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Abstract

Multiple Kernel Learning (MKL) algorithm effectively combines different kernels to im-
prove the performance of classification. Most MKL algorithms implicitly map samples into
feature space by the form of inner-product. In contrast, Multiple Empirical Kernel Learn-
ing (MEKL) can explicitly map the input spaces into feature spaces so that the mapped
feature vectors are explicitly represented, which is easy to process and analyze the adapt-
ability of kernels for input space. Meanwhile, in order to pay attention to the structure
and discriminant information of samples in empirical feature space, inspired by discrim-
inant locality preserving projections, we introduce the discriminant locality preservation
regularization into MEKL framework to propose the Multiple Empirical Kernel Learning
with Discriminant Locality Preservation (MEKL-DLP). Experiments conducted on real-
world datasets validate the effectiveness of the proposed MEKL-DLP compared with the
classical kernel-based algorithms and state-of-art MKL algorithms.

Keywords: Multiple kernel learning; Empirical kernel mapping; Discriminant locality
preserving projections; Machine learning.

1. Introduction

Kernel-based algorithms (Breneman (2006); Müller et al. (2001)) can effectively improve the
classification performance of predictive machine learning algorithms and have been widely
studied. These methods map the samples from input space X to feature space F via a
mapping function Φ : X → F . In this way, the original linearly inseparable sample in
X is mapped to a new linearly separable sample in F , which improves the accuracy of
classification (Müller et al. (2001)). There are two kinds of mapping functions Φ which are
Φi for implicit form and Φe for explicit form. The Implicit Kernel Mapping (IKM) implicitly
maps samples to feature space via the inner-product k(xi, xj) = Φi(xi) · Φi(xj). But the
necessity of inner-product in IKM restricts other methods unsatisfying the formulation to
be kernelized (Lu et al. (2003); Ye (2005); Ye et al. (2004)). In contrast, the Empirical
Kernel Mapping (EKM) (Xiong et al. (2005)) explicitly maps the samples into feature
space by giving the explicit form of Φe. Due to the explicit representation of feature vectors
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according to EKM, most algorithms can be kernelized directly. Thus, it is easier to process
and analyze the adaptability of kernels for input space (Zhe et al. (2007)).

The choice of kernel function plays an important role in achieving superior performance
in kernel-based algorithms. But it is difficult to select an appropriate kernel in a specific
problem. Therefore, the Multiple Kernel Learning (MKL) (Gönen and Alpaydın (2011);
Vedaldi et al. (2009); Bucak et al. (2014)) was proposed to address this issue. By combin-
ing multiple kernel functions in a certain way, the information brought by multiple kernel
functions is considered simultaneously in training and testing to improve the classification
performance. Lanckriet et al. (2002) integrated the linear combination of multiple ker-
nels into the process of structural risk optimization and used a Quadratically Constrained
Quadratic Program (QCQP) to solve the problem directly. To get more generalized per-
formance, Kloft et al. (2011) extended MKL to arbitrary norms for robust kernel mixtures.
Thus, they proposed a lp-norm MKL where p was arbitrary. By putting priors on kernel
combination parameters, Girolami and Rogers (2005) formulated a Bayesian hierarchical
model and derived variational Bayes estimators for classification problems. Due to learning
the optimal combinations of kernels in the process of optimization tasks is quite difficult to
be solved, Hao and Hoi (2013) adopt boosting to solve a variant of MKL problem, which
avoids solving the complicated optimization tasks. In order to reduce the time and space
complexity, Aiolli and Donini (2015) proposed an efficient MKL method named EasyMKL
which can easily cope with hundreds of thousands of kernels. Alternatively, Cortes et al.
(2012) gave a centered-kernel alignment criterion. By maximizing the criterion between
a nonnegative linear combination of kernels and the ideal kernel, a suitable combination
weights of candidate kernels were acquired.

