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Abstract

Multivariate time series prediction has recently attracted extensive research attention due
to its wide applications in the area of financial investment, energy consumption, environ-
mental pollution and so on. Because of the temporal complexity and nonlinearity existing
in multivariate time series, few existing models could provide satisfactory prediction re-
sults. In this paper, we proposed a novel prediction approach based on optimized temporal
convolutional networks with stacked auto-encoders, which can achieve better prediction
performance as demonstrated in the experiments. Stacked auto-encoders are employed to
extract effective features from complex multivariate time series. A temporal convolutional
network is then constructed serving as the prediction model, which has a flexible receptive
field and enjoys faster training speed with parallel computing ability than recurrent neu-
ral networks. The optimal hyperparameters in these models are discovered by Bayesian
optimization. We performed extensive experiments by comparing the proposed algorithms
and other popular algorithms on three different datasets, where the proposed approach
obtain the best prediction results in various prediction horizons. In addition, we carefully
analyze the search process of Bayesian optimization and provide further insights into hy-
perparametric tuning processes combining the exploration strategy with the exploitation
strategy.

Keywords: Multivariate time series prediction, temporal convolutional networks, stacked
auto-encoders, Bayesian optimization.

1. Introduction

The problem of time series prediction has been studied for decades and is still among
the most challenging problems in many related applications. With the recent advance-
ment of deep learning and GPU-based parallel computing, time series prediction has make
fruitful progress in many fields, including finance investment, energy consumption, urban
pollution and so on. For example, in smart city computing, accurate estimation of traffic
flow, temperature and pollution level can lead to effective suggestion for citizens and help
the government to make better decisions. However, due to the temporal complexity and
nonlinearity in multivariate time series, the current prediction results of multivariate time
series are not satisfactory. How to handle the above issues appropriately is still an open
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problem. In this paper, we construct temporal convolutional networks to accomplish multi-
variate time series prediction. Stacked auto-encoders are utilized to extract valid features,
and Bayesian optimization is employed to search the optimal hyperparameters.

Extracting valid features from multivariate time series can help to reduce the complex-
ity of the training process, as well as improve the prediction accuracy. Manually feature
extraction by domain experts is labor-intensive and time-consuming. Traditional feature
extraction methods such as principal components analysis (PCA) and linear discriminant
analysis (LDA) cannot work well on multivariate time series because of the failure of cap-
turing the implicit nonlinearity. Popular feature extraction for multivariate time series can
be categorized into two groups: supervised learning methods and unsupervised learning
methods. The convolutional neural network (CNN) (Pak et al., 2018) and auto-encoder
(AE) (Chen et al., 2018) are the representative methods in each group. In this paper, to
minimize the leverage of domain knowledge and human intervention, we contract stacked
auto-encoders (SAEs) (Coutinho et al., 2019) to extract valid features from multivariate
time series and capture the complex relationship among multiple variables.

Deep leaning has been proven to be a promising approach in many applications includ-
ing image recognition, speech recognition, pattern recognition, natural language processing,
as well as time series prediction. The application of recurrent neural networks (RNN) (El-
man, 1991) to sequence modeling problems dates back to 1980s. However, it is difficult for
traditional RNNs to obtain good performance because of the gradient vanishing and gra-
dient explosion during model training. Based on RNNs, long-short-term memory network
(LSTM) (Hochreiter and Schmidhuber, 1996) achieves accurate prediction and stable gra-
dient during the training process. Gate recurrent unit (GRU) (Chung et al., 2014) further
simplifies LSTM without deteriorating the performance. Nevertheless, due to the serial
training mode, RNNs have a relatively slow training speed, especially with large network
depth. Temporal convolutional network (TCN) (Bai et al., 2018) is proposed to address this
issue which can be trained in parallel. TCN achieves superior performance than RNNs in
many applications. In this paper, we employ TCN to capture the long-term dependency in
multivariate time series for future prediction. It is worth noting that the hyperparameters
in the prediction model need to be explored carefully to achieve the best prediction results.
We utilize Bayesian optimization to search these optimal hyperparameters efficiently.

