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Abstract

Learning RBMs using standard algorithms such as CD(k) involves gradient descent on the
negative log-likelihood. One of the terms in the gradient, which involves expectation w.r.t.
the model distribution, is intractable and is obtained through an MCMC estimate. In this
work we show that the Hessian of the log-likelihood can be written in terms of covariances
of hidden and visible units and hence, all elements of the Hessian can also be estimated
using the same MCMC samples with small extra computational costs. Since inverting the
Hessian may be computationally expensive, we propose an algorithm that uses inverse of
the diagonal approximation of the Hessian, instead. This essentially results in parameter-
specific adaptive learning rates for the gradient descent process and improves the efficiency
of learning RBMs compared to the standard methods. Specifically we show that using the
inverse of diagonal approximation of Hessian in the stochastic DC (difference of convex
functions) program approach results in very efficient learning of RBMs.

Keywords: RBM, Maximum likelihood learning, Difference of Convex (DC) algorithm,
Contrastive divergence

1. Introduction

The Restricted Boltzmann Machine (RBM), an energy based generative model (Smolensky,
1986; Freund and Haussler, 1994; Hinton, 2002), is among the basic building blocks of
several deep learning models including Deep Boltzmann Machine (DBM) and Deep Belief
Networks (DBN) (Salakhutdinov and Hinton, 2009; Hinton et al., 2006; Montúfar, 2018).
It can also be used as a discriminative model with suitable modifications.

The traditional method of learning the parameters of an RBM involves minimizing the
KL divergence between the data and the model distribution. This is equivalent to the max-
imum likelihood estimation and is implemented as a gradient ascent on the log-likelihood.
However, evaluating the gradient (w.r.t. the parameters of the model) of the log-likelihood is
computationally expensive (exponential in minimum of the number of visible/hidden units
in the model) since it contains an expectation term w.r.t. the model distribution. There-
fore, in the iterative stochastic gradient methods this term is approximated using samples
from the model distribution. The samples are obtaining using Markov Chain Monte Carlo
(MCMC) methods which are efficient in this regard due to RBM’s bipartite connectiv-
ity structure. The popular Contrastive Divergence (CD) algorithm uses samples obtained
through an MCMC procedure with a specific initialization strategy. However, the result-
ing estimated gradient may be poor when the RBM model is high dimensional. The poor
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estimate can make the stochastic gradient descent (SGD) based algorithms such as CD to
even diverge in some cases (Fischer and Igel, 2010).

There are two general approaches to make the learning of RBMs more efficient. The first
is to design an efficient MCMC method to get good representative samples from the model
distribution and thereby reduce the variance of the estimated gradient (Desjardins et al.,
2010; Tieleman and Hinton, 2009). However, advanced MCMC methods are computation-
ally intensive, in general. The second approach is to design better optimization strategies
which are robust to the noise in the estimated gradient (Martens, 2010; Desjardins et al.,
2013; Carlson et al., 2015). Most approaches to design better optimization algorithms for
learning RBMs are second order optimization techniques that either need approximate Hes-
sian inverse or an estimate of the inverse Fisher matrix (The two approaches differ for the
RBM since it contains hidden units). The Hessian-Free (H-F) algorithm (Martens, 2010)
is an iterative procedure which approximately solves a linear system to obtain the curva-
ture through matrix-vector product. In (Desjardins et al., 2013) H-F algorithm is used
to design natural gradient descent for learning Boltzmann machines. A sparse Gaussian
graphical model is proposed in (Grosse and Salakhutdinov, 2015) to estimate the inverse
Fisher matrix in order to devise factorized natural gradient descent procedure. All these
algorithms either need additional computations to solve an auxiliary linear system or are
computationally intensive algorithms to directly estimate the inverse Fisher matrix.

