α+d

.
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3. Optimizing quantiles

Empirical CDF
CDF

qτ

τ
τ+

ε

q̂τ+ε

F̂
(q

τ)

Figure 1: Illustration of the equivalence (4).

Proof of Proposition 8
Let us consider the event

ξη = {∀ h ≥ 0, ∀ 0 ≤ j ≤ Kh, ∀ 1 ≤ t ≤ T,

F̂ th,j

(
qh,j(τ)

)
≥ τ + εηNh,j(t) or F̂

t
h,j

(
qh,j(τ)

)
< τ − εηNh,j(t)}.

P
(
ξη
)

= P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ τ + εηNh,j(t) or ,

F̂ th,j

(
qh,j(τ)

)
< τ − εηNh,j(t)

)
≤ P

(
∀h ≤ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ τ + εηNh,j(t))

)
+ P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
< τ − εηNh,j(t)

)
Define m ≤ T the number of nodes expanded throughout the algorithm, define for 1 ≤ w ≤
m, ζsw as the time when the cell w has been selected for the s-th time and define Yw(ζsw) the
reward obtained at that time at the point xw. Then one can write

P

(
F̂ th,j

(
qh,j(τ)

)
≥ τ + εη,TNh,j(t)

)
= P

(
1

Nh,j(t)

Nh,j(t)∑
s=1

1Yh,j(ζsh,j)≤qh,j(τ) ≥ τ + εηNh,j(t)

)
.

Using this notation, we have:

P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ τ + εηNh,j(t)

)
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≤ P
(
∃ 1 ≤ w ≤ T, ∃ 1 ≤ u ≤ T, 1

u

u∑
s=1

1Yw(ζsw)≤qw(τ) ≥ τ + εηu

)
≤

T∑
w=1

T∑
u=1

P
(1

u

u∑
s=1

1Yw(ζsw)≤qw(τ) ≥ τ + εηu

)
By Hoeffding’s inequality, if

εηu =

√
log(2T 2/η)

2u
,

we obtain

P

(
∀h ≤ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ τ + εηNh,j(t)

)
≤ η

2
.

Now using Equation (4) we can express this inequality directly in terms of quantiles:

P

(
∀h ≤ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, qh,j(τ) ≥ Uηh,j(t)

)
≤ η

2
.

Using the same scheme of proof with Inequality (5), we obtain:

P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, qh,j(τ) ≤ Lηh,j(t)

)
≤ η

2
,

and hence P
(
Aη
)

= 1− P
(
ξη
)
≥ 1− η.

Proof of Proposition 9
Without loss of generality let us assume τ > 0.5. Assume the node xh,j has been sampled

Nh,j ≥Mτ = max(nτ , n1−τ ) times, with

nτ >
2 log(2T 2/η)

τ2
and n1−τ >

2 log(2T 2/η)

(1− τ)2

thus

τ + 2

√
log(2T 2/η)

2Nh,j
< 1 and τ − 2

√
log(2T 2/η)

2Nh,j
> 0.

That implies

qh,j

(
τ + 2

√
log(2T 2/η)

2Nh,j

)
< +∞ and qh,j

(
τ − 2

√
log(2T 2/η)

2Nh,j

)
> −∞,

and in particular
Uηh,j < +∞ and Lηh,j > −∞.

Then define the event

Cη =
⋂

T≥t≥1

⋂
Ph,j∈Tt

{
qh,j
(
τ + 2εη,TNh,j(t))

)
≥ Uηh,j(t) ≥ qh,j(τ) ≥ Lηh,j(t) ≥ qh,j

(
τ − 2εη,TNh,j(t)

)}
,

5
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with

εη,TNh,j(t) =

√
log(2T 2/η)

2Nh,j(t)
.

Using equivalences (4) and (5), one can write:

qh,j
(
τ + 2εη,TNh,j(t)

)
≥ Uηh,j(t) ≥ qh,j(τ) ≥ Lηh,j(t) ≥ qh,j

(
τ − 2εη,TNh,j(t)

)
⇔ F̂ (qh,j(τ + 2εη,TNh,j(t))) ≥ τ + εη,TNh,j(t) > F̂ (qh,j(τ) ≥ τ − εη,TNh,j(t) > F̂ (qh,j(τ + 2εη,TNh,j(t))).

