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Abstract

Feature pyramid and feature fusing are widely used in object detection. Using feature
pyramid can confront the challenge of scale variation across different objects. Feature fusing
imports context information to improve detection performance. Although detecting with
feature pyramid and feature fusing has achieved some encouraging results, there are still
some limitations owing to the features’ level variance among different layers. In this paper,
we exploit that serial-parallel combined feature fusing can enhance object detection. Instead
of detecting on the feature pyramid of backbone directly, we fuse different layers from
backbone as base features. Then the base features are fed into a U-shape module to build
local-global feature pyramid. At last, we use the pyramid to do the multi-scale detection
with our combined feature fusing method. We call this one-stage detector SPCDet. It
keeps real time speed and outperforms other detectors in trade-off between accuracy and
speed.
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1. Introduction

Current state-of-the-art object detectors include one-stage approaches and two-stage ap-
proaches. Two-stage approaches have better precision but lower speed. By contrast,
one-stage approaches have higher speed but lower precision. To exploit a real-time high-
performance object detector, many modified methods are presented base on one-stage ap-
proach, such as YOLO Redmon et al. (2016) and SSD Liu et al. (2016). It is well accepted
that scale variation across object instances is one of the major challenges He et al. (2015),
Lin et al. (2017a). To solve this problem, feature pyramid and feature fusing are widely
used in one-stage object detector Liu et al. (2016), Lin et al. (2017a).

Context information plays an important role in object detection task, especially for small
objects Cao et al. (2017). On the one hand, the context fusing collects relative information
that helps to recognize objects which have poor semantic features. On the other hand,
contextual features combine semantic and appearance information, which makes features
robust to do both classification and regression tasks. Moreover, the fusing of contexts can
weaken the background noises. To fuse context in different stages, elementwise-sum fusing
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in Fig. 1(a) Cao et al. (2017) and channel-concatenation fusing in Fig. 1(b) Cao et al. (2017),
Fu et al. (2017) are usually used. To produce features in different receptive field sizes for
context fusing, the parallel fusing method in Fig. 1(c) Chen et al. (2017), Dai et al. (2017),
Liu et al. (2018) uses multi-branches which include different atrous convolution kernels. In
our paper, we use a combined fusing method in Fig. 1(d) which includes stage-wise fusing
and receptive-field-wise fusing. This method can get richer context information.

(a) Elementwise-sum fusing (b) Channel-concatenation fusing

(c) Parallel fusing (d) Combined fusing

Figure 1: Four typical structures of feature fusing. (a) Two feature maps in different res-
olutions are fused by element-sum operation. The low resolution maps are up-
sampled by deconvolution. (b) This module is similar to figure 1(a), but the
two maps are concatenated in channel dimension. (c) Using parallel convolution
kernels with different atrous rates can get maps in different receptive fields. This
structure is similar to inception Szegedy et al. (2015), Szegedy et al. (2016),
Szegedy et al. (2017). (d) This module contains serial down fusing and parallel
fusing. The serial down fusing down-samples high-resolution maps and concate-
nates them with low-resolution maps. The parallel fusing is similar to Fig.1(c),
but a channel-wise attention is inserted into the module.

In object detection task, backbone of detector is usually pre-trained on classification task.
It is not appropriate to set the layers in backbone as the detection pyramid directly. Clas-
sification task concentrates on semantic information. But for detection task, local texture
information is critical. In addition, classification task needs more down-sampling opera-
tions, but detection task needs shallow layers to predict small object. In Fig. 2(a), Feature
pyramid of SSD Liu et al. (2016) contains 2 layers in backbone (conv4 3, conv7) and 4
extra layers. There are two issues: 1) Generally, detector’s backbone is pre-trained for
classification task. Using features in backbone for object detection directly is not adaptive.
2) Shallow layers have pool semantic features, and deep layers have pool local appearance
features. There is a dilemma between classification and regression. In Fig. 2(b), our method
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uses two layers from backbone to produce base features. This avoids using backbone’s fea-
ture layers directly. Then we use U-shape module to produce feature pyramid with rich
context information. This structure fuses deep and shallow layers with skip connection. It
builds a pyramidal feature hierarchy with both high-level semantics and local information
throughout. Recently, many networks Lin et al. (2017a), Fu et al. (2017), Newell et al.
(2016), Kong et al. (2017), Shrivastava et al. (2016) use the similar structure.