There have been attempts to exploit the fact that the RBM log-likelihood function is
a difference of convex functions by modifying the standard difference of convex program-
ming (DCP) approach to handle the stochasticity (Upadhya and Sastry, 2017; Nitanda and
Suzuki, 2017). The stochastic- difference of convex functions programming (S-DCP) algo-
rithm (Upadhya and Sastry, 2017) uses only the first order derivatives of the log-likelihood
and solves a series of convex optimization problems using constant step-size gradient de-
scent method for a fixed number of iterations. The Stochastic proximal DC (SPD) algorithm
(Nitanda and Suzuki, 2017) uses an additional proximal term along with the DC objective
function and solves series of convex optimization problems. Unlike S-DCP, the SPD solves
each subproblem to a certain level of accuracy (predefined). In order to achieve the required
accuracy level large minibatch is used which significantly increases the computational cost
(Xu et al., 2019). However, the computational cost of S-DCP algorithm can be made iden-
tical to that of CD based algorithms with a proper choice of hyperparameters and is shown
to perform well compared to other algorithms (Upadhya and Sastry, 2017).

Motivated by the simplicity and the efficiency of the S-DCP algorithm, in this work,
we modify the S-DCP algorithm using the diagonal approximation of the Hessian of the
log-likelihood and propose a diagonally scaled S-DCP, denoted as S-DCP-D. Use of a diag-
onal approximation of Hessian essentially amounts to having an adaptive stepsize which is
different for different parameters.

We show that the diagonal terms of the Hessian can be expressed in terms of the co-
variances of the visible and hidden units and can be estimated using the same MCMC
samples that are used to get the gradient estimates. Therefore, the additional computa-
tional cost incurred is small. Thus, the main contribution of the paper is a well-motivated
algorithm (with small additional computational costs) that can automatically adopt the
step-size (through the inverse of the diagonal approximation of the Hessian) to improve the
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efficiency of learning an RBM. Through empirical investigations we show the effectiveness
of the proposed algorithm.

The rest of the paper is organized as follows. In section 2, we briefly describe the
RBM model and the maximum likelihood (ML) learning approach for RBM. We explain
the proposed algorithm, S-DCP-D, in section 3. In section 4, we present simulation results
on some benchmark datasets to show the efficiency of S-DCP-D. Finally, we conclude the
paper in section 5.

2. Background

2.1. Restricted Boltzmann Machines

The Restricted Boltzmann Machine (RBM) is an energy based model with a two layer
architecture, in which m visible stochastic units (v) in one layer are connected to n hidden
stochastic units (h) in the other layer (Smolensky, 1986; Freund and Haussler, 1994; Hinton,
2002). There are no connections from visible to visible and hidden to hidden nodes and the
connections between the layers are undirected. An RBM with parameters θ represents a
probability distribution

p(v,h|θ) = e−E(v,h;θ)/Zθ (1)

where, Zθ =
∑

v,h e
−E(v,h;θ) is the normalizing constant which is called the partition func-

tion and E(v,h; θ) is the energy function. The energy function is defined based on the type
of units, discrete or continuous. In this work, we consider binary units, i.e., v ∈ {0, 1}m
and h ∈ {0, 1}n for which the energy function is defined as

E(v,h; θ) = −
∑
i,j

wijhi vj −
m∑
j=1

bj vj −
n∑
i=1

ci hi (2)

where, θ = {w ∈ Rn×m,b ∈ Rm, c ∈ Rn} is the set of model parameters. Here, wij is the
weight of the connection between the ith hidden unit and the jth visible unit. The ci and
bj denote the bias for the ith hidden unit and the jth visible unit, respectively.

2.2. Maximum Likelihood Learning

One of the methods to learn the RBM parameters, θ, is through the maximization of the
log-likelihood over the training samples. The log-likelihood, for a given training sample (v),
is given by,

L(θ|v) = log p(v|θ) = log
∑
h

p(v,h|θ)

, g(θ,v)− f(θ) (3)

where,

g(θ,v) = log
∑
h

e−E(v,h:θ)

f(θ) = log Zθ = log
∑
v′,h

e−E(v′,h;θ). (4)
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The optimal RBM parameters can be found by solving the following optimization problem.

