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Abstract

This paper proposes a novel collaborative attention mechanism, to fully utilize the mutu-
ally reinforcing relationship among the knowledge graph representation learning procedure
(i.e., structure representation) and textual relation representation learning procedure (i.e.,
text representation). Based on this collaborative attention mechanism, a text-enhanced
knowledge graph (KG) representation model is proposed, which could utilize textual in-
formation to enhance the knowledge representations and make the multi-direction signals
to be fully integrated to learn more accurate textual representations for further improving
structure representation and vice versa. Experimental results demonstrate the efficiency of
the proposed model on both link prediction task and triple classification task.

Keywords: Knowledge Graph, Representation Learning, collaborative attention.

1. Introduction

A typical knowledge graph (KG) is usually a multiple relational directed graph, recorded
as a set of relational triples (h, r, t), which indicate relation r between two entities h and t.
Knowledge Graphs have become a crucial resource for many tasks in machine learning, data
mining, and artificial intelligence applications including question answering Unger et al.
(2012), entity linking/disambiguation Cucerzan (2007), fact checking Shi and Weninger
(2016), short-text conceptualization Huang et al. (2018), information retrieval Wang et al.
(2017) and link prediction Yi et al. (2017). KGs are widely used for many practical tasks,
however, their completeness are not guaranteed. Therefore, it is necessary to develop Knowl-
edge Graph Completion (KGC) methods to find missing or errant relationships with the
goal of improving the general quality of KGs, which, in turn, can be used to improve or
create interesting downstream applications.

Nowadays, a variety of low-dimensional representation-based methods Bordes et al.
(2011)Bordes et al. (2012) have been developed to work on the KGC task. These methods
usually learn continuous, low-dimensional vector representations (i.e., embeddings) for enti-
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ties and relationships by minimizing a margin-based pairwise ranking loss Lin et al. (2015a).
Motivated by the linear translation phenomenon observed in well trained word embeddings
Mikolov et al. (2013a), Many Representation Learning (RL) based algorithms Bordes et al.
(2013)Wang et al. (2014a)Lin et al. (2015b)Xiao et al. (2016)Trouillon et al. (2016)Wang
et al. (2019), have been proposed, aiming at embedding entities and relations into a vector
space and predicting the missing element of triples. These models represents the head entity
h, the relation r and the tail entity t with vectors h, r and t respectively, which were trained
so that h + r ≈ t. To explore the instructive semantic signals from the plain text, recently
it has gained lots of interests to jointly learn the embeddings of knowledge graph and text
information Xu et al. (2016a) Toutanova et al. (2015), and there are several methods using
textual information to help KG representation learning based on a jointly learning frame-
work Socher et al. (2013)Wu et al. (2016)Wang et al. (2014a)Wang et al. (2014b)Riedel
et al. (2013)Weston et al. (2013), different from the aforementioned work which reply only
on structure information of knowledge graph itself. In these jointly-learning based models,
text-based attention mechanism Wang et al. (2016)Tang et al. (2017)Kim et al. (2017)Shen
et al. (2017)Shen et al. (2018)Lin et al. (2016) is widely used. However, attention values
assigned for the knowledge graph representation learning (i.e., structure representation)
and for the textual relation representation learning (i.e., text representation) haven’t been
fully integrated Mintz et al. (2009)Xie et al. (2016)Wang et al. (2014b)Verga and Mc-
callum (2016)Toutanova et al. (2015). Hence, the previous work fails to incorporate the
complex structural signals from structure representation and semantic signals from text
representation. To fully incorporate the multi-direction signals, this paper propose a novel
collaborative attention mechanism, and therefore propose a text-enhanced knowledge graph
representation with collaborative attention.

Actually, the main intuition behind the proposed collaborative attention is that there ex-
ists a mutually reinforcing relationship among the knowledge graph representation learning
(i.e., structure representation) and textual relation representation learning (i.e., text rep-
resentation), that could be reflected in the iterative training procedure, which is inspired
by co-ranking strategy adopted in cooperative ranking over heterogeneous elements (e.g.,
entities and relations). However, our proposed adaptation of the collaborative attention
mechanism to joint-learning task of knowledge graph and text is novel, and could make the
multi-direction signals, i.e., signals from knowledge graph representation learning to textual
relation representation learning and vice versa, to be fully integrated for deriving the solid
joint-learning results for model the semantic embedded in the given knowledge graph.