As mentioned above, most of the existing MKL methods use the IKM to map samples
into feature space. In contrast, the MKL adopting the EKM to construct the feature spaces
is denoted as Multiple Empirical Kernel Learning (MEKL). Conventional MEKL algorithms
optimize the learning framework by minimizing the empirical risk and regularization risk
(Zhe et al. (2007)), but the distribution information of samples is not considered. Since
the samples after EKM are able to obtain its explicit representation in feature space, the
distribution information of the samples is effectively integrated into MEKL. By introducing
a locality preserving constrain regularization into MEKL, Fan et al. (2016) proposed the
MEKL-LPC method which utilizes intra-class structure information to learn classifiers with
robust performance. However, they ignored the inter-class structure information which was
not able to effectively separate the different classes in projection space. Moreover, the
intra-class graph of MEKL-LPC is constructed by all same class samples, but according to
Yang and Chen (2014), the joint of locally constructed intra-class and globally constructed
inter-class graphs is more discriminant. Thus, inspired by Discriminant Locality Preserving
Projections (DLPP) (Yu et al. (2006)) which is a supervised linear dimensionality reduction
method, we design a discriminant locality preservation regularization and introduce it into
MEKL to propose a novel MEKL algorithm named Multiple Empirical Kernel Learning with
Discriminant Locality Preservation (MEKL-DLP). MEKL-DLP increases the between-class
distance and reduces the within-class distance locally, while guarantees lower generalization
error. Therefore, structure and discriminant information in feature space is fully utilized
by MEKL-DLP to achieve a favorable classification performance.
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The proposed MEKL-DLP method first maps the input samples into multiple empirical
feature space according to different EKMs. Then, by introducing the discriminant local-
ity preservation regularization into the learning framework, the structure and discriminant
information in each empirical space is fully considered to learning. Finally, different clas-
sifiers of each empirical feature space are combined to obtain the final classifier. In order
to validate the effectiveness of MEKL-DLP, the experiments are conducted on a number
of real-world data sets. The results demonstrate that our proposed MEKL-DLP method
provides superior performance compared with state-of-art MKL algorithms and classical
kernel-based algorithms. Moreover, we further use Bayesian analysis to prove the superior-
ity of our method in the statistic.

The rest of this paper is organized as follows: Section 2 gives a brief introduction of
EKM and DLPP. Section 3 describes the architecture of proposed MEKL-DLP and provides
its pseudo-code. The experimental results and corresponding analysis of MIKL-DLP on real
world datasets are reported in Section 4. Finally, the conclusions are presented in Section
5.

2. Relation Work

2.1. Empirical Kernel Mapping

Given the training samples {(xi, ϕi)}Ni=1, ϕi ∈ {+1,−1} is the label of xi, each xi is mapped
by a kernel mapping function Φ from input space to feature space. Traditionally, the
mapping Φ is implicitly represented by a specified kernel function as the inner-product
form between each pair samples in the feature space. But Xiong et al. (2005) give the
mapping function an explicit form, which is named EKM and donated by Φe.

For the sample set {xi}Ni=1, the K = [kerij ]N×N donates the N ×N kernel matrix where
kerij = Φ(xi) ·Φ(xj). Thus, K is a symmetrical positive semi-definite matrix. Suppose that
the rank of K is r, then it can be decomposed as:

K = QN×rΛr×rQ
T
N×r (1)

where Λr×r is a r × r diagonal matrix with r positive eigen-values of kernel matrix K, and
QN×r is the orthonormal eigen-vectors corresponding to the eigen-values. Thus, Φe can be
represented as:

Φe(x) = Λ
− 1

2
r×rQ

T
N×r[ker(x, x1), ..., ker(x, xN )]T (2)

According to Eq.(2), different kernel function is corresponding to different EKM. The di-
mension of the mapped feature corresponds to the rank r of the kernel matrix K.