In this paper, we propose an approach for multivariate time series prediction based on
optimized temporal convolutional network (SAEs-BO-TCN) with stacked auto-encoders.
The contributions of this paper are summarized as below.

1. We apply temporal convolutional network (TCN) for multivariate time series predic-
tion to capture the long-term dependency in multivariate time series, where stacked
auto-encoders are employed to extract valid features.

2. We employ Gaussian process to model the objection function of TCN and utilize
Bayesian optimization with upper-confidence bounds heuristic to search efficiently the
hyperparameters in parallel in the proposed approach with various balancing factor
values.

3. We perform extensive experiments to demonstrate the effectiveness and efficiency of
our proposed multivariate time series prediction approach by comparing the proposed
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approach with both traditional and popular time series prediction methods. Experi-
mental results show that the proposed approach achieves the best prediction results.

The rest of this paper is organized as follows. We formalize the multivariate time series
prediction problem in Section 2 and explain in detail the proposed prediction approach in
Section 3. We report the experimental results in Section 4. We present the related work of
multivariate time series prediction in Section 5 and conclude this paper in Section 6.

2. Problem Definition

In multivariate time series prediction applications, one needs to predict ahead up to
a ceratin time horizon, which sometimes is called lead time or prediction horizon. Math-
ematically, Let X = (X1, Xa, ..., X7) € R™*T denote a multivariate time series, where m
is the number of variables in the time series, and X; = (z},27,--- ,2) is the measure-
ments of the input multivariate time series at time ¢. The problem of multivariate time
series prediction is to predict the potential values of the multivariate time series at certain
moments in future, denoted as Y = (Y41, Y742, ..., Yr4p) € R™ %P , where usually m’ < m
and Y; = (%17 y]z, e ,y;”/) is the predicted measurements of the multivariate time series at
time j. p is the prediction horizon and the above problem is also known as p-step-ahead
prediction.

The multi-step-ahead prediction task is often solved by either explicitly training mul-
tiple prediction models for different steps, or by iteratively performing one-step-ahead pre-
diction up to the desired horizon. Training multiple prediction models for different steps
considers much less context of the predicted values because it only uses the context infor-
mation p-step ahead, while in the iterative methods, the p-step-ahead prediction problem is
done by iteratively performing one-step-ahead prediction, where previously predicted val-
ues serve as the context of the later predicted values. Another advantage of the iterative
method is that explicitly training multiple prediction models need to know the number
models beforehand, that is the value of p, while the iterative method is appropriate for any
arbitrary value of p, so long as the prediction performance is acceptable.

By using predicted values instead of real observations, errors might be propagated and
accumulated in the prediction model, resulting in poor prediction performance. Hence, we
need to carefully select the appropriate prediction strategy, as well as the prediction horizon.
In this paper, we adopt the iterative method to perform one-step-ahead prediction up to
the desired horizon.

3. The Proposed Model

The overall framework of the proposed model SAEs-BO-TCN is presented in Figure 1.
The model is divided into four phases. The first is the feature extraction stage. The
original multivariate time series is input to the SAEs to obtain the reduced dimensions of
reconstructed time series. The last hidden layer serves as the new feature representation
of the original time series. In the second phase, we split the data set into fixed length
subsequences using a time window of size T' with sliding step S shown in Figure 2.

In the third stage, the split time series is fed to TCN to train the prediction model.
Finally, we apply the Bayesian optimization to search for the optimal hyperparameters of
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Figure 1: The Overall framework of SAEs-BO-TCN.
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window.

TCN and multiple searchers with specific search strategy are set to efficiently search the
entire hyperparameter space in parallel. Through the above four stages, we can train a deep
neural network to make the p-step-ahead prediction.