θ∗ = arg max
θ
L(θ|v) = arg max

θ
(g(θ,v)− f(θ)) (5)

The above optimization problem is solved using an iterative gradient ascent procedure:

θt+1 = θt + η ∇θL(θ|v)|θ=θt

The gradient of g and f are given by (Hinton, 2002; Fischer and Igel, 2012),

∇θ g(θ,v) = −
∑

h e
−E(v,h:θ)∇θ E(v,h; θ)∑

h e
−E(v,h:θ)

= −Ep(h|v;θ) [∇θ E(v,h; θ)]

∇θ f(θ) = −
∑

v′,h e
−E(v′,h;θ)∇θ E(v′,h; θ)∑

v′,h e
−E(v′,h;θ)

= −Ep(v′,h;θ)

[
∇θ E(v′,h; θ)

]
(6)

where, Eq denotes the expectation w.r.t. the distribution q. The expectation under the
conditional distribution, p(h|v; θ), for a given v, has a closed form expression and hence,
∇θ g is easily evaluated analytically. However, expectation under the joint density, p(v,h; θ),
is computationally intractable since the number of terms in the expectation summation
grows exponentially with (minimum of) the number of hidden units/visible units present in
the model. Hence, sampling methods are used to obtain ∇θ f .

The contrastive divergence (Hinton, 2002), a popular algorithm to learn RBMs, uses
a single sample (obtained after running a Markov chain for K steps) to approximate the
expectation as,

∇θ f(θ) = −Ep(v,h;θ) [∇θ E(v,h; θ)]

= −Ep(v;θ)Ep(h|v;θ) [∇θ E(v,h; θ)]

≈ −Ep(h|ṽ(K);θ)

[
∇θ E(ṽ(K),h; θ)

]
, f̂ ′(θ, ṽ(K)) (7)

Here, ṽ(K) is the sample obtained after K transitions of the Markov chain (defined by
the current parameter values θ) initialized with the training sample v. There exist many
variations of this CD algorithm in the literature, such as persistent (PCD) (Tieleman, 2008),
fast persistent (FPCD) (Tieleman and Hinton, 2009), population (pop-CD) (Oswin Krause,
2015), average contrastive divergence (ACD) (Ma and Wang, 2016) and weighted contrastive
divergence (WCD) (Merino et al., 2018). Another popular algorithm, parallel tempering
(PT) (Desjardins et al., 2010), is also based on MCMC. All these algorithms differ in the way
they obtain representative samples from the model distribution for estimating the gradient.
The centered gradient (CG) (Montavon and Müller, 2012) algorithm also uses the same
principle as that of CD algorithm to obtain the samples; however, while estimating the
gradient it removes the mean of the training data and the mean of the hidden activations
from the visible and the hidden variables respectively. This approach has been seen to
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Algorithm 1 S-DCP update for a single training sample v

Input: v, θ(t), η, d,K ′

Initialize θ̃(0) = θ(t), ṽ(0) = v
for l = 0 to d− 1 do
for k = 0 to K ′ − 1 do

sample h
(k)
i ∼ p(hi|ṽ(k), θ̃(l)), ∀i

sample ṽ
(k+1)
j ∼ p(vj |h(k), θ̃(l)), ∀j

end for
θ̃(l+1) = θ̃(l) − η

[
f̂ ′(θ̃(l), ṽ(K′))−∇g(θ(t),v)

]
ṽ(0) = ṽ(K′)

end for
Output: θ(t+1) = θ̃(d)

improve the conditioning of the underlying optimizing problem (Montavon and Müller,
2012).

As mentioned earlier, here we propose S-DCP-D which is a modification of the S-DCP
algorithm (Upadhya and Sastry, 2017). The S-DCP approach is advantageous since a non-
convex problem is solved by iteratively solving a sequence of convex optimization problems.