Thus

P(Cη) ≥ 1− P(∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, sup
y=qτ ,q

τ+ε
η,T
Nh,j(t)

|Fh,j(y)− F̂ th,j(y)| ≥ εη,TNh,j(t) )

≥ 1− P(∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, sup
y∈[0,1]

|Fh,j(y)− F̂ th,j(y)| ≥ εη,TNh,j(t) ).

Using the same notation as in the proof of Proposition 8, one can write

≥ 1−
T∑
w=1

T∑
u=1

P( sup
y∈[0,1]

|Fw(y)− 1

u

u∑
s=1

1Yw(ζsw)≤qw(τ)| ≥ ε
η,T
u ).

Now by applying the Massart’s inequality to bound

P( sup
y∈[0,1]

|Fw(y)−
u∑
s=1

1Yw(ζsw)≤qw(τ)| ≥ ε
η,T
u ),

one obtain P(Cη) ≥ 1− η. Thus with probability 1− η, we have:

Uηh,j(t)− L
η
h,j(t) ≤ qh,j

(
τ + 2εη,TNh,j(t)

)
− qh,j

(
τ − 2εη,TNh,j(t)

)
. (1)

Assuming that qh,j is differentiable in τ , by the mean value theorem, we deduce

qh,j(τ+2

√
log(2T 2/η)

2Nh,j
)−qh,j(τ−2

√
log(2T 2/η)

2Nh,j
) ≤ 4

√
log(2T 2/η)

2Nh,j
max

τ ′∈[τ−2εη,Tnτ ,τ+2εη,Tn1−τ ]

1

fxh,j ◦ F
−1
xh,j (τ

′)
.

Next, using (1) it is possible to write that with probability 1− η:

Uηh,j − L
η
h,j ≤ 4

√
log(2T 2/η)

2Nh,j

1

f̄xh,j
≤ 4

√
log(2T 2/η)

2Nh,j

1

minx∈X f̄(x)
.

We define n′η,h as the smallest n such that

4

√
log(2T 2/η)

2n

1

infx∈X f̄(x)
≤ β̂ δ(h)γ̂ ,

6
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that is

n′η,h = log(2T 2/η)

(
2
√

2

β̂ δ(h)γ̂ minx∈X f̄(x)

)2

.

A proper nη,h has to verify

nη,h ≥Mτ and nη,h ≥ log(2T 2/η)

(
2
√

2

β̂ δ(h)γ̂ minx∈X f̄(x)

)2

.

To satisfy this constraint we define

nη,h = log(2T 2/η)

(√
8 min(1− τ, τ)2 + 4

(
β̂ diam(X )γ̂ minx∈X f̄(x)

)2
β̂ δ(h)γ̂ minx∈X f̄(x) min(1− τ, τ)

)2

≥ log(2T 2/η)

((
2
√

2

β̂ δ(h)γ̂ minx∈X f̄(x)

)2

+

(
2

min(1− τ, τ)

)2
)

= n′η,h +Mτ .

To conclude the whole proof, since Cη ⊂ Aη ∩ Bη, we obtain P(Aη ∩ Bη) ≥ 1− η.

Proposition 1 For any η > 0, for all 1 ≤ t ≤ T , 1 ≤ h ≤ t and 1 ≤ j ≤ Kh, define

Uηh,j(t) =

{
min

{
q, F̂ th,j(q) ≥ τ + εη,TNh,j(t)

}
if τ + εη,TNh,j(t) < 1

+∞ otherwise,

and

Lηh,j(t) =

{
max

{
q, F̂ th,j(q) ≥ τ − ε

η,T
Nh,j(t)

}
if τ − εη,TNh,j(t) > 0

−∞ otherwise,

with

εη,TNh,j(t) =
log(2T 2/η)

3Nh,j(t)

(
1 +

√
1 +

18Nh,j(t)τ(1− τ)

log(2T 2/η)

)
.

If g is the conditional quantile of order τ then the event Aη has probability at least 1− η.

Proof
Let Y1, · · · , Yn be n i.i.d. random variables bounded by the interval [0, 1]. Define

F̂n(q(τ)) = 1
n

∑n
i=1 1Yi≤q(τ). For x > τ the Bernstein’s inequality gives

P(|F̂n(q(τ))− τ | > ε) ≤ 2 exp

(
nε2

2τ(1− τ) + 2ε/3

)
.