In summary, the contributions of the proposed work are concluded as follows: (i) We pro-
pose a novel collaborative attention mechanism, which could mutually reinforce relationship
among the knowledge graph representation learning and the textual relation representation
learning; (ii) We propose a novel text-enhanced knowledge graph representation with col-
laborative attention; and (iii) We show the effectiveness of our model by outperforming
baselines on benchmark datasets for knowledge graph representation learning task.

2. Notations

This paper represents vectors with lowercase letters and matrices with uppercase letters.
Let v ∈ Rk be vectors of length k, i.e., the embedding dimensionality is k. This paper
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Figure 1: The framework of the proposed approach for text-enhanced knowledge graph
representation with collaborative attention.

denote the text corpus consisting of sentences as D. Each sentence in D is denoted as a
word sequence d = {w1, . . . , w|d||wi ∈ V }1, which contains two annotated mentions along
with a textual relation rd ∈ R between them. V indicates the vocabulary, and accordingly
|V | indicates the number of all the words in the vocabulary. Let E and R represent the set of
entities and relations respectively. A triple is represented as (h, r, t), where h ∈ E is the head
entity, r ∈ R is the relation, and t ∈ E is the tail entity of the triple. A knowledge graph
(KG) is denoted as G here. Given a knowledge graph G, it contains |E| entities and |R|
types of relations. The set of triples T = {(h, r, t)} could be obtained by the representation
learning models. An embedding is a function from an entity or a relation to one vector,
more vectors or matrices of numbers. A representation learning model generally defines two
aspects: (i) the embedding functions for entities and relations; and (ii) a function taking
the embeddings for h, r and t as input and generating a prediction of whether (h, r, t) is
“true” in a world or not. A representation learning model generally defines the embedding
functions for entities and relations and the values of the embeddings are learned using the
triples in a KG G.

1. The notation “word” (i.e., wi) represents the word and phrase here.
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3. Text-Enhanced Knowledge Graph Representation with Collaborative
Attention

Knowledge Graphs (KGs) are graph-structured knowledge bases, where factual knowledge
is represented in the form of relationships between entities. In our view, KGs are an
example of a heterogeneous information network containing entity-nodes and relationship-
edges corresponding to RDF-style triples (h, r, t) where h represents a head entity, and r
is a relationship that connects h to a tail entity t. This paper introduces a novel model of
text-enhanced knowledge graph representation with collaborative attention. We model each
entity and each relation contained in the knowledge graph from both the structure signals
from the knowledge graph itself and the textual signals from the plain text. Different
from the traditional joint learning model for knowledge graph and text, the proposed model
introduces a collaborative-attention mechanism for merge the aforementioned heterogeneous
signals.

3.1. Sketch of the Overall Architecture

The joint representations of entities, relationships and words are recorded as model parame-
ters Θ = {θEG

, θED
, θRG

, θRD
, θV }. Wherein, θEG

denotes the parameters of learning entity
vector representation from knowledge graph G (i.e., entity’s structure representation), and
θED

denotes the parameters of learning entity vector representation from plain text in D
(i.e., entity’s text representation). θRG

denotes the parameters of learning relation vector
representation from knowledge graph G (i.e. relation’s structure representation), and θRD

denotes the parameters of learning relation vector representation from plain text in D (i.e.,
relation’s text representation) . Besides, θV denotes the parameters of word vector repre-
sentation of words in vocabulary V . Therefore, the proposed model aims to find optimal
parameters:

θ̂ = arg minLΘ(G,D) (1)

Wherein, LΘ(G,D) represents the loss function defined over the knowledge graph G and
the text corpus D given the parameters Θ, which could be formed as follows:

LΘ(G,D) = LθEG
,θRG

(G) + α · LθRD
(G,D) + λ· ‖ Θ ‖2 (2)

Wherein, α and λ indicate the harmonic factors, and α is also used to balance the learn-
ing ratio between knowledge graph G and plain text in corpus D. Besides, ‖ Θ ‖2 represents
the l2 norm of Θ. LθEG