3. Diagonally scaled S-DCP (S-DCP-D)

The DCP (Yuille et al., 2002; An and Tao, 2005) is an algorithm useful for solving opti-
mization problems of the form,

θ∗ = arg min
θ
F (θ) = arg min

θ
(f(θ)− g(θ)) (8)

where, both the functions f and g are convex and smooth but F is non-convex. It is an
iterative procedure defined by,

θ(t+1) = arg min
θ

(
f(θ)− θT∇g(θ(t))

)
. (9)

In the RBM setting, F corresponds to the negative log-likelihood function and the functions
f, g are as defined in eq. (4).

In the S-DCP algorithm, the convex optimization problem given by RHS of eq. (9) is
(approximately) solved using a few iterations of gradient descent on f(θ) − θT∇g(θ(t),v)
for which the ∇f is estimated using samples obtained though MCMC (as in Contrastive
Divergence). Thus, it is a stochastic gradient descent for the (convex) objective function
f(θ) − θT∇g(θ(t),v) for a fixed number of iterations (denoted as d). A description of
this S-DCP algorithm is given as Algorithm 1. Note that, it is possible to choose the
hyperparameters d and K ′ such that the amount of computation required is identical to
CD(K) algorithm (Upadhya and Sastry, 2017).

The S-DCP algorithm can be viewed as two loops. The outer loop is the iteration given
by eq. (9). Each iteration here involves a convex optimization which is (approximately)
solved by the inner loop of S-DCP through stochastic gradient descent (w.r.t. θ) on the
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convex function, f(θ) − θT∇g(θ(t)). The proposed S-DCP-D is a scaling of this stochastic
gradient descent by using the diagonal elements of the Hessian of this convex function.

The Hessian of the objective function f(θ)− θT∇g(θ(t)) can be obtained as,

∇2
θf(θ) = −∇θEp(v,h;θ) [∇θ E(v,h; θ)]

=−
∑
v,h

∇θE(v,h) ∇θp(v,h; θ)T (Since ∇2
θE(v,h)=0)

=−
∑
v,h

∇θE(v,h)

Z2
θ

e−E(v,h)(−Zθ∇θE(v,h)T −∇θZTθ )

=−
∑
v,h

∇θE(v,h)
[
−∇θE(v,h)T −∇θ logZTθ

]
p(v,h)

By substituting ∇θ logZθ = −Ep(v′,h′;θ) [∇θ E(v′,h′; θ)] from eq. (6) in the above equation,
we get,

∇2
θf(θ) = Covp(v,h) [∇θE(v,h),∇θE(v,h)] (10)

where, Covq(X,X) = Eq(XXT )− Eq(X)Eq(XT ).

Note that a typical element in ∇2
θf is ∂2f

∂θi∂θj
where θi refers to the parameters of the

RBM, namely, all the wij , bi, cj . The diagonal element corresponding to wij is

∂2f

∂wij∂wij
= Ep(v,h)

[(
∂f

∂wij

)2
]
−
(
Ep(v,h)

[
∂f

∂wij

])2

= Ep(v,h)

[
v2
j h

2
i

]
−
(
Ep(v,h) [vj hi]

)2
= Ep(v,h) [vj hi]−

(
Ep(v,h) [vj hi]

)2
= Ep(v,h) [vj hi]

(
1− Ep(v,h) [vj hi]

)
We have used the property that v2

j = vj and h2
i = hi (since vj , hi are binary random

variables) in the above derivation. Similarly, the diagonal terms corresponding to the bias
terms are given by,

∂2f

∂bj∂bj
= Ep(v,h) [vj ]−

(
Ep(v,h) [ vj ]

)2
∂2f

∂ci∂ci
= Ep(v,h) [hi]−

(
Ep(v,h) [hi]

)2
By using the above equations, the diagonal elements of the Hessian of f can be estimated
simply by using the same MCMC samples used for gradient estimates. For a compact
notation, the diagonal terms in ∇2

θf can be written as

Diag
(
∇2
θf
)

= −Ep(v,h) [∇θE(v,h)] �
(
1 + Ep(v,h) [∇θE(v,h)]

)
where � represents element-wise multiplication, 1 represents vector of all ones and Diag(A)
represents the vector consisting of the diagonal elements of matrix A.
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Algorithm 2 S-DCP-D update for a mini-batch of size NB