3.1. Stacked Autoencoders

The non-linear characteristic of the multivariate time series accompanied by noise data
is difficult to predict directly. Extracting features in advance rather than feeding the original
time series directly to the model can improve prediction performance and training speed.
Autoencoder is an unsupervised feature extractor that learns important features of multi-
variate time series by constructing deep neural networks and using error backpropagation
algorithms.
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Multivariate time series is usually unlabelled and interdependent. Unlike using super-
vised methods such as CNNs which need to collaborate with the predicting model, autoen-
coders can separate the feature extraction and prediction process. Moreover, autoencoders
can reduce the feature space to distill the valid and robust features for the predicting model.

A single-layer AE consists of only three layers of neural networks, the input layer, the
hidden layer with multiple units, and the reconstruction layer. As is shown in Figure 3, the
first step of AE is to map the input feature vector to the hidden layer, while the second
step is to map the hidden layer vector to the output layer to complete the reconstruction
of the input features. The above two steps can be summarized as the following formula:

a(X) = f(W1 X +b1) (1)
X = f(Waa(X) + by) (2)

where X € R™ and X € R™ are the input vector and reconstructed vector, a(X) is the
hidden layer vector mapped by the input layer, u is the encoding dimension of the hidden
layer , W7 and Wy denote the weight vector of hidden layer and the output layer, b; and by
denote the bias of the hidden layer and the output layer respectively, and f is a nonlinear
activation function such as sigmoid function, tanh or rectified linear unit (ReLu) (Cui et al.,
2017).

This network can be trained by minimizing the reconstruction error L(X, X ) , which
measures the error between the input vector and the reconstructed vector. The optimization
function can be formulated as:

. o . I ~j N2

R, O = R, 2 2 @
where n and m denote the length of the multivariate time series and the number of variables
respectively. This unsupervised learning method can separate feature extraction and time
series prediction, which effectively improves the training speed and prediction performance
of the model. Since the single-layer AE is limited by the number of network layers, it is
difficult to learn the complex features of multivariate time series. We build Stacked Auto-
encoders to enhance the feature extractor’s learning ability and there is a five-layer SAEs in
our model. We choose ReLu as the activation function and use the error back-propagation
algorithm to train SAEs.

There are other types of autoencoders such as denoising autoencoders(DAEs) (Cohen
et al., 2008), contractive autoencoders(CAEs) (Rifai et al., 2011). Denoising autoencoders
can learn a more robust representation of the input series by stochastically masking entries of
the input, which can alleviate the noise corruptions of time series. Contractive autoencoders
share with DAEs the similar motivation, which is reducing the influence of small variations of
the input. CAEs favor mappings that are more strongly contracting at the training samples,
and they balance the reconstruction error with a penalty term. In this paper, we focus on
SAEs due to its simplicity. It is worth noting that our proposed framework can incorporate
with DAEs or CAEs directly by substituting either one for SAEs. Similar to the usage of
SAEs in this paper, we could obtain better latent feature representations of multivariate
time series by stacking multiple layers of DAEs and CAEs. We leave the comparison of
the performance of various autoencoders in the context of time series prediction for future
work.

161



WaNG Liv Hu ZHANG

3.2. Temporal Convolutional Networks

TCN uses a convolutional architecture to deal with sequence modeling problems. Ben-
efiting from parallelization of convolution operations, TCN solves the time-consuming prob-
lem of RNNs during training and predicting. Beyond this, TCN network can flexibly acquire
historical information by combining deep residual networks and dilated convolution. TCN
consists of two design concepts: (1) using causal convolution operation to avoid information
leakage from future to past, (2) mapping a sequence of arbitrary length to a fixed length
sequence using a 1D fully-convolutional network (1D FCN) (Long et al., 2015). As is shown
in Figure 4, TCN includes the following four main parts:
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Figure 4: The Temporal Convolutional Network

Causal Convolution. Causal convolution splits the convolution operation in half so
that it can only convolute the information of past time step. The prediction result of current
time t is only related to historical information, thus avoiding information leakage, which is
similar to time delay neural networks.