,θRG
(G) is used to learn the vector representation for entities and

relations from the given knowledge graph G (details in Section 3.2), and LθRD
(G,D) aims

at learning the vector representation for relations from the plain text in corpus D (details
in Section 3.3). From Eq. (2), we could observe that, with this definition of loss function,
the process of knowledge graph representation learning and the process of textual represen-
tation learning could be closely coupled. Besides, Skip-Gram Mikolov et al. (2013b) based
on negative sampling is leveraged for construct word vector w ∈ Rk.
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Figure 1 overview the architecture of the proposed model for text-enhanced knowledge
graph representation with collaborative attention. The overall model consists of two main
modules:

(i) Knowledge Graph Representation Learning module (details in Section 3.2): This
module learning the embedded representation for entity vector representation from knowl-
edge graph G and relation vector representation from knowledge graph G, as shown in the
green part in Figure 1.

(ii) Textual Relation Representation Learning module (details in Section 3.3): This
module learning the embedded representation for relation vector representation from plain
text in D, as shown in the blue part in Figure 1.

During the training procedure, the proposed collaborative attention mechanism integrate
the aforementioned modules, as shown in the orange part in Figure 1.

Finally, the stochastic gradient descent (SGD) strategy is applied to optimize the opti-
mization function in the proposed algorithm.

3.2. Learning Knowledge Graph Representation: LθEG
,θRG

(G)

Recently, translation-based models, including TransE Bordes et al. (2013), TransH Wang
et al. (2014a), and TransR Lin et al. (2015b), have achieved promising results in distri-
butional representation learning of knowledge graph. Therefore, translation-based model
is utilized here to learn the vector representation of entities and relations form knowledge
graph G. In order to facilitate the description, only TransE model is taken here as an exam-
ple to describe the modeling procedure. Note that, any other knowledge graph embedding
methods could be adopted here, and the following experimental section (Section 4) com-
pare the experimental results of different kinds of knowledge graph representation learning
methods based on translation mechanisms (e.g., TransE Bordes et al. (2013),TransH Wang
et al. (2014a), and TransR Lin et al. (2015b), etc.,).

Given a each couple of head entity and tail entity, (h, t), defined in knowledge graph
G, we assume there exists an implicit relation vector rh→t, representing the “translation”
from head entity vector hG (corresponding to head entity h) to tail entity vector tG (cor-
responding to tail entity t), as follows:

rh→t = tG − hG (3)

On the other hand, for each triple (h, r, t) ∈ T defined in knowledge graph G, there
exists an explicit relation vector rG, representing the “translation” from hG to tG. With
efforts above, we could define score function for each triple (h, r, t), as follows:

ϕr(h, t) =‖ rh→t − rG ‖2=‖ (tG − hG)− rG ‖2 (4)

Eq. (4) shows that, for each (h, r, t) ∈ T , we would like that tG − hG ≈ rG. Based on
the this score function, the loss function over all the triples in T , LθEG

,θRG
(G) in Eq. (2),

could be defined as follows:
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LθEG
,θRG

(G) =
∑

(h,r,t)∈T

∑
(h′,r,t′)∈T ′

[µ+ ϕr(h, t)− ϕr(h′, t′)]+ (5)

Accompanying with T , T ′ is the set of negative triple, i.e., we need to sample a negative
triple (h′, r, t′) to compute loss, given a positive triple (h, r, t) ∈ T . Following previous
work Lin et al. (2015b); Nguyen et al. (2016), we construct a set of negative triples by
replacing the head entity h or tail entity t with a random entity uniformly sampled from
the knowledge graph G, although many other negative sampling methods exist. Therefore,
T ′ = {(h′, r, t)|h′ ∈ E}

⋃
{(h, r, t′)|t′ ∈ E}. Wherein, h′ ∈ E indicates the negative head

entity obtained by random sampling, and t′ ∈ E indicates the negative tail entity obtained
by the same way. Besides, µ > 0 represents the margin parameter. [x]+ = x where x > 0,
and [x]+ = 0 where x ≤ 0.

