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Abstract

This paper studies the problem of learning a sequence of sentiment classification tasks. The
learned knowledge from each task is retained and later used to help future or subsequent
task learning. This learning paradigm is called lifelong learning. However, existing lifelong
learning methods either only transfer knowledge forward to help future learning and do
not go back to improve the model of a previous task or require the training data of the
previous task to retrain its model to exploit backward/reverse knowledge transfer. This
paper studies reverse knowledge transfer of lifelong learning. It aims to improve the model
of a previous task by leveraging future knowledge without retraining using its training data,
which is challenging now. In this work, this is done by exploiting a key characteristic of
the generative model of näıve Bayes. That is, it is possible to improve the näıve Bayesian
classifier for a task by improving its model parameters directly using the retained knowl-
edge from other tasks. Experimental results show that the proposed method markedly
outperforms existing lifelong learning baselines.

Keywords: Lifelong learning, Sentiment classification, Näıve Bayes, Transfer learning

1. Introduction

Sentiment classification classifies an opinion document (e.g., a product review) as expressing
a positive or negative sentiment Pang et al. (2008); Liu (2012). Traditional sentiment
classification methods learn from the training data of one task and the learned model is also
tested in the same task. In this paper, we are interested in learning a sequence of sentiment
classification tasks. This learning setting is the same as the current lifelong learning setting.
Lifelong learning is a continual learning (also a continuous learning) process where the
learner learns a sequence (possibly never ending) of tasks; after each task is learned, its
knowledge is retained and later used to help future task learning Thrun (1998); Silver et al.
(2013); Ruvolo and Eaton (2013); Chen and Liu (2014); Chen et al. (2015); Nguyen et al.
(2018); Mitchell et al. (2018); Parisi et al. (2019); Anthes (2019). Lifelong learning has
been introduced extensively in a book, see Chen and Liu (2018). In this paper, we study
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lifelong learning for sentiment classification. We will discuss why lifelong learning works for
sentiment classification in the next section. However, existing approaches mainly focus on
helping future task learning by leveraging the knowledge learned from past tasks, which we
call forward knowledge transfer. If the model of a past task needs to be improved, lifelong
learning can also use the knowledge learned in future tasks to help, but the past task’s
training data are required for retraining.

In this paper, we not only achieve forward knowledge transfer to improve any future
task learning, but also achieve backward/reverse knowledge transfer to improve the model
of any past task without retraining using the past task training data. This enhanced lifelong
learning setting is natural as we humans seem to learn in a similar way. We can use some
newly learned knowledge to help improve a previous task without re-learning from the past
experiences or data, which are often forgotten. In addition, it would be promising to improve
the model of a past task after the model has been learned previously. Following the work
in Chen et al. (2015), we treat the classification in each domain (e.g., a type of product) as
a learning task. Thus, we use the terms domain and task interchangeably throughout the
paper. Formally, we study the following problem.

Problem Statement: At any point in time, the learner has learned n tasks. Each task
Ti has its training data Di. The learned knowledge of each task is retained in a knowledge
base. When faced with a new task Tn+1 with its training data Dn+1, the previously learned
knowledge in the knowledge base is leveraged to help learn Tn+1. After Tn+1 is learned, its
knowledge is also incorporated into the knowledge base. The knowledge in the knowledge
base can also be used to improve the model of each past task Ti (1 ≤ i ≤ n) without
retraining using its past training data Di.

Given the above problem, we have the following questions: (1) what forms of knowledge
should be retained from the past learning tasks? (2) how to obtain the knowledge? (3) how
to use the knowledge to help future task learning and also to improve the model of any past
task without using its past training data for retraining (non-availability of the past training
data is a common assumption of continual learning Chen and Liu (2018))?

We answer the above three questions with näıve Bayes by exploiting its generative model
parameters. We call the proposed method Lifelong Näıve Bayes (LNB). The idea is that
the prior knowledge can be mined from the generative model parameters of each past task
and used in learning the target task, which can be a new or a past task. These deal with
the first two questions. Another crucial point is that the generative model for each task is
independent of other tasks and the generative model parameters are available in training
the target task model. Thus no retraining is needed when going back to improve the model
of any past task. This deals with the last question. We will discuss the details of the
proposed method in the subsequent sections. To our knowledge, this work is the first to
study improving the models of past tasks with no retraining using their past training data.