(a) SSD type feature pyramid (b) Our feature pyramid with rich context information

Figure 2: (a) SSD directly uses two layers of backbone (i.e.VGG16 Simonyan and Zisserman
(2015)) and four extra layers to construct the feature pyramid. (b) In our method,
we use the up fusing module to fuse two layers from backbone and get a base layer.
Then we use U-shape module to produce feature pyramid.

In summary, our contributions are listed as follows: 1) We present a combined fusing method
and a novel real-time one-stage detector named SPCDet. 2)We test SPCDet on MS COCO
benchmark. It achieves a mAP of 33.2 at speed of 40 FPS and a mAP of 37.3 at speed of
21.4 FPS in 320× 320 resolution and 512× 512 resolution respectively on COCO test-dev.
It is time efficient and powerful.

2. Related Work

Object detection is a topic of general interest in computer vision. Almost all the object
detectors are based on deep convolutional networks recently. Current state-of-the-art ob-
ject detectors include two types of fundamental framework. The first one is two-stage
framework, such as Faster RCNN Ren et al. (2015) and FPN Lin et al. (2017a). These
methods first produce proposal regions as the object candidates, and then did proposal
classification and bounding box regression for each candidate. Due to the speed limit of
two-stage approaches, a number of researches focus on one-stage framework. Some repre-
sentative algorithms are YOLO and SSD. These object detectors directly do classification
and bounding box regression on convoluted dense feature maps without proposal candidates.

Feature pyramid: In earlier algorithms, such as Faster RCNN and YOLO, single feature
layer is used for object predicting. It is not appropriate for these anchor-based methods.
Because in single feature layer, mismatching between anchor scale and receptive field makes
tiny and huge objects hard to be detected. In later work, SSD uses feature pyramid as the
multi-scale representation. It sets default boxes of different scales on different output layers
and uses shallower feature layers to predict smaller objects, while uses deeper feature layers
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to predict bigger objects. In our method, we also follow this manner to predict objects in
different scales. But the feature pyramid is not directly made up of backbone’s layers. We
use pyramid from U-shape module which has rich context information.

U-shape module: U-shape module is like a hourglass structure. It is widely applied
in image recognition tasks, such as pose estimation Newell et al. (2016), semantic segmen-
tation Badrinarayanan et al. (2017), Paszke et al. (2016), and object detection Lin et al.
(2017a), Fu et al. (2017). The U-shape module includes a bottom-up pathway, a top-
down pathway and lateral skip connections. The bottom-up pathway is the feed forward
convolution computation which computes a feature hierarchy consisting of feature maps at
several scales with stride larger than one. The top-down pathway up-samples features or
uses deconvolution computation to produce higher-resolution features which are spatially
coarser but semantically stronger. The lateral skip connections merges feature maps of the
same resolution from the bottom-up pathway and the top-down pathway. This operation
produces feature maps with rich contexts which include both localized and global informa-
tion.

Context fusing: Context information is effective for accuracy improvement in object
detection. It is used in many previous algorithms, such as ION Bell et al. (2016), Feature-
fused SSD Cao et al. (2017), FPN, ASPP Chen et al. (2017), RFBNet Liu et al. (2018). In
these algorithms, classification and regression results are not predicted from single feature
layer, but from fused feature layers. There are generally two strategies for context fusing.
One is fusing feature maps from different stages. Because of the different resolution, de-
convolution is often used in fusing method. Another one is fusing features from different
receptive field. Multi-branch atrous convolution computation is a common method to get
features in different receptive fields. In our paper, we present a novel fusing method which
combines two strategies mentioned above. This method can get richer context information.
And in our knowledge, we are the first one to present this combined method.