1D FCN. The 1D FCN generates an output sequence in the same length as the input
sequence by using a zero padding strategy. The significance of introducing 1D FCN is
the ability to make intensive predictions by making full use of the whole time series. The
receptive field of high-level convolution widens with the network deepens, which helps to
feel the entire input sequence’s information for building long-term memory dependencies.
Besides, using 1D FCN instead of the fully connected network can significantly reduce the
connective parameters between layers, thus speeding up the convergence of the model.

Dilated Convolution. Dilated convolution overcomes the narrow receptive field prob-
lem of causal convolution. The size of the convolution kernel remain unchanged with the
increase of the number of layers, while the interval between convolution units increases
exponentially to obtain more long-term information.

Formally, the 1D dilated convolutional operation on the element of a sequence can be
defined as follows:

k-1
F(s) = (zxq f)(s Z J(i) - xs_q (4)
=0
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where f: {0,...,k — 1} — R is the convolution kernel, & is the kernel size, d is the dilation
factor and s — d - i represents the data of the past. d increases as the network gets deeper,
calculated by d; = 2! at level i of the network. In Figure 4, the convolution kernel size is
set to 2. Convolutions are applied on two timestamps, ¢ and ¢ — d.

Residual Temporal Block. TCN’s receptive field depends on the network depth,
kernel size, and the dilation factor. Residual networks (He et al., 2016) are employed to
increase the depth of the network shown in Figure 4. A residual block consists of two
branches. One branch transforms the input x through a series of neural network layers
F, including the dilated causal convolution with the weight normalizing layer, the rectified
linear unit (ReLU), and the spatial dropout layer for regularization. The other branch is a
direct projection of the input x. Thus, the output o of a residual block is:

o=o(x® F(x)). (5)

where o denotes the activation function. The residual layers are able to learn the modifica-
tions to the identity mapping rather than the entire transformation. It is possible that the
length of x and the length of F(z) are unequal in TCN. An additional 1 x 1 convolution
network is employed to handle the different lengths.

Compared with RNNs, TCN has the following advantages. Firstly, it has flexible
receptive fields that can be changed by kernel size, dilation factor, and the network depth.
Secondly, TCN has a stable gradient during training period compared to RNNs that often
have gradient vanishing and gradient explosion problems. Finally, TCN has high parallelism
since convolution operations can be conducted without waiting for pre-convolution to be
computed.

3.3. Bayesian Optimization For Hyperparameters

The quality of the network hyperparameters determines the performance of the model
to a great extent. Aiming to find an automated and effective hyperparameter optimiza-
tion method, two problems need to be considered thoroughly: (1) How to search high-
dimensional hyperparametric space efficiently? (2) How to manage a series of large-scale
experiments for hyperparameter optimization?

For a hyperparameter optimization problem, we define an expensive black box function
f, which has no specific form and can only get the output y by inputting the sample point
z. In this paper, f is the loss function of TCN and can only be described by observation
point y. Mathematically, the hyperparameter optimization problem is transformed into
minimizing the unknown objective function f:

* .
6" = argmin f(6) (6)
where O is high-dimensional hyperparameter space to be searched and 6* is the optimal
hyperparameters.
Bayesian optimization mainly consists of two steps. The first is to estimate and update
the Gaussian Process through a new observation point D;;1. The next is to guide the
sampling of the hyperparameters by maximizing an acquisition function.
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Gaussian Process. Suppose that the model f that needs to be estimated obeys the
Gaussian Process:

f(0) ~ GP(u(9), K(6,0)) (7)
where 1(6) is the mean function of f(6) and K(6,6") is the covariance(also called kernel
function) of f(0):

k(01,01) -+ k(61,6;)
K=| (8)
(0, 01) - k(0 0:)

Since GP does not depend on observation data, 1(0) is set to 0 to simplify GP, thus we
get f(0) ~ GP(0,K). For a new hyperparameter search point 6,1, the covariance matrix
of the Gaussian process is updated to:

K kT
= 9
ko k(Or41,0i41) ©)

where k = [k(0i41,601),k(0141,02), -, k(Op41,6;)]. With the updated covariance matrix,
the posterior probability distribution of f can be obtained as follows:

P(frs1|Dis1,0141) ~ N(pz41(0), 07,1 (0)) (10)

K/

where f1441(6) and o7, () are the mean and covariance of f(f) and can be formulated as
follows: py+1(0) = kK"K~ fy,02,1(0) = k(0441,0111) — kT K~ 'k. After selecting the appro-
priate kernel function such as polynomial kernels, spline kernels, Mercer kernel functions and
so on (Chu and Ghahramani, 2004), we can update the posterior probability distribution
of the hyperparameter to be searched by the above steps.