2. Related Work

2.1. Why Lifelong Learning for Sentiment Classification?

As noted in Chen et al. (2015), lifelong learning works for sentiment classification because
the training data of a domain may not be fully representative of this domain due to sample
selection bias Heckman (1979); Zadrozny (2004). The problem is particularly acute when
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the training data is small and imbalanced. For example, the word “nice” indicates a positive
sentiment, but in the training data of a particular domain, it only appeared once and it is in
a negative review because in a negative review, the reviewer can still be positive about some
aspects. Furthermore, a positive or negative word may not even appear in the training data
of a domain but appear in its test data of this domain. In these cases, the knowledge from
other domains can be helpful because most sentiment words have the same polarity across
domains. However, as we will see in the experiment section, the result of a classifier built
by simply combining the training data from all domains is not satisfactory because each
domain often also has some words with domain specific sentiment polarities, e.g., “quiet”
is positive for cars but negative for earphones. This problem is called domain-specific
sentiment problem Li and Zong (2008). The combined data can cause the domain specific
sentiment of a word being overshadowed by a different sentiment from other domains.

2.2. Lifelong Learning

Since the proposed LNB is a lifelong learning model, most related work to ours is lifelong
learning Ruvolo and Eaton (2013); Chen and Liu (2014); Pentina and Lampert (2015); Chen
et al. (2015); Fei et al. (2016); Isele et al. (2016); Xia et al. (2017); Aljundi et al. (2017);
Clingerman and Eaton (2017); Shu et al. (2017); Kirkpatrick et al. (2017); Xu et al. (2018);
Sun et al. (2018); Chaudhry et al. (2019); Lv et al. (2019). However, these approaches
only achieve forward knowledge transfer to improve future task learning and do not achieve
backward knowledge transfer to improve the model of any past task without retraining using
the past task training data. Regarding sentiment classification, Chen et al. (2015) proposed
the first lifelong sentiment classification method based on optimization considering the past
knowledge. However, it needs retraining using the past domain data to improve the model.
Xia et al. (2017) presented two lifelong learning methods based on voting of individual task
classifiers for sentiment classification. The first method votes with equal weight for each
task classifier, which can be applied to help past tasks. The second method uses weighted
voting, which needs the past task training data for retraining. Note that the tasks in Xia
et al. (2017) are actually from the same domain as they partitioned the same dataset into
subsets and treated each subset as a task. Our tasks are from different domains (different
types of products from Amazon.com). Lv et al. (2019) proposed a deep learning method for
lifelong sentiment classification by jointly training two networks, one for retaining domain-
specific knowledge and the other for learning target-domain classification feature. However,
it cannot improve any past task’s model using the knowledge learned subsequently without
retraining using the training data of the past task. Moreover, our experimental results (in
Section 4) show that this deep learning method does not perform well on small data.

2.3. Multi-task Learning and Transfer Learning

Multi-task learning optimizes the learning of multiple tasks at the same time Caruana
(1997); Evgeniou and Pontil (2004); Zhang and Yang (2017); Ruder (2017); Liu et al. (2019).
However, (batch) multitask learning does not learn incrementally (incremental multitask
learning is regarded as lifelong learning Chen and Liu (2018)).

Transfer learning (or domain adaptation) uses the labeled data from one or more source
domains to help the target domain learning which has few or no labeled training data Blitzer
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et al. (2007); Pan and Yang (2010). Note, transfer learning is not a continual learning
process. In sentiment classification, there is a large body of transfer learning literature Tan
et al. (2009); Pan et al. (2010); Fan et al. (2011); Glorot et al. (2011); Wu et al. (2017); Li
et al. (2018); He et al. (2018), to name a few. These works cannot go back to improve the
source domains as the target domain has few or even no labeled data.

3. Lifelong Näıve Bayes

In this section, we present the proposed Lifelong Näıve Bayes (LNB). We first give some
preliminaries, and then detail how our LNB performs forward and backward/reverse knowl-
edge transfer to help the future task and past tasks without the training data of the past
tasks. Lastly, we discuss the computational complexity of the proposed algorithm.