3. Method

The framework of SPCDet is shown in Fig. 3. SPCDet uses backbone to extract row feature
from image. Then it fuses two layers from backbone to generate base features. The base
features are fed into U-shape module to produce feature pyramid which indicates instances
in different scales. Before feeding pyramid into detection convolution layers, SPCDet uses a
combined fusing method to generate robust features. Similar to SSD, dense bounding boxes
and category scores are generated in multiple scales. There is a score threshold to remove
almost low-score boxes. Then the nms (Non-Maximum Suppression) operation filters out
redundant boxes. In this paper, we use GPU-based nms and CPU-based soft-nms Bodla
et al. (2017) with a linear kernel.

3.1. Future Pyramid

Base Feature: To get base feature maps that is not from backbone directly, the up fusing
module shown in Fig. 4(a) uses convolution, deconvolution computations and concatena-
tion operation to fuse features from backbone. As a base layer, base feature should have an
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Figure 3: Overview of SPCDet (input size is 320×320). Instead of using maps in backbone
as the pyramid directly, SPCDet fuses 16-stride and 8-stride maps to get 40× 40
base feature maps and feeds them into the U-shape module to produce a pyramid
which contains 6 layers. Every layer in pyramid is fed into the combined fusing
method to generate features with context information. At last, the features are
fed into detection convolution layers.

appropriate resolution and multiple feature levels. So, 8-stride and 16-stride feature maps
from backbone are chose to be fed into up fusing module and the module outputs 8-stride
base feature maps.

Feature pyramid: As shown in Fig. 4(b), the U-shape module produces a set of sym-
metrical feature maps in bottom-up pathway and top-down pathway. To predict object
instances of different scales, this module generates 6 layers in different resolutions on both
two pathways. Feature layers in top-down pathway have both local and global features and
is set as the feature pyramid.

3.2. Serial-parallel Combined Fusing

The framework of serial-parallel combined fusing module is shown in Fig. 5(a). It has three
pathways including serial down fusing, parallel fusing and solid fusing. In serial down fusing
pathway, to get stage-wise context information, the feature maps in higher resolution are
fed into pooling layer and then are concatenated with maps in lower resolution. After a
convolution computation, the features are fed into parallel fusing in Fig. 5(b). The paral-
lel fusing layer (PFL) uses multi-branch convolutions to produce feature maps in different
receptive fields and then fuses them. As shown in Fig. 5(c), solid fusing pathway concate-
nates primitive features maps and rich-context maps from parallel fusing pathway. Before
concatenating rich-context maps, the channel-wise attention Yu et al. (2018) selectively en-
hances useful context features and suppress less useful ones.

The combined fusing module aims to assemble context information from different scales
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(a) Up fusing module

(b) U-shape module

Figure 4: (a) The up fusing module is the same as channel-concatenation fusing in Fig. 1(b).
(b) The kernel size of convolution and deconvolution is 3× 3 and the stride is 2.
The shallow layers are connected with deep layers by element-sum operation. All
the layers are normalized with batch normalization.

and receptive fields. The feature pyramid which is fed into this module can be presented
as X = [X1, X2, . . . , Xn], where Xn ∈ RWn×Hn×C is the feature maps of the nth scale. In
the same way, the output of this module can be presented as Y = [Y1, Y2, . . . , Yn], where
Yn ∈ RWn×Hn×C . Yn is fed into detection convolution layer to produce dense candidate
boxes. In serial down fusing phase, we can get feature maps Zn which accommodates con-
text information from different scales:

Zn = Fdown(Xn, Yn−1) (1)

And Zn is fed into PFL to generate context in multiple receptive fields:

Z̃n = Fpfl(Zn) (2)

where Z̃n = [Z̃1
n, Z̃

2
n, . . . , Z̃

m
n ],m ∈ [1, 4]. It means output has 4 kinds of receptive fields.