Let us consider the event

ξη = {∀ h ≥ 0, ∀ 0 ≤ j ≤ Kh, ∀ 1 ≤ t ≤ T,

F̂ th,j

(
qh,j(τ)

)
≥ τ + εη,TNh,j(t) or F̂

t
h,j

(
qh,j(τ)

)
< τ − εη,TNh,j(t)}.

7
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Using the same lines as in the proof of Proposition 8 we have

P(ξη) ≤
T∑
w=1

T∑
u=1

P
(
|1
u

u∑
s=1

1Yw(ζsw)≤qw(τ) − τ | > εη,Tu

)
then applying the Bernstein’s inequality we obtain

≤
T∑
w=1

T∑
u=1

2 exp

(
−

uεη,TNh,j(t)
2

2τ(1− τ) + 2εη,TNh,j(t)/3

)
. (2)

By now the goal is to find εη,TNh,j(t) > 0 such that

uεη,TNh,j(t)
2

2τ(1− τ) + 2εη,TNh,j(t)/3
= log(2T 2/η).

Finding such εη,TNh,j(t) can be easily done because it is a square of a second order polynomial.
The result is

εη,TNh,j(t) =
log(2T 2/η)

3u

(
1 +

√
1 +

18uτ(1− τ)

log(2T 2/η)

)
.

Plugging the value of εη,TNh,j(t) inside (2) concludes the proof.

Proof of Proposition 11
Step 1: bounds on F̂n(q(τ)) for a i.i.d sample
Let Y1, · · · , Yn be n i.i.d. random variables bounded by the interval [0, 1]. Define F̂n(q) =

1
n

∑n
i=1 1Yi≤q. For x > τ the Chernoff’s inequality gives

P(F̂n(q(τ)) ≥ x) ≤ exp(−n kl(x, τ)).

Let τ+ > τ be the value such that kl(τ+, τ) = log(2/η)
n , then for all x ≥ τ+:

P(F̂n(q(τ)) ≥ x) ≤ P(F̂n(q(τ)) ≥ τ+) ≤ exp(n
log(2/η)

n
) =

η

2
.

Now let us define the candidate for the UCB of a i.i.d sample:

U(n) = min
{
q, F̂n(q) ≥ τ and n kl(F̂n(q), τ) ≥ log(2/η)

}
,

and let us remark that

F̂n(U(n)) ≤ F̂n(q(τ))⇔ τ ≤ F̂n(q(τ)) and kl(F̂n(q(τ)), τ) ≥ log(2/η)

n
, (3)

thus

P(F̂n(U(n)) ≤ F̂n(q(τ))) =P(τ ≤ F̂n(q(τ)) and kl(F̂n(q(τ)), τ) ≥ log(2/η)

n
)

8
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≤P(F̂n(q(τ)) ≥ τ+) ≤ η

2
.

For x < τ let us introduce

L(n) = max
{
q, F̂n(q) ≤ τ and n kl(F̂n(q), τ) ≥ log(2/η)

}
,

one proves in the same way

P(F̂n(L(n)) > F̂n(q(τ))) ≤ η

2
.

Step 2: Double union bound
Let us consider the event

ξη =
{
∀ h ≥ 0,∀ 0 ≤ j ≤ Kh, ∀ 1 ≤ t ≤ T,

F̂ th,j
(
qh,j(τ)

)
≥ F̂ th,j(U

η
h,j) or F̂ th,j

(
qh,j(τ)

)
< F̂ th,j(L

η
h,j)
}
.

P
(
ξη
)
≤ P

(
∀h ≤ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ F̂ th,j(U

η
h,j)

)
+ P

(
∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
< F̂ th,j(L

η
h,j)

)
Following the notation of the proof of Proposition 8 we have

P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ F̂ th,j(U

η
h,j)

)
≤ P

(
∃ 1 ≤ w ≤ T, ∃ 1 ≤ u ≤ T,

u∑
s=1

1Yw(ζsw)≤qw(τ) ≥
u∑
s=1

1Yw(ζsw)≤U
η
w

)
≤

T∑
w=1

T∑
u=1

P
( u∑
s=1

1Yw(ζsw)≤qw(τ) ≥
u∑
s=1

1Yw(ζsw)≤U
η
w

)
.

Using the equivalence (3), the probability can be reformulated as

=

T∑
w=1

T∑
u=1

P
(
τ ≤ F̂ u(q(τ)) and kl(F̂ u(q(τ)), τ) ≥ log(2T 2/η)

u

)
.