3.1. Preliminaries

Näıve Bayes (NB) text classifier is a generative model Nigam et al. (1998). Each document
is assumed to be generated from a mixture of multinomial distributions. In training, NB
computes the parameters of the multinomial distributions. In testing, given a test document
d with words {w1, ..., wn}, the NB classifier with multinomial distributions is defined as:

P (cj |d) =
P (cj)

∏n
k=1 P (wk|cj)∑|C|

r=1 P (cr)
∏n

k=1 P (wk|cr)
, (1)

where cj is positive (+) or negative (-) class in our case, and |C| is the number of classes.
The multinomial distribution parameter P (wk|cj) is estimated with:

P (wk|cj) =
λ+Ncj ,wk

λ|V |+
∑|V |

v=1Ncj ,wv

, (2)

where Ncj ,wk
is the number of times that word wk occurs in the training documents of class

cj , |V | is the vocabulary V size, and λ is the smoothing parameter. We use λ = 0.1 as it
is shown in Agrawal et al. (2000) that λ = 0.1 (Lidstone smoothing) is superior to λ = 1
(Laplacian smoothing).

The final sentiment polarity (positive or negative) of this document d is given by com-
puting arg maxj P (cj |d). From Eq. (1) and Eq. (2), we can see that NB mainly depends on
the word frequency count Ncj ,wk

, which is also the core knowledge that we will retain for
each domain in addition to the class prior P (cj). How to integrate the knowledge into the
proposed model will be clear shortly.

3.2. LNB for Sentiment Classification

Recall that we use the terms domain and task interchangeably throughout the paper because
we treat the classification in each domain (e.g., a type of product) as a learning task following
Chen et al. (2015). The architecture of the proposed LNB, in brief, is shown in Figure 1.

Below we present the proposed LNB in detail. As given in Figure 1, LNB has three
key components: Knowledge Miner (KM), Knowledge Base (KB), and Knowledge-Based
Learner (KBL). KM mines knowledge from training data of each task/domain, KB stores
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T1,    T2,    …,    Tn,    Tn+1,    …
Task Sequence

Past Tasks
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Retained Knowledge

Knowledge-Based 
Learner (KBL)

New
Knowledge

Past Knowledge

Lifelong Naïve Bayes (LNB)

Dn+1

Output

Figure 1: LNB system architecture.

the mined knowledge, and
KBL abstracts some high-
level knowledge from the
KB and leverages it in
learning the target task t,
which can be a new task
or a previous task.

The key idea of LNB
is to revise the multino-
mial distribution param-
eters (i.e., Eq. (2)) for the
target task t using prior
knowledge (stored in the
KB) from the previous
tasks to build a better target task classifier. Next we describe how our system LNB works.

Given a task sequence {T1, T2, ..., Tn, Tn+1, ...}, the time point moves along the task
sequence, where each time point corresponds to a task respectively. At any point (e.g.,
n + 1) in time, our LNB has learned n tasks and the knowledge of the n tasks has been
retained in the KB. When a new/future task (target task) Tn+1 comes, KM first extracts the
new knowledge from its training data Dn+1. Then KBL leverages both the newly extracted
knowledge and the past knowledge in the KB to build a classifier for the target task Tn+1.
After this, the task Tn+1 becomes a past task and its knowledge is also incorporated into the
KB. Now if our model LNB moves back to a point of any previous time point i (1 ≤ i ≤ n),
our LNB can use the knowledge (stored in the KB) of the tasks (T1, ..., Tn+1) to build a
classifier for the past task (target task) Ti. In such a way, we can see that LNB performs
(1) forward knowledge transfer for helping future task learning and (2) reverse knowledge
transfer for improving past task learning.

In particular, KM extracts two types of knowledge from the training data of each task
Ti. (a) Word-level knowledge N i

+,w and N i
−,w: number of times word w occurs in the

training documents of the positive (+) and negative (−) class in the task Ti, respectively. (b)
Document-level knowledge N i

+ and N i
−: number of training documents in the positive

(+) and negative (−) class in task Ti, respectively. These document-level knowledge are for
computing the class prior Pi(+) and Pi(−) in Eq. (1).