Then the attention module selectively enhances useful context features:

Sn = Z̃n ×Wn (3)

where Wn = Fatten(Z̃n) and Wn ∈ R1×1×C . At last, we get:

Yn = Fsolid(Xn, Sn) (4)

3.3. Powerful Backbone

We know that ResNet He et al. (2016) is deeper than VGG-16 and has excellent perfor-
mance on ImageNet’s classification task. To get higher level of semantic, it needs more
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(a) Serial-parallel combined fusing (b) Detail of parallel fusing layer

(c) Channel-wise attention

Figure 5: (a) Serial-parallel combined fusing module contains serial down fusing, parallel
fusing and solid fusing. (b) Similar to inception structure, PFL has multiple
branches. It uses 1× 1 convolution to reduce channel numbers and uses different
convolution kernels to get maps in various receptive fields. Then the maps are
fused by concatenation and 1 × 1 convolution (c) Channel-wise attention uses
average pooling to squeeze layer’s width and height into 1× 1. Then it uses two
1× 1 convolutions to do non-liner shift to produce a set of channel weights. The
weights activate primitive feature layers by element-wise multiplication.

down-sampling operations and concentrates more weight parameters on deeper layers. For
example, ResNet-101 sets 23 bottleneck blocks in conv4 x (stride=16). This means conv4 x
has 69 layers which accounts for about 70% of the total layers.

To detect small object, the stride of our detector’s base feature is 8. The 16-stride layer in
backbone is fused with 8-stride layer. To get better small object detection competence, we
need to concentrate more weight parameters on 8-stride layers. Therefore, we change the
stride of second layer’s 3× 3 max pooling layer from 2 to 1 in ResNet. In this way, conv4 x
in ResNet has a stride of 8. But this operation results in more floating-point computations
because 8-stride layer has larger resolution. In a trade-off way, we choose ResNet-50 which
has 1-stride max pooling layer as the backbone. This ResNet-50 is named ResNet-50* in
our paper.
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4. Experiment

We train our novel detector on MS COCO Lin et al. (2014) and get comprehensive exper-
imental results. On MS COCO, we use the trainval35k Bell et al. (2016) set for training,
which is consist of 80k images from train split and a random 35k subset from the 40k-image
val split. To compare with past state-of-the-art detectors, we use test-dev split which has
no public labels and requires the use of the evaluation server as the test set. We also report
the results of ablation studies evaluated on the minival split which includes 5000 images for
convenience.

4.1. Training Detail

We use training strategy similar to that of SSD, including setting of anchors, method of
data augmentation, hard negative mining and loss function. Model’s backbone is pre-trained
on ILSVRC CLS-LOC dataset Russakovsky et al. (2015). We set the batch size at 64 in
320×320 resolution and 32 in 512×512 resolution because of the limitation of GPU memory.
The total training epochs is 150. At the start of model training, we use warm-up strategy
which initializes the learning rate as 1× 10−6 and gradually ramps up the learning rate to
4 × 10−3 at the first 5 epochs. After warm-up phase, the learning rate is divided by 10 at
90, 120, 140 epochs. Following Liu et al. (2016), we utilize a weight decay of 0.0005 and a
momentum of 0.9.

4.2. Comparison with State-of-the-art

We compare experimental results of the proposed SPCDet with past state-of-the-art one-
stage detectors on COCO test-dev. The experimental results are shown in Table 1. We
can see that SPCDet outperforms other one-stage detectors in same resolution. Especially
in small objects, our SPCDet leads other detectors a lot. The APs at 20.4 of SPCDet512-
ResNet-50* is close to some models tested in 1280×800 resolution. The references in Table 1
are as following: [1] Ren et al. (2015), [2] Zhang et al. (2018a), [3] He et al. (2016), [4] Lin
et al. (2017a), [5] Shrivastava et al. (2016), [6] He et al. (2017), [7] Cai and Vasconcelos
(2018), [8] Liu et al. (2016), [9] Fu et al. (2017), [10] Zhang et al. (2018b), [11] Zhang et al.
(2018a), [12] Liu et al. (2018), [13] Redmon and Farhadi (2018), [14] Lin et al. (2017b).

4.3. Ablation Experiments

In order to verify the effectiveness our fusing method, we do experiments with different
subcomponent combinations. All the experiments are based on 320 × 320 resolution and
tested on COCO minival split. The result is shown in Table2.