Input: V = [v(0),v(1), . . . ,v(NB−1)], θ(t), η, d,K ′, ε
Initialize θ̃(0) = θ(t), VT = V
for l = 0 to d− 1 do

∆θ = 0, Gf = 0
for i = 0 to NB − 1 do

ṽ(0) = VT [:, i] → [ith column of VT ]
for k = 0 to K ′ − 1 do

sample h
(k)
i ∼ p(hi|ṽ(k), θ̃(l)), ∀i

sample ṽ
(k+1)
j ∼ p(vj |h(k), θ̃(l)), ∀j

end for
∆θ = ∆θ +

[
f̂ ′(θ̃(l), ṽ(K′))−∇g(θ(t),v(i))

]
Gf = Gf + f̂ ′(θ̃(l), ṽ(K′))
VT [:, i] = ṽ(K′)

end for
Hf =

Gf

NB
�
(

1− Gf

NB

)
/* � represents element-wise multiplication */

θ̃
(l+1)
s = θ̃

(l)
s − η

Hfs+ε
∆θs
NB

, ∀s /* Hfs is the diagonal element corresponding to θs */

end for
Output: θ(t+1) = θ̃(d)

These estimates are used in obtaining the gradient descent updates (in the inner loop
S-DCP) as,

θt+1
l = θtl − η

[
∇θ
(
f(θ)− θT∇g(θ(t))

)]
l

[Ht + εI)]l

∣∣∣∣∣
θ=θt

(11)

where [a]l represents lth element of vector a, I is the identity matrix of appropriate dimen-
sion, Ht is the estimated Hessian at iteration t and ε is a small constant (and the term εI
is added for numerical stability). A detailed description of the proposed algorithm is given
as Algorithm 2.

The inverse of the diagonal approximation of the Hessian essentially provides parameter-
specific learning rates for the gradient ascent process. In case of S-DCP algorithm the
objective function for the gradient descent is convex and the diagonal terms of the ∇2f are
greater than or equal to zero since f is convex. Therefore, inverse of the diagonal terms of
the Hessian added with a small ε is numerically stable.

Since the estimate of the gradient is noisy, the estimated Hessian is also noisy. Therefore,
exponential averaging of the estimated Hessian is used to make the algorithm stable in terms
of learning. Let H̃t denote the ∇2

θf calculated at iteration t as explained earlier. Let Ht

denote the Hessian that is used at iteration t for updating the weights. We calculate Ht as

Ht = λHHt−1 + (1− λH)H̃t (12)

where λH is a parameter that decides the memory of the exponential averaging.
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3.1. Computational Complexity

The computational cost of the CD(K) algorithm for a mini-batch of size NB is (NB(KT +
2L)) where T is the cost for one Gibbs transition and L is the cost for evaluating ∇g (and
also f̂ ′). The S-DCP algorithm with K ′ MCMC transitions and d inner loop iterations has
cost (dNB(K ′T + L) +NBL). The computational cost of CD(K) and S-DCP are identical
if K ′ and d are chosen to satisfy KT = dK ′T + (d − 1)L(Upadhya and Sastry, 2017).
(By choosing K = dK ′ we can make the computational costs of the two algorithms nearly
equal). The difference between S-DCP and S-DCP-D is only in terms of estimating the
diagonal terms of the Hessian. An additional d(mn + m + n) elementwise multiplications
are required to obtain the estimate of the the diagonal of Hessian. This represents the
additional computational cost of S-DCP-D compared to that of S-DCP.

4. Experiments and Discussions

In this section, we give a detailed comparison between the S-DCP-D and other algorithms,
namely, centered gradient (CG) (Melchior et al., 2016), S-DCP, CD and PCD algorithms.
The CG algorithm is essentially a CD(k) algorithm with additional centering heuristic which
improves learning. Further, the objective here is to compare algorithms which have similar
computational complexity and hence we do not consider algorithms which are significantly
computationally expensive (SPD, H-F, etc).