The above two-types of knowledge are treated as the base-knowledge, which will be
stored in the KB for the task Ti. All the stored base-knowledge in the KB is available for
KBL to compute the generative model parameters and to build a NB classifier for the target
domain t (a new or a past domain).

Now we introduce how KBL utilizes the newly extracted base-knowledge (if target do-
main is a new domain) and the past base-knowledge (stored in the KB) to construct a
classifier for the target domain t. Specially, KBL first abstracts three types of high-level
knowledge from the base-knowledge:

(1) Word-level knowledge NKB
+,w and NKB

−,w : number of times word w occurs in the training
documents of the positive (+) and negative (-) class in all domains except the target

domain. They are formulated by NKB
+,w =

∑
f N

f
+,w and NKB

−,w =
∑

f N
f
−,w respectively.
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(2) Target domain-dependent knowledge Qt
+,w and Qt

−,w: ratio of word probability in
positive (and negative) vs. negative (positive) class in the target domain t, i.e., Qt

+,w =
P (w|+)
P (w|−) and Qt

−,w = P (w|−)
P (w|+) .

(3) Domain-level knowledge MKB
+,w and MKB

−,w : number of non-target domains in which
P (w|+)
P (w|−) ≥ γ and P (w|−)

P (w|+) ≥ γ (regarded as a reliable word), where P (w|+) and P (w|−)

are estimated using Eq. (2) in that domain, and γ is a parameter.

Then, KBL integrates these pieces of knowledge to revise N t
+,w and N t

−,w from the target
domain, which are the word count in the positive (+) and negative (-) classes in the target
domain respectively. We denote the revised results as N̂ t

+,w and N̂ t
−,w. The intuition here

is that if a word w can distinguish classes very well in the target domain, KBL in our LNB
should rely on the target domain base-knowledge (i.e., N t

+,w and N t
−,w) of this word in the

target domain. Thus, we define a set of target domain-dependent words, denoted by V t. A
word w belongs to V t if Qt

+,w ≥ σ or Qt
−,w ≥ σ, where σ is a parameter. On the other hand,

KBL should believe in domain-level knowledge among non-target domains. In practice, if
a word w is reliable among most non-target domains (e.g., half of the non-target domains),
KBL should follow the knowledge associated with this word. Similarly, we define a set of
domain-reliable words, denoted by V KB. For a word w, KBL regards it as a domain-reliable
word if more than half of the non-target domains (i.e., MKB

+,w > n/2 or MKB
−,w > n/2, where n

is the number of the non-target domains) treat this word as a reliable word. Such a method
works like a voting method. We will give an example of the resulting domain-dependent
words and domain-reliable words in the experiment section.

Improving past and future domain classification: It is clear that LNB can treat
any past or future domain as the target domain t and improve its classification. LNB only
needs the frequency count of each word in each class of each (past or future) domain (which
is stored in the KB). Thus, for a past domain, no retraining using its original training data is
needed. Given these knowledge and information, our LNB model works for a test document
du with words {w1, w2, ..., wn} in the target domain t as shown in Algorithm 1.

3.3. Computational Complexity Analysis

Since LNB is a continuous learning system, we use the target domain model building to
analyze its complexity. If the target domain is a new domain, the computation complexity
of LNB consists of two parts: extracting base-knowledge from its training data and building
a classifier for this new domain. Specially, extracting the base-knowledge is clearly linear
in the number of words in all training documents, O(|D||d|), where |D| is the number
of training documents and |d| is the document length. Building a classifier for this new
domain is only O(|V |), where |V | is the vocabulary size, because the two types of high-level
knowledge (i.e., word-level knowledge and domain-level knowledge) can be incrementally
updated after each new domain is learned. Note that the computing of another high-level
knowledge (i.e., target domain-dependent knowledge) is done in the first part. If the target
domain is a past domain, LNB only needs to build a classifier for this past domain, which
takes O(|V |). Considering the above two cases together, the computational complexity of
LNB is O(|D||d|), linear in the number of words in the documents as |V | is normally smaller.