Base: To emphasize the importance of our fusing method, we set the model which excludes
serial-parallel combined fusing model but remains U-shape pyramid. This model’s mAP is
set as the baseline. Serial Down Fusing & Parallel Fusing Layers: The combined
fusing strategy consists of serial and parallel structures. Our serial fusing goes across two
adjacent layers in pyramid. The parallel fusing is multi-branch combination in one resolu-
tion. ResNet-50*: To concentrate more weight parameters on 8-stride layers of ResNet-50,
we change max pooling’s stride from 2 to 1 in second layer. This operation makes 8-stride
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Method Input size Backbone AP AP50 AP75 APs APm APl

two stage
Faster R-CNN[1] 1000 × 600 VGG-16 24.2 45.3 23.5 7.7 26.4 37.1

CoupleNet[2] 1000 × 600 ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8
Faster R-CNN+++ [3] 1000 × 600 ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w/FPN [4] 1000 × 600 ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w/TDM [5] 1000 × 600 Inception-ResNet-v2 36.8 57.7 39.2 16.2 39.8 52.1

Mask R-CNN [6] 1280 × 800 ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2
Cascade R-CNN [7] 1280 × 800 ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

one stage
SSD300* [8] 300 × 300 VGG-16 25.1 43.1 25.8 6.6 25.9 41.4
DSSD321 [9] 321 × 321 ResNet-101 28.0 46.1 29.2 7.4 28.1 47.6
DES300 [10] 300 × 300 VGG-16 28.3 47.3 30.3 10.9 31.8 43.5

RefineDet320 [11] 320 × 320 VGG-16 29.4 49.2 31.3 10.0 32.0 44.4
RefineDet320 [11] 320 × 320 ResNet-101 32.0 51.4 34.2 10.5 34.7 50.4
RFBNet300 [12] 300 × 300 VGG-16 30.3 49.3 31.8 11.8 31.9 45.9

SPCDet320(ours) 320 × 320 VGG-16 33.2 52.2 35.8 14.0 36.6 47.2
320 × 320 ResNet-50* 34.2 53.7 37.0 15.6 39.2 47.5

SSD512* [2] 512 × 512 VGG-16 28.8 48.5 30.3 10.9 31.8 43.5
DES512 [10] 512 × 512 VGG-16 32.8 53.2 34.6 13.9 36.0 47.6
YOLOv3 [13] 608 × 608 DarkNet-53 33.0 57.9 34.4 18.3 35.4 41.9
DSSD513 [9] 513 × 513 ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

RefineDet512 [11] 512 × 512 VGG-16 33.0 54.5 35.5 16.3 36.3 44.3
RefineDet512 [11] 512 × 512 ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4
RFBNet512-E [12] 512 × 512 VGG-16 34.4 55.7 36.4 17.6 37.0 47.6
RetinaNet500 [14] 832 × 500 ResNet-101 34.4 53.1 36.8 14.7 38.5 49.1

SPCDet512(ours) 512 × 512 VGG-16 37.3 56.7 40.6 19.5 42.4 49.7
512 × 512 ResNet-50* 38.1 58.4 41.2 20.4 42.9 51.2

Table 1: Detection accuracy comparisons on MS COCO test-dev. For fair comparison, all
results are tested with single-scale inference strategy.

layers are in conv4 x which has maximum number of layers.

As can be seen from Table2, serial down fusing improves the mAP by 0.8, which shows
the effectiveness of stage-wise context. PFL improves the mAP by 1.7, which shows the
effectiveness of receptive-field-wise context. The combined fusing improves the mAP by 2.2,
which is more powerful than single fusing method. In many object detection method, no-
ticeable AP gain can be gotten from deeper backbone. We replace VGG16 with ResNet-50*,
which improves mAP from 33.0 to 33.9.

4.4. Inference Time

We test the inference speed of SPCDet and other state-of-the-art methods on COCO test-
dev. Our test machine contains CPU of Intel Core i7-8700K and GPU of NVIDIA Titan
X. Our program is based on pytorch framework with python3.6 and CUDA 8.0. We set the
batch as 1 and test each image’s inference time. Then we save inference time of the fastest
top 99% ones and calculate the average time at last.
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Component mAP

Base
√ √ √ √ √

Serial down fusing
√ √ √

Parallel fusing with PFL
√ √ √

ResNet-50*
√

AP 30.8 31.6 32.5 33.0 33.9
AP50 50.6 50.5 51.5 52.1 52.9
AP75 32.7 33.5 34.9 35.6 36.7
APs 13.6 13.6 14.2 14.4 15.7
APm 35.1 35.9 36.7 37.5 39.7
APl 44.1 46.2 47.0 48.0 48.7

Table 2: Ablation result evaluated on COCO minival.