2.2. Discriminant Locality Preserving Projections

DLPP tries to find the subspace that best discriminates different classes by maximizing
the between-class distance, while minimizing the within-class distance. Given the training
samples {xi}Ni=1 , x ∈ Rd and each xi belongs to exactly one of C classes {ϕ1, ϕ2...ϕC}.
DLPP tries to maximize an objective function as follows (Yu et al. (2006)):

J =

∑C
p,q(mp −mq)Bpq(mp −mq)

T∑C
c=1

∑nc
i,j=1(y

c
i − ycj)Scij(yci − ycj)T

(3)
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where nc is the number of samples in the cth class, yci represents the ith projected vector
in the cth class, mp and mq is the mean projected vector for the pth class and qth class,
respectively, i.e., mp = 1

np

∑np

k=1 y
p
k and mq = 1

nq

∑nq

k=1 y
q
k, where np and nq is separately

the number of samples in the pth class and qth class. Sij and Bpq are the elements of
within-class weight matrix S and between-class weight matrix B, respectively. They are
defined as:

Scij =


exp(−‖xi−xj‖

2

2σ2 ), xi ∈ Nk(xj) or xj ∈ Nk(xi)
and xi, xj ∈ ϕc

0 otherwise

(4)

Bpq =

{
exp(−‖fp−fq‖

2

2σ2 ), fp ∈ Nk(fq) or fq ∈ Nk(fp)
0 otherwise

(5)

where σ is an empirically determined parameter, Nk(·) denotes the k nearest neighbors,
fp = ( 1

np
)
∑np

k=1 x
p
k is the mean vector of the pth class. Obviously, B and S are symmetric

positive semi-definite matrices. Suppose that the mapping from xi to yi is W , i.e. yi =
W Txi, then the objective Eq.(3) can be rewritten as:

J(W ) =
W TFHF TW

W TXLXTW
(6)

where L and H are Laplacian matrices. L = D − S,D = diag(D1, ..., Dc),Di is a diagonal
matrix and its elements are column (or row) sum of Si. Similarly, H = E−B, E is a diagonal
matrix and its elements are column (or row) sum of B. F = [f1, f2, ..., fc] is the mean vector
matrix in the input space. The columns of transformation matrix W = [w1, w2, ..., wd] that
maximizes the objective function Eq.(6) are given by maximum eigenvalues solutions to the
generalized eigenvalues problem:

FHF Twi = λiXLX
Twi, λ1 ≥ λ2 ≥ · · · ≥ λd (7)

3. Multiple Empirical Kernel Learning with Discriminant Locality
Preservation

The proposed MEKL-DLP algorithm adopts the idea of DLPP in empirical feature space and
integrates the discriminant locality preservation regularization into empirical kernel leaning
framework. Thus, in this section, we will give a description of the Discriminant Locality
Preservation (DLP) constraint in each empirical feature space. Then, the architecture of
MEKL-DLP is presented.

3.1. Discriminant Locality Preservation in Feature Spaces

Given the sample set {(xi, ϕi)}Ni=1, xi can be mapped into different empirical feature spaces
via different EKMs which is calculated according to Eq.(2) with different ker(·, ·). Supposing
there are m EKMs

{
Φel
}m
i=1

, the mapped samples are donated as
{

Φel
i

}m
i=1

in the lh feature
space. Inspired by DLPP but different from its form of using generalized Rayleigh quotient
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(Bathe and Wilson (1976)), DLP uses the form of maximum margin criterion (Li et al.
(2004)). The DLP constraint in lth feature space is defined as:

Rldlp =
C∑
c=1

nc∑
i,j=1

∥∥∥wTl (Φel
i )c − wTl (Φel

j )c
∥∥∥2
2
Scij − γ

C∑
i,j=1

∥∥∥wTl (Φel
mi)

c − wTl (Φel
mj)

c
∥∥∥2
2
Bc
ij

= wTl (Φel)TLl(Φ
el)wl − γwTl (Φel

m)THl(Φ
el
m)wl

= wTl [(Φel)TLl(Φ
el)− γ(Φel

m)THl(Φ
el
m)]wl

(8)

where Ll = Dl − Sl and Hl = Fl − Bl are Laplacian matrices in lth feature space just
like DLPP, Scij and Bij can be calculated according to the Eq.(4) and Eq.(5) substitute xi
with Φel

i , respectively. Φel = [[Φel
l ; 1]T ; ...; [Φe

Nms
l; 1]] represents the mapped sample matrix,

Φel
mi = 1

ni

∑ni
k=1 Φel

i is the mean vector of the ith class and wl is the augmented weight vector
in the lth feature space. γ ≥ 0 is the regularization parameter to balance the relative merits
of minimizing the within-class scatter to the maximization of the between-class scatter.