Hyperparameter sampling. One problem with this method of minimizing the ob-
jective function is that a comprehensive evaluation of the entire hyperparameter space is
often computationally complicated, because the calculation of the objective function is ex-
pensive. Many heuristic algorithms known as acquisition functions have been introduced
to solve this problem, such as Thompson sampling, expected improvement (EI), upper-
confidence bounds (UCB), and entropy search (ES) (Agrawal and Goyal, 2013).

Generally, there are two sampling strategies, exploration and exploitation. Exploration
strategy prefers to explore new hyperparameter space, which tends to search for global
optimum, while exploitation strategy is more conservative, preferring to sample near the
current optimal parameters, and search for local optimum. From a statistical point of view,
exploration wants to select data with greater variance, and exploitation wants to select
data closer to the mean. We choose the simple and effective UCB to sample the next
hyperparameter by maximizing the UCB acquisition function:

1/2
0111 = argmax S(0|D;) = argmax i (0) + Btilat(ﬁ) (11)
0cO 0cO
where [;y1 are appropriate constants which trade off the exploration and exploitation strat-
egy. It is important to determine the appropriate fB;11 to ensure that the next sampling
point of the hyperparameter will not get stuck in the local optimum, nor make a large
change.

164



MULTIVARIATE TIME SERIES PREDICTION

Let € € (0,1] and Bi11 = 2log(|D|(t + 1)?72/6¢) where |D| is the dimension of data
and € is the balance factor between exploration and exploitation strategy. By running GP
to construct posterior unbiased estimate, we can obtain a near-zero regret bound which
can be attenuated to a constant with the increase of the number of data and evaluation
times(Srinivas et al., 2010). In this manner, the cumulative regret is bounded while ob-
taining the maximum information gain. Different € is set in the experiments to control the
increasing rate of B;y1 to balance the two search strategies.

Considering f(#) sometimes cannot be described explicitly by GP, an ensemble search-
ing strategy is proposed to speed up the convergence of Bayesian optimization and enlarge
the searching space of hyperparameters. In detail, we set k searchers with different sam-
pling strategies under specific balance factor € to search the entire hyperparameter space
in parallel. Above all, by sampling new hyperparameters and running GP repeatedly until
reaching the specified number of iterations, we can get the optimal results efficiently.

The TCN hyperparameter search algorithm based on Bayesian optimization with mul-
tiple searchers is shown as Algorithm 1.

Algorithm 1 SAEs-BO-TCN
Input:
f the loss function of TCN, © hyperparametric space to be searched, S UCB function,
D dataset, k the number of searchers .
Output:
return the optimal hyperparameter 8*
1: for i =1,2,--- k do
2 D@ < InitializeSample(f, D, 1)
3 fort =1,2,--- do
4: fit GP and compute the posterior probability distribution P( ft(_?l\D,gz), 0751)).
5
6

Ei)l by optimizing acquisition function: 0,521 = arg maxycg S (H\Dgi))

train TCN model and assign the loss of the valid set to ft(_?l, and update current
(4)

select new 6

best value f, - .