3.3. Learning Textual Relation Representation: LθRD
(G,D)

Generally, the main goal of textual relation extraction is to determine a type of relation
between two entities appearing together in a piece of text. Following Sorokin and Gurevych
(2017), to each occurrence of the target entity pair h and t in some sentence d, we should
assign a relation type r ∈ R, which could reveals the implicit semantic of the textual relation
between these two entities. Previous work Xu et al. (2016b); Sorokin and Gurevych (2017)
show that, textual relations can be captured by deep neural network model and projected
into a low-dimensional semantic space. Compared with the traditional algorithm Mintz
et al. (2009), the algorithm based on deep learning can accurately model the semantic
relation between entities from text fragments without using explicit syntactic feature Xu
et al. (2015); Xiao and Liu (2016). In this study, we utilize convolutional neural network
(CNN) for textual relation representation learning.

Therefore, given a sentence d = {w1, · · · , w|d|} containing entity pair (h, t), we assume
that this sentence includes semantic signals about textual relation rD. CNN is utilized here
to expose implicit semantic of the textual relation between entity h and entity t. The proce-
dure could be described as follows. There exists relation r defined in the knowledge graph be-
tween h and t, and the corresponding relation vector is denoted as rG. The concatenation of
word vectors (wi) and their corresponding position vectors (pi), {[w1,p1], · · · , [w|d|,p|d|]},
is utilized as CNN’s input, and we could obtain the final embedded vector rD for textual
relation with the pooling layer and the convolution layer of CNN. With efforts above, we
could define the following score function for the given sentence d:

ψr(d) =‖ rD − rG ‖2 (6)

Based on the this score function, the loss function over all the sentence in corpus D,
LθRD

(G,D) in Eq. (2), could be defined as follows:

LθRD
(G,D) =

∑
d∈D

∑
r′ 6=r

[γ + ψr(d)− ψr′(d)]+ (7)
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Wherein, γ > 0 represents the margin parameter. Similar to Eq. (5), [x]+ = x where
x > 0, and [x]+ = 0 where x ≤ 0.

3.4. Collaborative Attention between Knowledge Graph Representation
Learning and Textual Relation Representation Learning

Actually, the main intuition behind the proposed collaborative attention is that there ex-
ists a mutually reinforcing relationship among the knowledge graph representation learning
(i.e., structure representation) and textual relation representation learning (i.e., text rep-
resentation), that could be reflected in the iterative training procedure, which is inspired
by co-ranking strategy adopted in cooperative ranking over heterogeneous elements (e.g.,
entities and relations). However, our proposed adaptation of the collaborative attention
mechanism to joint-learning task of knowledge graph and text is novel, and could make
the multi-direction signals, i.e., signals from knowledge graph representation learning to
textual relation representation learning (details in Section 3.4.1) and vice versa (details in
Section 3.4.2), to be fully integrated for deriving the solid joint-learning results for model
the semantic embedded in the given knowledge graph.

3.4.1. Text → KG: Attention From Textual Relation Representation
Learning to Knowledge Graph Representation Learning

As discussed in Section 3.2, given relation r defined in the knowledge graph, we assume that
there exist m pairs of entities which are eligible to relation r, {(h1, t1), · · · , (hm, tm)} (shown
in Figure 1), and the corresponding implicit relation vectors are {rh1→r1 , · · · , rhm→rm},
representing the “translation” from head entity vector hiG (corresponding to head entity
hi) to tail entity vector tiG (corresponding to tail entity ti). Actually, there exists an
explicit relation vector rG corresponding to relation r after our iterative training procedure.
However, not each rhi→ri contributes to rG (the approximate fact) equally, let alone the
noise. To overcome this problem, we attempt to leverage the beneficial semantic signal
from textual relation representation learning for knowledge graph representation learning,
by introducing a softmax-based attention mechanism (Text → KG), as follows:

ATTText→KG[i] = Softmx[rhi→ri · tanh(MText→KG · rD + bText→KG)] (8)

Wherein, MText→KG ∈ Rk×k and bText→KG ∈ Rk are a part of parameters. With efforts
above, the implicit relation representation rh→t (Eq. (3)) could be modeled as follows:

r′h→t =

m∑
i=1

ATTText→KG[i] · rhi→ri (9)

Wherein, ATTText→KG[i] denotes the i-th attention for the corresponding implicit vector
rhi→ri , representing the importance (or weight) of the implicit vector. Therefore, we could
redefine score function (Eq. (4)) for each triple (h, r, t) ∈ {(h1, r, t1), · · · , (hm, r, tm)} , as
follows:

ϕr(h, t) =‖ r
′
h→t − rG ‖2 (10)
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Accordingly, based on the this score function, the loss function over all the triples in
{rh1→r1 , · · · , rhm→rm}, LθEG

,θRG
(G) in Eq. (2), could be defined as follows:

LθEG
,θRG

(G) =
∑

(h,r,t)∈{(h1,r,t1),··· ,(hm,r,tm)}

∑
(h′,r,t′)/∈{(h1,r,t1),··· ,(hm,r,tm)}

[µ+ ϕr(h, t)− ϕr(h′, t′)]+

(11)

Wherein, µ > 0 represents the margin parameter. [x]+ = x where x > 0, and [x]+ =
0 where x ≤ 0. Note that, negative sampling is utilized here for generating a negative
triple (h′, r, t′) /∈ {(h1, r, t1), · · · , (hm, r, tm)} to compute loss, given a positive triple (h, r, t),
similar to Section 3.2.

3.4.2. KG → Text: Attention From Knowledge Graph Representation
Learning to Textual Relation Representation Learning

As discussed in Section 3.3, for each relation r defined in the knowledge graph G, we
could derive a set of sentences, {d1, · · · , dn} (shown in Figure 1), which reveal the implicit
semantic of the textual relation rD of relation r with the occurrence of the target entity
pair h and t in this sentence while the triple (h, r, t) is defined in given knowledge graph.
Besides, the corresponding output embedded relation vectors are {rD1 , · · · , rDn}. On the
other hand, there exists an explicit relation vector rG corresponding to relation r after our
iterative training procedure. We aims at bridging the gap between rD and rG (as described
in Eq. (6)), with the help of modeling {d1, · · · , dn} to generate {rD1 , · · · , rDn}. However,
facing the same difficulties with representation learning of knowledge graph (i.e., structure
representation learning in Section 3.2), not each dj contributes to rD equally, let alone the
noise. To overcome this problem, we seek help from the beneficial semantic signal from
knowledge graph representation learning for enhance the semantic robustness of textual
relation representation learning, by introducing a softmax-based attention mechanism (Text
→ KG), as follows:

ATTKG→Text = Softmx[rh→t · tanh(MKG→Text · rDj + bKG→Text)] (12)

Wherein, MKG→Text ∈ Rk×k and bKG→Text ∈ Rk are a part of parameters. With efforts
above, the final embedded vector rD for textual relation (in Eq. (6)) could be modeled as
follows:

r′D =
n∑
j=1

ATTKG→Text[j] · rDj (13)

Wherein, ATTKG→Text[j] corresponds to the attention for j-th sentence with the occur-
rence of the target entity pair h and t in this sentence while the triple (h, r, t) is defined in
given knowledge graph G, measuring the importance of the corresponding embedded vector
rDj . Therefore, we could redefine score function (Eq. (6)) for each sentence in {d1, · · · , dn}
, as follows:
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Table 1: Statistics of dataset WN11, dataset WN18, dataset FB13 and dataset FB15k used
in our experiments.

Dataset |E| |R| #Train #Valid #Test
WN11 38,696 11 112,581 2,609 10,544
WN18 40,943 18 141,442 5,000 5,000
FB13 75,043 13 316,232 5,908 23,733
FB15k 14,951 1,345 483,142 50,000 59,071

ψr(d) =‖ r
′
D − rG ‖2 (14)

Accordingly, based on the this score function, the loss function over all the sentences in
{d1, · · · , dn}, LθRD

(G,D) in Eq. (2), could be defined as follows:

LθRD
(G,D) =

∑
d∈{d1,··· ,dn}

∑
r′ 6=r

[γ + ψr(d)− ψr′(d)]+ (15)

Wherein, γ > 0 represents the margin parameter. Similar to Eq. (7) in Section 3.3,
[x]+ = x where x > 0, and [x]+ = 0 where x ≤ 0.

4. Experiments

We evaluate our proposed text-enhanced knowledge graph representation model with collab-
orative attention for our comparative analysis, by leveraging representation learning based
Knowledge Graph Completion (KGC) task. Generally, The Knowledge Graph Completion
task includes two subtasks: (i) Link Prediction task, and (ii) Triple Classification task. We
evaluate our model on both tasks with benchmark static datasets.