Minimizing the DLP constraint is an attempt to ensure that if Φel
i and Φel

j are ‘close’ in
empirical feature space then they are close as well in output space and also ensure that if
Φel
mi and Φel

mj are ‘far’ but they are far in output space.

3.2. Architecture of Proposed MEKL-DLP Method

After constructing m empirical feature spaces and integrating the discriminant locality
preservation constraint into each empirical feature space respectively according to the pre-
vious sections, here we give the architecture of the proposed MEKL-DLP.

The proposed MEKL-DLP adopts the empirical risk term Remp and the regularization
term Rreg as done in traditional methods (Xiong et al. (2005); Leski (2003)), which guar-
antees the correctness of classifier. Moreover, in order to restrain the relationships between
all kernels, we introduce the Inter-Function Similarity Loss term (Zhe et al. (2007)):

RIFSL =

m∑
l=1

(fl −
1

m

m∑
j=1

fj)
2 (9)

where fl is the output in the lth feature space. Since minimizing RIFSL means minimizing
variances of different outputs, information from different kernel spaces is effectively inte-
grated. Finally, the objection function J of the proposed MEKL-DLP integrates the Remp,
Rreg, Rdlp and RIFSL together, which is simply described as:

J =
m∑
l=1

[Remp + cRreg + βRdlp] + λRIFSL (10)

where m is the number of empirical feature space, c, β, λ are all nonnegative regularization
parameter. Different regularization term has the different function in the process of classi-
fication. Specifically, the Remp is empirical risk term which usually uses the mean-squared
errors. The Rreg is the structural risk term which avoids the over-fitting phenomenon, thus
the generalization performance of model is improved. The Rdlp is our proposed discriminant
locality preservation term which increases the structure and discriminant ability of model.
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The last term is RIFSL which keeps the output of each kernel be maximally close to the
weighted average outputs of all kernels. The Remp, Rreg and Rdlp regularization terms are
added in each empirical kernel space and the parameter c, β are used to adjust the influence
of different regularization. The last regularization term is RIFSL which aims to ensure the
outputs of different kernel space are similarity and consistent.

In practice, given the training samples {(xi, ϕi)}Ni=1 , ϕi ∈ {+1,−1} andm kernels, we ex-
plicitly map the input training samples into m empirical feature spaces

{
Φel(x1), ...,Φ

el(xN )
}m
l=1

.

In the lth empirical feature space, let Yl = [ϕ1(Φ
el
1 ); ...;ϕi(Φ

el
i ); ...;ϕN (Φel

N )] where Φel
i =

[Φel(xi); 1], and w = [ŵ;w0] where ŵ and w0 are the weight vector and bias, respectively.
Then, the empirical risk term Remp, regularization term Rreg and RIFSL can be formulated
as:

Remp = (Ylwl − 1N×1 − bl)
T (Ylwl − 1N×1 − bl) (11)

Rreg = ŵTl ŵl (12)

RIFSL =

m∑
l=1

(Ylwl −
1

m

m∑
j=1

Yjwj)
2 (13)

where the N-dimensional vector 1N×1 represents the vector with all elements set to 1, and
bl denotes a non-negative margin vector. After substituting Eq.(8), Eq.(11), Eq.(12) and
Eq.(13) into Eq.(10), the final objective function can be expressed as follows:

min
w1,bl≥0

J =
m∑
l=1

{
(Ylwl − 1N×1 − bl)