7: update observations with D§21 = D,gi) U (91:(217 ft(fl)
8: end for
9: end for

10: 0% = argmingce je[1 i fﬁign(G)
11: return 6*

4. Experimental Evaluation

In this paper, we compare the performance of six prediction models on three datasets,
ie. ARIMA (Box and Pierce, 1970), GRU (Chung et al., 2014), LSTM (Hochreiter and
Schmidhuber, 1996), SAEs-LSTM, BO-TCN and SAEs-BO-TCN. ARIMA, LSTM, GRU
are popular time series prediction methods. SAEs-LSTM is the method to apply stacked
Auto-encoders in Section 3.1 with LSTM as the prediction model, and SAEs-BO-TCN is
the proposed model in this paper.
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We report our prediction results with various prediction horizons. In addition, we
analyze the hyperparametric search process based on Bayesian optimization with multiple
searchers and provide further insights into hyperparametric tuning combining the explo-
ration strategy and the exploitation strategy.

4.1. Datasets

We use three different datasets with different scales as described as follows.

e Purchase and redemption of capital flow(P&R): P&R includes the total daily
amount of purchase and redemption on the cash fund investment platform. The
correlated variables include daily active user number (DAUN), daily yield (DY), 7
days yield (7DY) and day of week (DOW). The size of P&R is 427, which is a very
small data set.

e Beijing PM2.5 dataset: The dataset contains the records of hourly PM2.5 data and
weather conditions including temperature (TEMP), pressure (PRES), combined wind
direction (CBWD), cumulated wind speed (LWS), cumulated hours of snow (LS), and
cumulated hours of rain (LR). The size of the Beijing PM2.5 dataset is 43824.

e SML2010 dataset: The data set has a high-dimensional multivariate time series,
containing 21 internal and external measurements in a domotic house. We select three
different variables to predict, which are Temperature Comedor Sensor (TCS), CO2
Comedor Sensor (CO2) and Humedad Comedor Sensor (HCS).

4.2. Experiment Settings

For all datasets, we normalize the continuous variables using z-score and one hot en-
coding for dictionary data. Each dataset is split into three parts, the training set(60%),
the validation set(20%) and the test set(20%) according to the chronological order. Two
conventional metrics are selected to evaluate the prediction performance according to the
characteristics of each dataset as follows.

e Mean Absolute Percentage Error(MAPE) for P&R dataset.

1 DLy —
MAPE = 00%§ Y= e, (12)
n Yt
t=1

e Mean Square Error(MSE) for Beijing PM2.5 dataset and SML2010 dataset.

n

MSE= S (y— )’ (13)
t=1

where y; and h; denote the actual value and prediction value at time ¢ during evaluation
stage and n represents the length of time series evaluated.

To demonstrate the advantages of our proposed model, we compare SAEs-BO-TCN
with traditional time series prediction methods ARIMA and RNNs, including LSTM, GRU
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Table 1: Hyperparametric search settings

Hyperparameters Type Min Max
No. hidden layers integer 1 12
No. hidden units integer 10 256

Learning rate log-uniform  1x1077 1x1072
Dropout rate uniform 0.1 0.5
Optimizer categorical ~ {Adam, RMSProp, Adagrad, Sgd}
L2 regularization log-uniform  1x107® 1x107*
Gradient clipping norm uniform 0 20
Gradient clipping value log-uniform 1x1072 1
Sequence size integer 3 256
Kernel size(TCN only) interger 2 12

Table 2: The prediction results on three datasets

Datasets P&R(MAPE%) Beijing PM2.5(MSE, x10?) SML2010(MSE)
Prediction Horizons | 7-days | 14-days | 21-days | 7-days | 14-days | 21-days | 2-days | 4-days | 6-days

ARIMA 11.85 12.68 13.62 23.65 33.20 69.92 1.41 1.83 2.53
GRU 13.45 14.13 15.63 16.36 28.75 52.49 1.25 1.59 2.14
LSTM 12.63 13.75 14.63 17.33 27.70 49.51 1.21 1.56 2.16
SAEs-LSTM 11.63 12.63 13.62 14.02 23.64 41.77 0.90 1.28 1.65
BO-TCN 11.74 12.66 13.21 13.89 22.72 38.41 0.77 1.13 1.54
SAEs-BO-TCN 9.65 9.87 10.65 11.93 20.53 30.07 0.62 0.88 1.21

and SAEs-LSTM. The SAEs is set to 5 layers, and the number of units in each layer varies in
different data sets. For example, in SML2010 dataset, the depth of SAEs is set to 5, and the
hidden units are set to 16,14,12,10 respectively. We choose ReLu as the activation function
and use MSE as the loss function to train SAEs to extract the features of multivariate time
series. For the deep neural network models, we use Bayesian optimization to search over
tunable hyperparameters, where the UCB function is used as an acquisition function. Table
1 lists the hyperparameters, as well as their data type and range values.