4.1. Datasets and Baselines

To evaluate the proposed text-enhanced knowledge graph representation model with collab-
orative attention, we conduct experiments on the dataset WN11 (WordNet), dataset WN18
(WordNet), dataset FB13 (Freebase) and dataset FB15k (Freebase) introduced by Bordes
et al. (2013)Wang et al. (2014a)Wang et al. (2019) and use the same training\validation\test
split as in previous work. The statistical information of the aforementioned datasets is
sketched in Table 1. Wherein, |E| and |R| denote the number of entities and relation types
respectively. #Train, #V alid and #Test are the numbers of triple in the training, valida-
tion and test sets respectively. Moreover, we also construct a Wikipedia dataset for entity
linking. We preprocess the Wikipedia articles with the following rules. First, we remove the
articles less than 100 words, as well as the articles less than 10 links. Then we remove all
the category pages and disambiguation pages. Moreover, we move the content to the right
redirection pages. Finally we obtain about 3.74 million Wikipedia articles for indexing.
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As introduced above, Following An et al. (2018), TransE Bordes et al. (2013), TransH
Wang et al. (2014a), TransR Lin et al. (2015b) and ComplEx Trouillon et al. (2016) are
utilized here for the baseline models, and we introduce two kinds of extended versions: (i)
we denote their first kind of extended version as JOINT+TransE, JOINT+TransH,
JOINT+TransR, and JOINT+ComplEx, which are enhanced text signals without
collaborative attention (i.e., Eq. (4), Eq. (5), Eq. (6), and Eq. (7)); and (ii) we de-
note their second kind of extended version as aJOINT+TransE, aJOINT+TransH,
aJOINT+TransR, and aJOINT+ComplEx, which are enhanced text signals with col-
laborative attention (i.e., Eq. (10), Eq. (11), Eq. (14), and Eq. (15)). Besides, TransD
Ji et al. (2015) and TransG Xiao et al. (2016) are also introduced for the contrast experi-
ments. Two widely-used measures are considered as evaluation metrics in our experiments:
(i) Mean Rank (MR), indicating the mean rank of original triples in the corresponding
probability ranks; and (ii) HITS@N , indicating the proportion of original triples whose
rank is not larger than N (N = 10 is utilized here). Lower mean rank or higher HITS@10
mean better performance. What’s more, we follow Bordes et al. (2013) to report the filter
results, i.e., removing all other correct candidates h in ranking, which is called the “Filter”
setting. In contrast to this stands the “Raw” setting.

4.2. Link Prediction

Link prediction aims at predicting the missing relation when given two entities, i.e., we
predict r given (h, ?, t). The dataset WN18 and dataset FB15k are the benchmark datasets
for this task following Wang et al. (2019). For each triple (h, r, t) in the test set, we replace
the relation r with every relation in the dataset. Overall, the original TransE Bordes et al.
(2013), TransH Wang et al. (2014a), TransR Ji et al. (2015) and ComplEx Trouillon et al.
(2016) are introduced here, and boosted by the proposed text-enhanced knowledge graph
representation learning model, and furthermore compared with their enhanced variant with
TEKE Wang and Li (2016). Besides, TransD Ji et al. (2015) and TransG Xiao et al.
(2016) are also introduced for the contrast experiments. Mean Rank and HITS@10 are
considered as evaluation metrics for this task. As the datasets are the same, we directly
reuse the experimental results of several baselines from the previous literature Wang et al.
(2019)An et al. (2018).

The optimal-parameter configurations are described as follows: For dataset WN18, (i)
the learning rate for LθEG

,θRG
(G) in Eq. (2) is 0.0005, (ii) the learning rate for LθRD

(G,D)
in Eq. (2) is 0.0005, (iii) the vector dimension k is 300, (iv) the harmonic factors α and
λ in Eq. (2) are set as 0.00005 and 0.0001 respectively, and (v) the margin parameters µ
in Eq. (11) and γ in Eq. (15) are set as 5 and 3 respectively. We train the model until
convergence. For dataset FB15K, (i) the learning rate for LθEG

,θRG
(G) in Eq. (2) is 0.001,

(ii) the learning rate for LθRD
(G,D) in Eq. (2) is 0.0005, (iii) the vector dimension k is

230, (iv) the harmonic factors α and λ in Eq. (2) are both set as 0.0001 respectively, and
(v) the margin parameters µ in Eq. (11) and γ in Eq. (15) are set as 3 and 4 respectively.
The overall link prediction results are presented in Table 2.