T (Ylwl − 1N×1 − bl) + cŵTl ŵl
}

+
m∑
l=1

βwTl [(Φel)TLl(Φ
el)− γ(Φel

m)THl(Φ
el
m)]wl

+ λ
m∑
l=1

(Ylwl −
1

m

m∑
j=1

Yjwj)
T (Ylwl −

1

m

m∑
j=1

Yjwj)

(14)

Each wl and bl can be optimized separately by a heuristic gradient descent method (Leski
(2003)). By setting gradient of J with respect to wl and bl to zero, we obtain:

wl =

{
[1 + λ(1 + (

m− 1

m
)2)]Y T

l Yl + cÎ + β[(Φel)TLl(Φ
el)− γ(Φel

m)THl(Φ
el
m)]

}−1
Y T
l

× (bl + 1N×1 + λ
1

m

m∑
j=1;j 6=l

Yjwj)

(15)

bl = Ylwl − 1N×1 (16)

where Î is a diagonal matrix with full 1 except the last element set to 0. Then, in the lth
feature space, we import the error vector

el = Ylwl − 1N×1 − bl (17)
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By adopting a heuristic gradient descent method, we initialize b1
l ≥ 0 and update btl at each

iteration as follows to refuse decrease any elements of it.{
b1
l ≥ 0

bt+1
l = btl + ρ(etl +

∥∥etl∥∥)
(18)

where t is iteration index, and ρ(≥ 0) is the learning rate. Then, the weight vector wt+1
l

can be obtained according to Eq.(15). Furthermore, the termination criterion to be ‖
J t+1 − J t ‖2≤ ξ where the termination criterion parameter ξ is a small positive constant.
The algorithm of our proposed MEKL-DLP is summarized in Table 1. Finally, with optimal

Table 1: Algorithm of MEKL-DLP

Input:Training samples {(xi, ϕi)}Ni=1 , ϕ ∈ {1,−1}, and m candidate kernels
{ker(xi, xj)}ml=1.

Output: The weight wl, l = 1, ...,m.

1. Explicitly map {xi}Ni=1 into m feature spaces
{

Φel(x1), ...,Φ
el(xi), ...,Φ

el(xN )
}m
l=1

according to Eq.(2).
2. For each empirical feature spaces, let Φel

i = [Φel(xi); 1], Yl = [ϕ1(Φ
el
1 )T ; ...;ϕN (Φel

N )T ],
l = 1, ...,m
3. Initialize c ≥ 0, β ≥ 0, γ ≥ 0, λ ≥ 0,b1

l ≥ 0, ξ ≥ 0, t = 1, l = 1, ...,m
4. Calculate S and B according to Eq.(4) and Eq.(5)
5. Do until the termination condition ‖ J t+1 − J t ‖2≤ ξ is satisfied

a) Calculate wtl according to Eq.(15) with bl = b1
l

b) Calculate etl according to Eq.(17)

c) Calculate bt+1
l according to Eq.(18)

6. Return wl, l = 1, ...,m

wl, l = 1, ...,m, the decision function for an input sample z with its corresponding mapped
samples

{
Φel(z)

}m
l=1

, can be formulated as:

F (z) =
1

m

m∑
l=1

wTl [Φel(z); 1] (19)

If F (z) ≥ 0 , then z ∈ class+ 1 and if F (z) ≤ 0, then z ∈ class− 1.

4. Experimental Studies

In this section, we compare MEKL-DLP with five state-of-art MKL methods and three
representative single kernel learning methods to evaluate MEKL-DLPs performance on 10
real-world datasets which are obtained from UCI datasets. The experiment results prove
that MEKL-DLP improves classification accuracy compared with these algorithms.

4.1. Datasets

In the experiment, 10 UCI data sets are used to evaluate the performance of MEKL-DLP
by comparing the classification performance with other methods. These data sets can be
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Table 2: Information for the adopted datasets

Dataset Instances Attributes Classes

Iris 150 4 3
Liver Disorders 345 6 2
Ionosphere 351 34 2
House Vote 435 16 2
BCW 699 9 2
MM 961 6 2
Hill Valley 1212 100 2
CMC 1473 9 3
Semeion 1593 256 10
Segmentation 2310 18 7

accessed from UCI Machine Learning Repository (Asuncion and Newman (2007)), which
are Iris, Liver Disorders, Ionosphere, House Vote, Breast Cancer Wisconsin (BCW), Mam-
mographic Masses (MM), Hill Valley, Contraceptive Method Choice (CMC), Semeion and
Segmentation. Table 2 shows the detail information about these data sets.