4.3. Experiment Results and Analysis

The evaluation results of all comparative models on three different datasets are shown
in Table 2. In each dataset, with the increase of the prediction horizon, it becomes harder
to make accurate prediction because of the accumulation of uncertainty. We can see that
SAEs-BO-TCN has achieved the best performance in all three datasets. Traditional model
ARIMA is hard to achieve good performance in complex multivariate time series prediction
problems. LSTM has similar performance with GRU, but better than ARIMA in most
cases. The prediction performances of SAEs-LSTM and SAEs-BO-TCN are both superior
to LSTM and BO-TCN, where LSTM and BO-TCN use the original multivariate time series
as the input. This confirms that the feature representations learned by stacked autoencoders
are more effective than the original time series. In addition, in the small data set P&R,
the performance of each model is very close, even the best model SAEs-BO-TCN is only
2.5% higher than ARIMA on average, while in the big dataset Beijing PM2.5 and high-
dimensional dataset SML2010, deep neural networks can learn more non-linear knowledge
and achieve better performance. For visualizing, we select the Beijing PM2.5 dataset for
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Figure 5: The prediction result(red) by SAEs-BO-TCN (a) and SAEs-LSTM (b) vs. the
actual data(blue) on Beijing PM2.5 dataset with prediction horizon = 21 days.
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Figure 6: Training loss (a) and validating loss (b) change with the iteration of 4 different
models on the Beijing PM2.5 dataset with prediction horizon = 21 days.

analysis. Figure 5 show the prediction results of the SAEs-BO-TCN(a) and SAEs-LSTM(b)
models with 21-days prediction length.

The training loss and testing loss changing with iterations are shown in Figure 6. The
results show that the SAEs-BO-TCN network has a faster convergence speed than RNNs,
which converges at around the 15th iteration, followed by SAEs-LSTM converging at around
the 40th iteration, and finally LSTM and GRU, which converge at around the 70th iteration.
This confirms that TCN has faster training and convergence speed due to the advantage of
parallel training. Generally, SAEs-BO-TCN is superior to other comparative models with
smaller test loss.

In the three datasets, we use Bayesian optimization with multiple searchers to find
optimal hyperparameters of SAEs-BO-TCN. Table 3 shows the hyperparametric searching
result under different datasets. For demonstrating the optimizing performance of multiple
searchers, we compare the performance of multiple searchers with the single searcher. The
multiple searchers consist of 5 sub-searchers with different balance factor €:{0.2,0.4,0.6,0.8,1}.
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Table 3: Hyperparameter searching result of SAEs-BO-TCN on three datasets

MULTIVARIATE TIME SERIES PREDICTION

Dataset P&R | Beijing PM2.5 | SML2010
Hyperparameters
No. hidden layers 8 10 5
No. hidden units 40 60 50
Learning rate 4.3x10°3 6x10~° 2.6x10° 3
Dropout rate 0.11 0.32 0.21
Optimizer Adam Adam Adam
Sequence size 84 229 209
Kernel size 5 10 7
0.7 0.7
0.6 0.6
a 0.5 a 0.5 l\/\
S S l
-LC‘:, 0.4 § 0.4 |
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Figure 7: Hyperparametric search loss changes of SAEs-BO-TCN on P & R dataset (The
smallest loss is achieved in the 16th iteration.) and Beijing PM2.5 dataset (The smallest
loss is achieved in the 91th iteration.) with prediction horizon = 21 days.