Now using Chernoff’s inequality we obtain

P

(
∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ F̂ th,j(U

η
h,j)

)
≤

T∑
w=1

T∑
u=1

exp(−u log(2T 2/η)

u
) = η/2.

9
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By equivalence (4) this implies that, ∀h ≥ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T , with probability at
least η/2, Uηh,j(t) ≤ qh,j(τ). Using the same lines one can show

P

(
∀h ≥ 0, ∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
< F̂ th,j(L)

)
≤ η/2,

By equivalence (5) this implies that, ∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T , Lηh,j(t) > qh,j(τ)
with probability at least η/2. Putting this two probabilities together prove the result.

Proof of Proposition 12
Define

S̃τh,j(n) =
n∑
i=1

1Yh,j(i)≤qh,j(τ).

Step 1: Martingale For every λ ∈ R, let φτ (λ) = logE[exp(λ1Yh,j(1)≤qh,j(τ))]. LetW
λ
0 = 1

and for n ≥ 1,
W λ
n = exp(λS̃τh,j(n)− nφτ (λ)).

(W λ
n )n≥0 is a martingale relative to (Fn)n≥0. In fact,

E
[

exp
(
λ{S̃τh,j(n+ 1)− S̃τh,j(n)}

)
|Fn
]

=E
[

exp(λXn+1)|Fn
]

= exp
(

logE[exp(λX1]
)

= exp
(
{(n+ 1)− n}φµ(λ)

)
That is equivalent to

E
[

exp
(
λ{S̃τh,j(n+ 1)− S̃τh,j(n)}

)
|Fn
]

= exp
(
λSn − nφµ(λ)

)
.

Step 2: Peeling Let us devide the interval {1, · · · , T} into slices {tk−1 + 1, · · · , tk} of
geometric increasing size. We may assume that δ > 1, since otherwise the bound is trivial.
Take ξ = 1/(1− δη(T )), let t0 = 0 and for all k ∈ N∗, let tk = b(1 + ξ)kc.

P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh,∀ 1 ≤ t ≤ T, Uηh,j(t) ≤ qh,j(τ)

)
≤ P

(
∃ h ≥ 0,∃ 0 ≤ j ≤ Kh, ∃ 1 ≤ t ≤ T, Uηh,j(t) ≤ qh,j(τ)

)
.

Definem ≤ T the number of nodes expanded throughout the algorithm, thus for 1 ≤ w ≤ m,
it is possible to rewrite the last probability as

P
(
∃ 1 ≤ w ≤ T, ∃ 1 ≤ n ≤ T, Uηw(n) ≤ qw(τ)

)
≤

T∑
w=1

P
(
∃ 1 ≤ k ≤ D, ∃ tk−1 < n ≤ tk and Uηw(n) ≤ qw(τ)

)
with D =

log(T )

log(1 + η)

10
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≤
T∑
w=1

D∑
k=1

P
(
Ak

)
,

with
Ak =

{
∃ tk−1 < n ≤ tk and Uηw(n) ≤ qw(τ)

}
.

Observe that Uηw(n) ≤ qw(τ) if and only if
1

n

∑u
s=1 1Yw(ζsw)≤U

η
w
≤ 1

n
S̃τw(n) and

1

n

u∑
s=1

1Yw(ζsw)≤U
η
w
≤ S̃τw(n)

n
⇔ τ ≤ S̃τw(n)

n
and kl(

S̃τw(n)

n
, τ) ≥ δη(T ) +

1

n
.

Define δ = δη(T ) + 1/n, let s be the smallest integer such that δ/(s+ 1) ≤ kl(1, τ); if n ≤ s,
then n kl( S̃

τ
w(n)
n , τ) ≤ s kl( S̃

τ
w(n)
n , τ) ≤ s kl(1, τ) < δ thus P(U(n) < q(τ)) = 0. Thus for all k

such that tk ≥ s, we obtain P(Ak = 0). For k such that tk > s, let t̃k−1 = max{tk−1, s}. Let
x ∈]τ, 1[ be such that kl(x, τ) = δ/n and let λ(x) = log(x(1−τ))− log(τ(1−x)) > 0, so that
kl(x, τ) = λ(x)x−(1−τ+τ exp(λ(x))). Consider z such that z > τ and kl(z, τ) = δ/(1+ξ)k.