4.1. The Experimental Set-up

We consider four benchmark datasets in our analysis, namely, Bars & Stripes (MacKay,
2003), MNIST1 (LeCun et al., 1998), CalTech 101 Silhouettes DataSet (Marlin, 2009) and
kannada-MNIST (Prabhu, 2019). The Bars & Stripes dataset of data dimension D × D
is generated using a two-step procedure. In the first step, all the pixels in each row are
set to zero or one with equal probability and then the pattern is rotated by 90 degrees
with a probability of 0.5 in the second step. We have choose D = 3, for which we get 16
distinct patterns. We refer to MNIST, CalTech and the kannada-MNIST datasets as large
datasets. The MNIST , CalTech 101 Silhouettes and the kannada-MNIST datasets have
data dimension of 784.

For the Bars & Stripes dataset, we consider three RBMs with 4, 8, 16 hidden units
and for the large datasets, we consider RBMs with 500 hidden units. We evaluate the
algorithms using the performance measures obtained from multiple trials, where each trial
fixes the initial configuration of the weights and biases. The biases of visible units and
hidden units are initialized to the inverse sigmoid of the training sample mean and zero,
respectively. The weights are initialized to samples drawn from a Gaussian distribution with
mean zero and standard deviation 0.01. We use 25 trials for the Bars & Stripes dataset and
10 trials for the large datasets. The mini-batch learning procedure is used and the training
dataset is shuffled after every epoch. However, for Bars & Stripes dataset full batch training
procedure is used. We learn the RBM for a fixed number of epochs and avoid using any
stopping criterion. The training is performed for 5000 epochs for Bars & Stripes dataset

1. statistically binarized as in (Salakhutdinov and Murray, 2008)
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(corresponding to 5000 gradient updates, due to full batch training) and 200 epochs for the
MNIST dataset (corresponding to 60, 000 gradient updates due to the batch size of 200).

We compare the performance of the proposed S-DCP-D with centered gradient (CG),S-
DCP, CD and PCD. We keep the computational complexity (on each mini-batch) of S-DCP
roughly the same as that of CD by choosing K, d and K ′ such that K = dK ′ (Upadhya
and Sastry, 2017). Since previous works stressed on the necessity of using a large K for CD
based algorithms to get a sensible generative model (Carlson et al., 2015; Salakhutdinov
and Murray, 2008), we use K = 24 in CD (with d = 6,K ′ = 4 for S-DCP) for large datasets
and K = 4 in CD (with d = 2,K ′ = 2 for S-DCP) for Bars & Stripes dataset. In order
to get an unbiased comparison, we did not use momentum and weight decay for any of the
algorithms. For the centered gradient algorithm, we use the Algorithm 1 in (Melchior et al.,
2016) which corresponds to ddbs in their notation. We use CD step size K = 24 and the
hyperparameters νµ and νλ are set to 0.01. The initial value of µ is set to the mean of the
training data and λ is set to 0.5.

The learning rate and other hyperparameters for each algorithm is set to obtain the best
performance by doing a grid search over a set of values of hyperparameters.

4.2. Evaluation Criterion

The performance comparison is based on the log-likelihood achieved on the training and
test samples. For comparing the speed of learning of different algorithms, the average train
log-likelihood is a reasonable measure. The average test log likelihood also indicates how
well the learnt model generalizes. We show the maximum (over all trials) of the average
train and test log-likelihood. The average test log-likelihood (denoted as ATLL) is evaluated
as,

ATLL =
1

N

N∑
i=1

log p(v
(i)
test|θ) (13)

We evaluate the average train log-likelihood similarly by using the training samples rather
than the test samples. For small RBMs the above expression can be evaluated exactly.
However for large RBMs, we estimate the ATLL with annealed importance sampling (Neal,
2001) with 100 particles and 10000 intermediate distributions according to a linear temper-
ature scale between 0 and 1.

The evaluation in terms of the generative ability of the learnt models is carried out by
observing the samples that they generate. We randomly initialize the states of the visible
units and run the alternating Gibbs Sampler for 5000 steps (for large datasets)/200 steps
(for Bars & Stripes dataset) and plot the state of the visible units.