4.2. Experimental Settings

In the experiment, eight kernel-based methods form the comparison group to verify the effec-

tiveness of our proposed MEKL-DLP method. The RBF kernels ker(xi, xj) = exp(−‖xi−xj‖
2

2σ2 )

is chosen as the candidate kernel and the mean kernel bandwidth σ2 = η ∗ 1
N2

∑N
i,j=1 ‖xi −

xj‖2 are used as the kernel parameter, where N is the number of training samples and η is a
parameter to change the value of σ. Furthermore, the comparison group is categorized into
two parts. The first part is the comparison between our proposed MEKL-DLP method and
the single kernel learning methods such as KMHKS (Leski (2003)), SVM (Vapnik (1995))
and KFDA (Liu et al. (2004)). Because MEKL-DLP is a MKL method, the number of
kernel is set to 3 and the parameter η is respectively set to 2−2, 20, 22, while the η is set to
20 = 1 for KMHKS, SVM and KFDA. The second part is the comparison between our pro-
posed MEKL-DLP method and the MKL methods such as MEKL-LPC(Fan et al. (2016)),
MultiK-MHKS (Zhe et al. (2007)), SimpleMKL (Rakotomamonjy et al. (2008)), EasyMKL
(Aiolli and Donini (2015)) and GLMKL (Xu et al. (2010)). For easy comparison, the num-
ber of RBF kernel is also set to 3 expect EasyMKL and the kernel bandwidth parameter
η is selected from

{
2−4, 2−2, ..., 24

}
. Since EasyMKL is a scalable multiple kernel learning

algorithm, the number of kernels is set to 50. For all MHKS-based algorithms such as
MEKL-DLP, MEKL-LPC, MultiK-MHKS and KMHKS, the learning rate ρ and the initial
value of b is set to 0.99 and 10−6. Meanwhile, all the regularization parameter c, β, λ, γ
are chosen from

{
10−2, 10−1, ..., 102

}
. For MEKL-DLP, the local nearest neighbor param-

eters k is selected from 1,3,5,7,9. For all SVM-based algorithms, such as SimpleMKL and
GLMKL, the parameter c is also chosen from

{
10−2, 10−1, ..., 102

}
. In addition, the 5-fold

cross validation (Braga-Neto and Dougherty (2004)) approach is used for the parameter
selection.
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4.3. Performance Comparison with single kernel learning methods

To validate the effectiveness of MEKL-DLP for integrating multiple kernels, we compare
the classification accuracy between our method and single kernel learning methods such as
KMHKS, KFDA and SVM on 10 UCI data sets. The experiment results are listed in Table
3 and the best results on each data set are highlighted in BOLD.

Table 3: Classification accuracy of MEKL-DLP and single kernel learning methods on UCI
datasets

Data Set MEKL-DLP KMHKS KFDA SVM

Iris 98.67± 1.83 97.33± 2.79 94.67± 2.98 97.33± 2.79
Liver Disorders 71.59± 3.01 68.99± 4.76 61.16± 4.02 60.33± 4.59
Ionosphere 94.87± 3.29 92.01± 2.98 80.06± 6.04 93.72± 3.32
House Vote 94.70± 1.97 93.78± 1.08 87.60± 2.94 92.24± 3.44
BCW 96.84± 2.43 96.55± 2.01 90.12± 2.04 97.11± 1.81
MM 57.75± 3.67 59.10± 4.06 53.49± 2.00 55.29± 6.02
Hill Valley 52.63± 2.70 52.56± 1.99 48.76± 3.08 50.09± 0.19
CMC 56.22± 1.95 54.44± 2.05 48.66± 2.33 53.58± 3.18
Semeion 95.63± 1.42 93.00± 1.69 95.31± 0.94 94.84± 1.80
Segmentation 97.84± 1.05 94.03± 1.30 96.32± 1.46 94.33± 1.13