Observe that

• if n > t̃k−1, then

kl(z, τ) =
δ

(1 + ξ)k
≥ δ

(1 + ξ)n
;

• if n ≤ tk, then as

kl
( S̃τw(n)

n
, τ
)
>
δ

n
>

δ

(1 + ξ)k
= kl(z, τ),

it holds that:

τ ≤ S̃τw(n)

n
and kl(

S̃τw(n)

n
, τ) ≥ δ

n
⇒ S̃τw(n)

n
≥ z.

Hence on the event {t̃k−1 < n < tk} ∩ {τ ≤ S̃τw(n)
n } ∩ {kl( S̃

τ
w(n)
n , τ) ≥ δ

n} it holds that

λ(z)
S̃τw(n)

n
≥ λ(z)z − φτ (λ(z)) = kl(z, τ) ≥ δ

(1 + ξ)n
.

Step 3: Putting everything together

{t̃k−1 < n < tk} ∩ {τ ≤
S̃τw(n)

n
} ∩ {kl(

S̃τw(n)

n
, τ) ≥ δ

n
}

⊂{λ(z)
S̃τw(n)

n
− φτ (λ(z)) ≥ δ

n(1 + ξ)
}

⊂{λ(z)Sw(n)− nφτ (λ(z)) ≥ δη(T )

(1 + ξ)
}

⊂{W λ(z)
n > exp(

δη(T )

(1 + ξ)
)}.

11
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As (W λ
n )n≥0 is a martingale, E[W

λ(z)
n ] ≤ E[W

λ(z)
0 ] = 1. Thus the Doob’s inequality for

martingales provides:

P

(
sup

t̃k−1<n<tk

W λ(z)
n > exp

(δη(T )

1 + ξ

))
≤ exp

(
− δη(T )

1 + ξ

)
Finally

T∑
w=1

D∑
k=1

P
(
∃ tk−1 < n ≤ tk and Uηw(n) ≤ qw(τ)

)
≤ TD exp(− δη(T )

(1 + ξ)
).

But as ξ = 1/(δη(T )− 1), D =
⌈ log(T )

log(1 + 1/(δη(T ) + 1))

⌉
and as long as

log(1 + 1/(δη(T )− 1)) ≥ 1/δη(T ),

we obtain:

P(Ac) ≤ T
⌈ log(T )

log(1 + 1/(δη(T ) + 1))

⌉
exp(−δη(T )+1) ≤ Tedδη(T ) log(T )e exp(−δη(T )) ≤ η/2.

Using the same lines for the LCB concludes the proof.

4. Optimizing CVaR

Proof of Proposition 13
Let us consider the event

ξη =
{
∀ h ≥ 0,∀ 0 ≤ j ≤ Kh,∀ 1 ≤ t ≤ T,

ĈVaRτ
t
(Yxh,j ) ≥ CVaRτ (Yxh,j ) + ε̃ηNh,j(t) or ĈVaRτ

t
(Yxh,j ) ≤ CVaRτ (Yxh,j )− ε

η
Nh,j(t)

}
.

P
(
ξη
)

= P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, ĈVaRτ

t
(Yxh,j ) ≥ CVaRτ (Yxh,j ) + ε̃ηNh,j(t) or ,

ĈVaRτ
t
(Yxh,j ) ≤ CVaRτ (Yxh,j )− ε

η
Nh,j(t)

)
≤ P

(
∀h ≤ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, ĈVaRτ

t
(Yxh,j ) ≥ CVaRτ (Yxh,j ) + ε̃ηNh,j(t)

)
(4)

+ P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, ĈVaRτ

t
(Yxh,j ) ≤ CVaRτ (Yxh,j )− ε

η
Nh,j(t)

)
(5)

First let us consider (4):

P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, ĈVaRτ

t
(Yxh,j ) ≥ CVaRτ (Yxh,j ) + ε̃ηNh,j(t)

)
12
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≤ P
(
∃ 1 ≤ w ≤ T, ∃ 1 ≤ u ≤ T, inf

z∈R
{z +

1

u(1− τ)

u∑
s=1

(Yw(ζsw)− z)+} ≥ CVaRτ (Yxw) + ε̃ηu

)
≤

T∑
w=1

T∑
u=1

P
(

inf
z∈R
{z +

1

u(1− τ)

u∑
s=1

(Yw(ζsw)− z)+} ≥ CVaRτ (Yxw) + ε̃ηu

)
.