Overall, we use three evaluation criteria to show the effectiveness of the proposed S-
DCP-D algorithm, specifically, i) speed of convergence ii) generalization (Average Test
log-likelihood) and iii) generative ability (quality of the generated samples).

4.3. Performance Comparison

In this section, we present experimental results to illustrate the performance of S-DCP-
D in comparison with the other algorithms (CG, S-DCP, CD and PCD). The algorithms
are implemented using Python and CUDAMat (A CUDA-based matrix class for Python
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bindings)(Mnih, 2009) on a system with Intel processor i7−7700 (4 CPU cores and processor
base frequency 3.60 GHz), NVIDIA Titan X Pascal GPU and 16 GB RAM configuration.

In our results we show that the speed of learning, in terms of number of training epochs,
exhibited by S-DCP-D is significantly higher compared to the other algorithms. As men-
tioned earlier, all three algorithms have comparable computational load (per minibatch)
and hence comparison in terms of number of epochs would be similar to comparison in
terms of actual running time. However, since the computations performed by the different
algorithms are not identical, we need to understand difference in computational time per
epoch of different algorithms as well. For this, we present below the actual computational
time of different algorithms for a fixed number of epochs.

The mean and standard deviation(σ) of the utilized system time in seconds, for 5000
epochs of learning for Bars & Stripes dataset and for 200 epochs of learning for large
datasets, for each algorithm over 10 trials are shown in the table below.

Table 1: The system time statistics for Bars & Stripes and large datasets. The mean and
standard deviation of system time (in seconds) is evaluated over 10 trials.

Algorithm Bars & Stripes MNIST/CalTech/kannada-MNIST
Mean σ Mean σ

CD/PCD 1.41 0.02 248.15 0.16

CG 1.79 0.07 309.51 0.17

S-DCP 1.73 0.06 317.87 0.39

S-DCP-D 1.92 0.02 385.65 0.17

As can be seen from table 1, the computational time for S-DCP is 3% (for large datasets)
more compared to that of CG. As mentioned earlier, by taking K = dK ′ we can make the
computational time of these two algorithms nearly same. Compared to S-DCP, the time
for S-DCP-D is about 8% more for Bars & Stripes and 24% more for MNIST/CalTech.
The additional computation for S-DCP-D is calculating diagonal of Hessian and this grows
linearly with m,n.

In all results presented here we show evolution of ATLL with number of epochs for
different algorithms.2 As would be seen from the results, the S-DCP-D is faster in terms
of number of epochs by much more than 25% thus justifying the claim that it results in
efficient learning. In addition, on large datasets, the ATLL achieved by S-DCP-D is also
larger.

4.3.1. Bars & Stripes

Fig. 1 shows the evolution of the mean and maximum ATLL achieved by the RBM with 4
hidden units, learnt for the Bars & Stripes dataset. (Note that here all patterns are used for
training and hence there is no distinction between training and test data sets). As can be
seen, the S-DCP-D has significantly higher speed of learning compared to S-DCP indicating

2. Since we do not employ any stopping criterion, we cannot give ‘time taken to learn’ for different algo-
rithms; we can only show how log likelihood evolves with number of training epochs.
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Figure 1: The evolution of mean and maximum average log-likelihood acheived on the train-
ing and the test set over all the trials on the Bars & Stripes dataset.

the effectiveness of the parameter-specific learning rate induced by the diagonal scaling. It
is also faster than CG, CD and PCD. This increased speed does not come at the expense
of accuracy; the final ATLL of all algorithms is roughly same though S-DCP and CG take
more epochs to converge. Further, all the three learnt models generate valid samples as
shown in Fig. 5. We observed similar behavior with RBM models having number of hidden
units 8 and 16.