Average 81.67± 2.33 80.18± 2.47 75.61± 2.78 78.89± 2.83

According to the results, we can conclude that: 1) Compared with single kernel learning
methods, MEKL-DLP achieves the best classification performance on 7 datasets and the
highest average classification accuracy among the compared methods. It is evident that the
proposed MEKL-DLP is significantly superior to the other single-kernel-based methods. 2)
Compared with KMHKS which is the kernelization of MHKS, MEKL-DLP combines mul-
tiple kernel spaces information to achieve superior performance. 3) Compared with KFDA
which also utilizes the with-class and between-class information, MEKL-DLP provides a
better discriminant ability by introducing the class information of samples into the learning
framework.

4.4. Performance Comparison with multiple kernel learning methods

To validate the performance of MEKL-DLP with other MKL methods, five state-of-art
MKL methods such as MultiK-MHKS, MEKL-LPC, SimpleMKL, GLMKL and EasyMKL
are compared and discussed in this section. The experiment results are listed in Table 4
and the best results on each data set are highlighted in BOLD. Meanwhile, the average
classification accuracies are given in the last row of Table 4.

According to the results, we can conclude that: 1) MEKL-DLP obtains the best clas-
sification accuracies on 7 datasets and the highest average classification accuracy among
the compared methods, which demonstrates that the method achieves more robust classifi-
cation performance by introducing the discriminant locality preservation into the learning
framework. 2) Compared with the related methods such as MultiK-MHKS and MEKL-
LPC, our proposed MEKL-DLP achieves the best performance on 9 datasets. It indicates
that MEKL-DLP combines the local intra-class structure information and global inter-class
discriminant information to further improve the generalization and robustness performance.
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3) On Liver Disorders, MM, Hill Valley and CMC datasets which are difficult to classify,
the performances of MEKL-DLP are significantly improved than SimpleMKL which is a
state-of-art MKL method. It indicates that our proposed MEKL-DLP method is more
advantageous on datasets which are difficult to classify.

Table 4: Classification accuracy of MEKL-DLP and MKL methods on UCI datasets
Data Set MEKL-DLP MultiK-MHKS MEKL-LPC SimpleMKL GLMKL EasyMKL

Iris 98.67± 1.83 98.00± 1.83 97.33± 2.79 96.00± 3.65 96.67± 2.36 98.00± 1.63
Liver Disorders 73.04± 1.59 70.43± 1.65 71.30± 3.14 72.17± 7.63 70.72± 3.30 66.67± 3.67
Ionosphere 95.44± 2.75 91.73± 5.93 92.28± 1.35 95.43± 3.41 94.30± 2.86 91.72± 5.61
House Vote 94.95± 1.00 94.52± 2.97 94.48± 1.51 94.22± 3.00 94.03± 0.89 95.39± 2.64
BCW 97.42± 1.88 96.69± 2.95 96.93± 1.41 97.28± 1.08 96.99± 1.94 94.98± 2.69
MM 57.75± 3.67 56.50± 4.38 55.15± 3.79 56.71± 4.06 53.69± 0.11 56.82± 4.39
Hill Valley 53.13± 3.85 52.64± 2.26 52.29± 3.92 51.73± 2.53 52.06± 3.34 53.05± 4.39
CMC 56.22± 1.95 55.89± 1.80 56.49± 4.08 54.58± 3.32 55.07± 2.20 50.92± 2.40
Semeion 95.63± 1.42 94.50± 1.26 95.49± 1.17 95.05± 0.34 94.94± 1.52 86.44± 1.96
Segmentation 97.84± 1.05 96.06± 1.41 97.49± 0.82 97.36± 0.64 97.45± 0.66 98.05± 0.56