Thus by Brown’s inequality

(4) <
T∑
w=1

T∑
u=1

exp(−2(τ ε̃ηu/(b− a))2u).

Taking

ε̃ηu =
(b− a)

τ

√
log(2T 2/η)

2u

provides the first part, i.e (4)<
η

2
.

We use the same scheme of proof to bound (5), the only difference comes from the fact
that the inequality of deviation is different:

P

(
∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, ĈVaRτ

t
(Yxh,j ) ≤ CVaRτ (Yxh,j )− ε

η
Nh,j(t)

)
≤ P

(
∃ 1 ≤ w ≤ T, ∃ 1 ≤ u ≤ T, inf

z∈R
{z +

1

u(1− τ)

u∑
s=1

(Yw(ζsw)− z)+} ≤ CVaRτ (Yxw)− εηu
)

≤
T∑
w=1

T∑
u=1

P
(

inf
z∈R
{z +

1

u(1− τ)

u∑
s=1

(Yw(ζsw)− z)+} ≤ CVaRτ (xw)− εηu
)
.

By Brown’s inequality

(5) <

T∑
w=1

T∑
u=1

3 exp

(
− τ

5

( εηu
b− a

)2
u

)
Taking

ε̃ηu = (b− a)

√
5 log(6T 2/η)

τu

provides (5) <
η

2
.

Finally putting (4) and (5) together provides P
(
ξη
)
< η and hence P(ξcη) = P(Aη) =

1− η.

Proposition 2 Assume for all x ∈ X , Yx is bounded by (a, b) ∈ R2. For any η ∈ (0, 0.5],
for all 1 ≤ t ≤ T , 1 ≤ h ≤ t and 1 ≤ j ≤ Kh, define

Lηh,j(t) =
1

1− τ

n∑
i=1

(Yi+1 − Yi)
( i
n
−

√
log(2T 2/η)

2Nh,j(t)
− τ
)+
− Yn+1

13
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and

Uηh,j(t) =
1

1− τ

n−1∑
i=0

(Yi+1 − Yi)
(

min
{

1,
i

n
+

√
log(2T 2/η)

2Nh,j(t)

}
− τ
)+
− Yn,

with Y0 = a and Yn+1 = b. Then if g = −CVaRτ , the event Aη has probability at least 1−η.

Proof If Y1 · · · , Yn are i.i.d random variables bounded by (a, b) then Thomas-Learned-
Miller’s inequalities provide

P

(
− CVaRτ <

1

1− τ

n∑
i=1

(Yi+1 − Yi)
( i
n
−
√

log(1/η)

2n
− τ
)+
− Yn+1

)
< η

and

P

(
− CVaRτ >

1

1− τ

n−1∑
i=0

(Yi+1 − Yi)
(

min
{

1,
i

n
+

√
log(2T 2/η)

2Nh,j(t)

}
− τ
)+
− Yn

)
< η.

Define

ξη,1 = {∀ h ≥ 0,∀ 0 ≤ j ≤ Kh,∀ 1 ≤ t ≤ T,−CVaRτ (Yh,j) < UηNh,j(t)},

and

ξη,2 = {∀ h ≥ 0, ∀ 0 ≤ j ≤ Kh,∀ 1 ≤ t ≤ T,−CVaRτ (Yh,j) > LηNh,j(t)},

To treat the sequential point of view, here we use a double union bound as it is done in the
proof of Proposition 13, then it can be shown that

P(ξη,1) <
T∑
w=1

T∑
u=1

P
(
− CVaRτ (Y u

w ) < Uηu

)
.

Thus by defining

Uηu =
1

1− τ

u−1∑
i=0

(Yi+1 − Yi)
(

min
{

1,
i

u
+

√
log(2T 2/η)

2u

}
− τ
)+
− Yu

we obtain

P(ξη,1) <
T∑
w=1

T∑
u=1

η

2T 2
=
η

2
.

Using the same scheme of proof with

Lηu =
1

1− τ

u∑
i=1

(Yi+1 − Yi)
( i
u
−
√

log(2T 2/η)

2u
− τ
)+
− Yu+1

provides
P(ξη,2) <

η

2
.

Finally
P(ξη,1 ∪ ξη,1) < η,

and hence P
(

(ξη,1 ∪ ξη,1)c
)

= P(Aη) = 1− η.
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