As is shown in Figure 8 and Figure 9, multiple searchers tend to have faster convergence
speed and can find better global minimum than the single searcher. In addition, we analyse
the trend of the Bayesian optimization’s loss. Figure 7 shows the trend of search loss in
the P & R and SML2010 datasets, where the global best value has been marked with a red
cross. With the integration of multiple searchers, we can jump out of the local minimum
and achieve global optimality.

5. Related Work
5.1. Traditional Methods of Multivariate Time Series Prediction

Traditional methods based on stochastic process theory and statistics have been applied
to time series prediction for decades. Autoregressive Integrated Moving Average (ARIMA)
(Box and Pierce, 1970) is the most widely used traditional time series prediction model
whose main advantage is to use the periodic characteristics of the time series to provide
reliable prediction results. However, the traditional ARIMA cannot obtain precise results
under random fluctuations and uncertainties, especially for complex non-linear multivariate
time series. Recently, Facebook proposed a modular regression model fbprophet (Taylor
and Letham, 2017) with interpretable parameters that can be intuitively adjusted by ana-
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Figure 8: Multiple searchers vs. single Figure 9: Multiple searchers vs. single
searcher in P&R, dataset. searcher in the Beijing PM2.5 dataset

lysts with domain knowledge. This model is suitable for time series containing significant
periodic characteristics, but can not accurately predict time series with high randomness
and volatility.

Support vector regression (SVR) (Smola and Scholkopf, 2004) is another frequently
used time series prediction method, by mapping the inputs into a higher dimensional fea-
ture space where a linear regressor is constructed by minimizing an appropriate cost func-
tion. Therefore, the nonlinear time series has linear characteristics in the high dimensional
feature space, thus predictable. However, the SVR method requires precise selection of
hyperparameters such as selection basis functions including radial kernel functions, linear
kernel functions, etc. How to determine the kernel function has no suitable method. In
addition, solving the convex optimization problem in the high dimensional feature space
requires a large amount of storage space. Besides, there are also non-parametric methods
for time series prediction such as Gaussian Process (GP) (Chu and Ghahramani, 2004),
which is the representative non-parametric model to predict continuous functions.

5.2. Deep Learning Based Methods of Multivariate Time Series Prediction

The traditional time series prediction models are not suitable for non-linear multivariate
time series. Therefore, more attention is paid to the deep learning based methods. The deep
learning based methods employ deep neural networks to simulate the nonlinear structure to
obtain better prediction results for multivariate time series. Deep learning related methods
commonly rely on recurrent architectures as the default starting point for sequence modeling
tasks. However, the traditional RNNs are often disturbed by gradient vanishing and gradient
explosion in the training process (Pascanu et al., 2012). Recently, long-short-term memory
(LSTM) has proven to be a promising method for sequence modeling problems because it
can solve the gradient issues of RNNs and has a selective memory function (Hochreiter and
Schmidhuber, 1996). Gate recurrent unit (GRU) (Chung et al., 2014) is a simplified version
of LSTM and has comparable performance with LSTM. However, the serial calculation of
RNNs slows down the training and prediction process with long sequences. Recent research
shows that a CNN-based architecture, called temporal convolutional networks (TCN) (Bai
et al., 2018), can overcome the shortcomings of RNNs and obtain better prediction results.

170



MULTIVARIATE TIME SERIES PREDICTION

Compared with traditional time series prediction methods, deep learning based methods
can extract implicit features from multivariate time series, and combine long-term and
short-term dependencies with improving prediction accuracy.

6. Conclusion

In this paper, we focus on the multivariate time series prediction problem and propose a
novel prediction model called SAEs-BO-TCN. We construct stacked Auto-encoders (SAEs)
to extract the valid features from multivariate time series to improve the prediction perfor-
mance. Then, we employ a temporal convolutional network to serve as the predictor. The
hyperparameters are optimized based on Bayesian optimization to speed up the search pro-
cess of the optimal hyperparameters. The extensive experiments on three different datasets
show that our proposed prediction model outperforms other popular models. Furthermore,
we analyze the searching process of hyperparameters to provide useful insights into the
hyperparametric tuning process.
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