4.3.2. Large Datasets

Fig. 2, 3,4 show the evolution of the mean and maximum average log-likelihood of the
test and training set for the MNIST, CalTech and kannada-MNIST datasets respectively.
The convergence of S-DCP-D is faster compared to both S-DCP and CG. We observe in
Fig. 3 that the S-DCP-D evolution is smoother compared to S-DCP which suggests that
the stability of the learning algorithm is improved by the parameter-specific learning rate
employed. Further, the ATLL evolution in Fig. 2 indicates that the generalization ability
of the model learnt using S-DCP-D is comparable to that learnt by the other algorithms.
The maximum ATLL achieved by S-DCP-D is −86.9 which is comparable to the other al-
gorithms. The provided maximum ATLL score for S-DCP matches with that reported in
an earlier study in (Upadhya and Sastry, 2017). Also, the ATLL achieved by the learnt
models are comparable to that of the VAE (Variational Autoencoder) and IWAE (Impor-
tance Weighted Autoencoder) models (Burda et al., 2015). We observe a similar behaviour
for the CalTech and kannada-MNIST datasets, as shown in Fig. 3 and 4 respectively. The
performance of S-DCP-D is superior to that of S-DCP, CG, CD and PCD algorithms.

The samples generated by the models learnt using MNIST dataset are given in Fig. 5.
As observed from Fig. 5, the samples generated by S-DCP-D are sharp compared to those
produced by CG based model. Also, it can be observed that the samples generated by
CG and S-DCP-D are more diverse compared to those produced by S-DCP. We observed
a similar behaviour for the CalTech and kannada-MNIST dataset. While subjectively the
samples produced by S-DCP-D look better, it is important to note that there exist no
objective measures to evaluate a generative model based on the quality of the generated
samples.
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Figure 2: The mean and maximum average log-likelihood over all the trials on the training
and test set for MNIST dataset. Note that the learning rate for each algorithm
is set to obtain the best performance.
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Figure 3: The mean and maximum average log-likelihood over all the trials on the training
and test set for CalTech dataset.
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Figure 4: The mean and maximum average log-likelihood over all the trials on the training
and test set for kannada-MNIST dataset.
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Figure 5: 25 sample images generated from the models learnt on the Bars & Stripes (first
row) and MNIST dataset (second row). The visible states are randomly initialized
and the Gibbs sampler is run for 200 steps (for Bars & Stripes) and 5000 steps
(for MNIST). The final states of the visible units are shown.
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5. Conclusions

Learning an RBM is difficult due to the noisy estimates of the gradient of the log-likelihood
obtained through an MCMC procedure. In this work we proposed an algorithm where
we can automatically obtain different adaptive step-sizes for gradient descent for different
parameters. This is done by using the inverse of the diagonal approximation of the Hessian.
We showed that the Hessian of the log likelihood is given by covariances of the model
distribution and hence the Hessian can be estimated using the same MCMC samples that
are used for estimating the gradient. Thus, estimating the diagonal of the Hessian has only
small additional computational cost.

Through extensive simulations, we showed that the S-DCP-D results in a more efficient
learning of RBMs compared to S-DCP and CG algorithms. The additional attraction in
using the Hessian here is that in S-DCP-D the gradient descent in the inner loop is on a
convex objective function. The diagonal scaling also seems to stabilize the learning and the
resulting generative model seems to produce better samples as we showed empirically.

It is known that learning of RBMs can be more efficient if the learning rate is reduced
with iterations using a heuristically devised schedule. But the schedule has to be fixed
through cross validation. The proposed approach automatically provides parameter-specific
learning rates which makes the learning procedure both stable and efficient. The only hyper
parameters of the proposed algorithm is ε which does not affect the learning dynamics
much and is there only to control numerical underflows. The main attraction of S-DCP-D,
in our opinion, is its simplicity compared to other sophisticated second-order optimization
techniques which use computationally intensive algorithms to estimate the inverse of the
Hessian.

For learning an RBM, the centered gradient algorithms are shown to be better com-
pared to CD(k) type algorithm. The reason is conjectured to be the similarity among the
second order optimization algorithms and centered gradient method. We feel that the well-
motivated and simple second-order algorithm proposed, namely S-DCP-D, can provide the
correct platform to further explore this view of centered gradient algorithms.
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