From the results, we observe that: (i) The proposed collaborative attention based joint-
learning model outperforms previous text-enhanced knowledge representation models in
the most cases; (ii) The enhancements from the proposed collaborative attention are more
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Table 2: Evaluation results of link prediction task on dataset WN18 and dataset FB15K
(MR and HIT@10).

Models
WN18 FB15K

MR HIT@10 MR HIT@10

TransD Ji et al. (2015) 212 92.2 91 77.3
TransG Xiao et al. (2016) 345 94.7 50 88.2

TransE

TransE Bordes et al. (2013) 251 89.2 125 47.1
TEKE+TransE 127 93.8 79 67.6

JOINT+TransE (Ours) 149 92.1 85 58.4
aJOINT+TransE (Ours) 131 93.9 79 78.7

TransH

TransH Wang et al. (2014a) 303 86.7 84 58.5
TEKE+TransH 128 93.6 75 70.4

JOINT+TransH (Ours) 164 93.1 79 69.4
aJONIT+TransH (Ours) 138 94.8 75 75.1

TransR

TransR Lin et al. (2015b) 219 91.7 78 65.5
TEKE+TransR 203 92.3 79 68.5

JOINT+TransR (Ours) 208 93.2 82 68.1
aJONIT+TransR (Ours) 189 95.1 78 70.3

ComplEx
ComplEx Trouillon et al. (2016) 219 94.7 78 84.0

JONIT+ComplEx (Ours) 206 94.9 63 86.7
aJOINT+ComplEx (Ours) 184 95.1 54 88.3

marked at metric HIT@10 compared with metric MR. The proposed collaborative attention
has more evident effect on upgrading of performance on dataset FB15K, which contains
more complex relationship types, than dataset WN18: (i) On datset WN18, Compared
with TransE Bordes et al. (2013), our aJOINT+TransE improves the average accu-
racy by 5.27% for metric HIT@10. Similarly, compared with TransH Wang et al. (2014a)
and ComplEx Trouillon et al. (2016), our aJOINT+TransH improves the average accu-
racy by 9.34% for metric HIT@10. (i) On datset FB15K, Compared with TransE Bordes
et al. (2013), our aJOINT+TransE improves the average accuracy by 67.09% for metric
HIT@10. Similarly, compared with TransH Wang et al. (2014a) and ComplEx Trouil-
lon et al. (2016), our aJOINT+TransH and aJOINT+ComplEx improves the average
accuracy by 28.38% and 5.12%, respectively for metric HIT@10. Interestingly, the perfor-
mance of the original TransR Lin et al. (2015b) is not being as good as that of original
ComplEx Trouillon et al. (2016), however our collaborative attention mechanism puts it
in the same league as ComplEx, as both aJONIT+TransR and aJOINT+ComplEx
have reached the best experimental results at metric HITS@10.

4.3. Triple Classification

Generally, the triple classification task could be reviewed as a binary classification task,
which discriminate whether the given triple is correct or not Wang et al. (2019); Wang and
Li (2016); Bordes et al. (2013). Following Socher et al. (2013); An et al. (2018) we evaluate
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the comparative models on the benchmark datasets, i.e., dataset WN11 and dataset FB13,
and utilize the binary classification accuracy as the evaluation metric.

We introduce the proposed text-enhanced knowledge graph representation learning model
to boost the original TransE Bordes et al. (2013), TransH Wang et al. (2014a), TransR
Ji et al. (2015) and ComplEx Trouillon et al. (2016), and compare with their enhanced
variant with TEKE Wang and Li (2016). Besides, TransD Ji et al. (2015) and TransG
Xiao et al. (2016) are also introduced for the contrast experiments. The measurement Ac-
cyract (%) is are considered as evaluation metrics for this task. We report the results from
An et al. (2018), and the overall results of triple classification task are listed in Table 3.