Average 82.01± 2.10 80.7± 2.64 80.75± 2.42 81.05± 2.96 80.59± 1.92 79.21± 2.99

4.5. Bayesian analysis

In our experiment, Bayesian analysis (Benavoli et al. (2016)) is considered to further com-
pare the classification performance of different algorithms. Bayesian analysis takes both
magnitude and uncertainty into account to estimate the performance of classifier. The as-
sumption of Bayesian analysis is that the difference between two estimators in a certain
metric is a normal distribution. Using a Bayesian signed rank test method, two proba-
bility matrixes are obtained and shown in Fig.1. Fig.1-a is the probability matrix of
MEKL-DLP and single kernel learning methods and Fig.1-b is the probability matrix of
MEKL-DLP and MKL methods. The value in row ith and column jth represents the prob-
ability that methodith exceeds methodjth. Actually, this probability matrix indicates the
probability that the difference between the two methods is more than q. Commonly, it
is non-equivalent that two classifiers whose mean difference is more than 1%. Thus, the
parameter q is set to 1% in this analysis.

As can be seen from the first row of Fig.1, compared to the single kernel learning and
multiple kernel learning methods, the classification performances of MEKL-DLP are both
superior on all data sets with q=1%. Therefore, it is evident that the proposed MEKL-DLP
is statistically superior to the other compared methods.

4.6. Analysis on β

In MEKL-DLP, the regularization parameter β controls the contribution of discriminant
locality preservation regularization Rdlp to the decision hyperplane. Thus, experiments are
designed on the 10 UCI data sets to track the influence of β. The rest parameters are
fix as the best ones selected via 5-fold cross validation and the value of β is selected from{

10−2, 10−1, ..., 102
}

. For each β, the average classification accuracies are shown in Fig.2
and Fig.3.

It can be concluded that: 1) On most data sets, especially those with high accuracy,
the classification accuracies are obviously fluctuate with the varying of β, which indicates
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Figure 1: Probability matrices obtained from a Bayesian signed rank test on the UCI
datasets. The value in row ith and column jth represents the probability that
methodith exceeds methodjth with q for the corresponding metric. (a) Probabil-
ity matrices of MEKL-DLP and single kernel learning methods. (b) Probability
matrices of MEKL-DLP and MKL methods.
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Figure 2: Accuracy values (%) of MEKL-DLP with the variation of parameter β on Iris,
Ionosphere, House Vote, BCW, Segmentation.
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Figure 3: Accuracy values (%) of MEKL-DLP with the variation of parameter β on Liver
Disorders, MM, Hill Vcalley, CMC, Semelon.

that β has the great influence on the classification performance of MEKL-DLP. 2) On
several low accuracy data sets, such as MM, CMC and Hill Vcalley, the classification
accuracy will rise first and then fall with the β increasing. Thus, our selection of value
β in

{
10−2, 10−1, ..., 102

}
is sufficient for MEKL-DLP to achieve favorable classification

performance. 3) On all data sets, it is obvious that when β exceeds to 10, the classification
performance decreases greatly which indicates that to attach more importance to Rdlp is
not appropriate for improving the classification performance.

5. Conclusion

In this paper, we propose a novel multiple kernel learning method named MEKL-DLP.
Inspired by DLPP, the proposed method integrates discriminate locality preservation into
MEKL framework, which effectively uses the distribution and discriminant information of
samples to improve the classification performance. Furthermore, to validate the effectiveness
of MEKL-DLP, experiments are designed to compare MEKL-DLP with five stats-of-art mul-
tiple kernel learning algorithms and three representative single kernel learning algorithms on
10 real-world UCI data sets. Experimental results indicate that MEKL-DLP outperforms
the compared algorithms. Meanwhile, Bayesian analysis is used to further demonstrate the
superiority of our algorithm. In addition, we discuss the influence of discriminate locality
preservation regularization parameter β to the classification performance. The results ex-
press that β greatly impacts the classification accuracy and it should not be set to a large
value. In General, by introducing the discriminate locality preservation into MEKL, the
proposed MEKL-DLP results in more robust classification performance.
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