Resolution 320× 320 512× 512

Network inference time - 16.8ms 30.3ms

Nms time GPU-based nms 4.5ms 7.7ms
CPU-based soft-nms 8.2ms 16.4ms

Total time with GPU-based nms 21.3ms 38.0ms
with CPU-based soft-nms 25.0ms 46.7ms

Table 3: Inference speed of SPCDet.

For SPCDet, we test network inference time and nms time separately. The result is shown
in Table3. SPCDet processes an image in 21.3ms (46.9 FPS) and 25.0ms (40 FPS) with
GPU-based nms and CPU-based soft-nms respectively in 320 × 320 resolution. This is a
good trade-off between accuracy and speed with mAP of 32.8 (with GPU-based nms) and
33.2 (with CPU-based soft-nms). It means our detector keeps real-time speed and out-
standing accuracy at the same time.

In Fig. 6, we compare SPCDet’s (with backbone of VGG) inference speed with recent state-
of-the-art one-stage detectors. RefineDet512* has backbone of ResNet-101 and SPCDet512*
uses GPU-based nms which is faster than SPCDet512. In all of the models with mAP higher
than 36%, our SPCDet has the fastest speed. For example, RefineDet512* achieves mAP
of 36.4 with 118.2ms but SPCDet512* achieves higher mAP with only 38ms which is about
one third of RefineDet512*. In all of the models with inference time lower than 30ms,
our SPCDet has the highest mAP. In summary, SPCDet outperforms other detectors in
trade-off between accuracy and speed.
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Figure 6: Speed (ms) vs. accuracy (mAP) on MS COCO test-dev.

5. Discussion

5.1. Effect of the Feature Fusing Strategy

To verify the importance of our feature fusing strategy, we visualize the activation values
of base layer, U-shape layers and predicting layers (i.e. the output layers of Combined
Fusing module), such an example shown in Fig. 7. A group of skiers including some tiny
ones are in the input image. Features of different stages are indicated by activation values
of different layers. In base layer, the background noises are obvious and submerge small
objects’ features. Compared with features in base layer, each object has sharper features
in U-shape layers. It means base features are denoised by U-shape module. But some
activation values are low. In predicting layers, objects’ activation is stronger than that
in U-shape layers. This benefits from the fusion of more contexts. Through the above
example, we can find that our method of context fusing has an obvious effect in weakening
background noises and enhancing objects’ features.

5.2. Robustness of Scale Variation

Handling scale variation across object instances is significant in general object detection.
There are two challenges: 1) tiny objects have poor semantic features in small scale layer; 2)
objects of the same class have different scales. Fig. 8 shows an example of detection result
and its corresponding activation values of multi-scale features. The input image contains
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Figure 7: A case of activation values of different layers.

four people and 3 skis. Sizes among the four people are different. Two skis in image’s up-left
region are so small and have poor appearance information. We find that: 1) smaller person
has stronger activation in maps of smaller scale, and so does bigger person; 2) even though
the tiny skis almost have no appearance information, the relative contexts help them be
detected by detector. These mean our detector is robust to detect objects with different
scales.

Figure 8: An example of detection result and its corresponding activation values of multi-
scale features.
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6. Conclusion

In this paper, we present a real-time object detector which is fast and powerful. Instead of
using maps in backbone as the pyramid directly, it fuses 8-stride layer and 16-stride layer
to produce base feature maps and feeds the base layer into a U-shape module to produce
feature pyramid for multi-scale prediction. Then it uses a combined fusing structure to
get rich context information. The combined fusing method includes serial down fusing and
parallel fusing and the fusing features is selected by channel-wise attention. Our experiments
show that our combined fusing method has a good performance. On COCO test-dev, our
method achieves mAP of 33.2 at speed of 40.0 FPS and mAP of 37.3 at speed of 21.4 FPS
in 320× 320 resolution and 512× 512 resolution, respectively.
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