Table 3: Evaluation results of triple classification task on dataset WN11 and dataset FB13
(Accuracy(%)).

Models WN11 FB13 AVG.

TransD Ji et al. (2015) 86.4 89.1 87.8
TransG Xiao et al. (2016) 87.4 87.3 87.4

TransE

TransE Bordes et al. (2013) 75.9 81.5 78.7
TEKE+TransE 84.1 75.1 79.6

JOINT+TransE (Ours) 83.7 76.0 79.8
aJOINT+TransE (Ours) 87.2 86.9 87.1

TransH

TransH Wang et al. (2014a) 78.8 83.3 81.1
TEKE+TransH 84.8 84.2 84.5

JOINT+TransH (Ours) 85.4 83.3 84.3
aJOINT+TransH (Ours) 87.3 86.9 87.1

TransR

TransR Lin et al. (2015b) 85.9 82.5 84.2
TEKE+TransR 86.1 81.6 83.7

JOINT+TransR (Ours) 85.9 85.0 85.5
aJOINT+TransR (Ours) 87.1 86.0 86.6

ComplEx
ComplEx Trouillon et al. (2016) 86.2 85.7 86.0

JOINT+ComplEx (Ours) 86.5 87.7 87.1
aJOINT+ComplEx (Ours) 88.3 87.9 88.1

The optimal-parameter configurations are described as follows: For dataset WN11, (i)
the learning rate for LθEG

,θRG
(G) in Eq. (2) is 0.0005, (ii) the learning rate for LθRD

(G,D)
in Eq. (2) is 0.001, (iii) the vector dimension k is 200, (iv) the harmonic factors α and
λ in Eq. (2) are set as 0.00005 and 0.0001 respectively, and (v) the margin parameters µ
in Eq. (11) and γ in Eq. (15) are set as 3 and 4 respectively. We train the model until
convergence. For dataset FB13, (i) the learning rate for LθEG

,θRG
(G) in Eq. (2) is 0.001,

(ii) the learning rate for LθRD
(G,D) in Eq. (2) is 0.001, (iii) the vector dimension k is 250,

(iv) the harmonic factors α and λ in Eq. (2) are set as 0.00005 and 0.0001 respectively, and
(v) the margin parameters µ in Eq. (11) and γ in Eq. (15) are set as 5 and 4 respectively.

From Table 3, we could get the similar conclusion that, the proposed text-enhanced
knowledge graph representation learning model outperforms all baselines in most cases.
Compared with TransE Bordes et al. (2013), our aJOINT+TransE improves the aver-
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age accuracy by 10.67%. Similarly, compared with TransH Wang et al. (2014a) and Com-
plEx Trouillon et al. (2016), our aJOINT+TransH and aJOINT+ComplEx improves
the average accuracy by 7.40% and 2.21%, respectively. We argue that, this phenomenon is
rooted in the methodology that, the proposed text-enhanced knowledge graph representa-
tion model with collaborative attention could utilize accurate textual information enhance
the knowledge representations of a triple. Furthermore, compared with JOINT+TransE
and JOINT+TransH, the collaborative attention variants aJOINT+TransE and aJOINT+TransH
improve the average accuracy by 9.15% and 3.32%, respectively. The results verifies that
it is critical to introduce the collaborative attention mechanism (details in Section 3.4) to
mutually reinforce the relationship among the knowledge graph representation learning (i.e.,
structure representation) and textual relation representation learning (i.e., text represen-
tation), which could be reflected in the iterative training procedure as described in Figure
1.

5. Conclusions

Knowledge Graphs (KGs) are graph-structured knowledge bases, where factual knowledge
is represented in the form of relationships between entities. To fully utilize the mutually
reinforcing relationship among the knowledge graph representation learning (i.e., structure
representation) and textual relation representation learning (i.e., text representation), this
paper proposes a novel collaborative attention mechanism to enhance the knowledge graph
representation by text semantic signals, which could make the multi-direction signals, i.e.,
signals from knowledge graph representation learning to textual relation representation
learning and vice versa, to be fully integrated. Empirically, we show the proposed text-
enhanced knowledge graph representation with collaborative attention can improve the
performance of the current translation-based knowledge representation models on several
benchmark datasets.
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