As LNB stores base-knowledge for each task, LNB requires some storage costs. Storage
cost of each task is O(|V |). Thus, storage costs of LNB are linear in the number of tasks.
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Algorithm 1 LNB for a test document du in the target domain t (a new or a past domain)

Data: Test document du with words {w1, w2, ..., wn}
Knowledge: Base-knowledge stored in the knowledge base, and the newly extracted base-

knowledge (if target domain is a new domain)
Result: Sentiment classification result

begin
Extract uni-gram features for words {w1, w2, ..., wn}
for each feature word wk do

if wk belongs to V KB then

N̂ t
+,wk

= Rwk
×NKB

+,wk
, N̂ t
−,wk

= (1−Rwk
)×NKB

−,wk

/* where Rwk
is a voting weight, Rwk

= MKB
+,wk

/(MKB
+,wk

+MKB
−,wk

) */

else if wk belongs to V t then

N̂ t
cj ,wk

= N t
cj ,wk

else

N̂ t
cj ,wk

= NKB
cj ,wk

+N t
cj ,wk

end

end
arg maxj P (cj |du), where cj = {+,−}

end

4. Experiments

In this section, we evaluate the proposed LNB in terms of knowledge analysis, task evalua-
tion, effect of the number of domains, and running time. We performed most experiments
on Windows Server 2008 R2 with Intel Xeon processor, 24GB RAM and JAVA development
environment. We used JAVA development environment because our main baselines (except
for a deep learning baseline) used it. Regarding the deep learning baseline Lv et al. (2019),
we ran it on a GPU server with Python as its original system used Python.

4.1. Datasets

Since the main baseline of our work is the LSC system Chen et al. (2015), we experiment
using the same datasets 1 as in Chen et al. (2015). The datasets contains a collection
of product reviews from 20 types of product domains from Amazon.com. Each domain
contains 1000 reviews. Each review has been assigned a sentiment label, i.e., positive or
negative, based on the rating score. The names of these 20 domains with a serial number
for each domain and the proportion of negative reviews are shown in Table 1. From the
table, we can see that the proportion of negative reviews in each domain is in the range
[10%, 31%]; and thus the negative reviews in each domain are minorities, which are harder
to classify.

Following the work in Chen et al. (2015), we use two variations of the datasets with
different class distributions in our experiments. (a) Natural class distribution : We

1. https://www.cs.uic.edu/~zchen/downloads/ACL2015-Chen-Datasets.zip
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Table 1: Names of 20 domains with a serial number for each domain and the proportion of
negative reviews in each domain.

1© Alarm Clock 30.51 6© Flashlight 11.69 11© Home Theater System 28.84 16© Projector 20.24

2© Baby 16.45 7© GPS 19.50 12© Jewelry 12.21 17© Rice Cooker 18.64

3© Bag 11.97 8© Gloves 13.76 13© Keyboard 22.66 18© Sandal 12.11

4© Cable Modem 12.53 9© Graphics Card 14.58 14© Magazine Subscriptions 26.88 19© Vacuum 22.07

5© Dumbbell 16.04 10© Headphone 20.99 15© Movies TV 10.86 20© Video Games 20.93

use the original data with the natural class distribution as shown in Table 1. We use F-
score of the negative class in evaluation as each domain has imbalanced class distribution
and the reviews of each domain in the negative class are minorities. (b) Balanced class
distribution : We sampled 200 reviews (100 positive and 100 negative) from each domain
and created a balanced variation from the original natural distribution dataset. This dataset
is small because the number of negative reviews in each domain is small. We use accuracy
of both classes in evaluation as each domain has a balanced class distribution.

We randomly partitioned the data of each domain into training set and test set with
80% and 20%, respectively. We extracted uni-gram features with no feature selection from
the raw reviews. Also, we followed Pang et al. (2002) to deal with negation words. In all
experiments, we set γ = 2 and σ = 3 to evaluate the proposed LNB.

4.2. Knowledge Analysis

As mentioned earlier, we will provide the domain-dependent words V t and domain-reliable
words V KB learned by our LNB in the experiment section. Here we take the small dataset
in balanced class distribution as an example. The results are shown in Table 2, where the
words appearing in both V t and V KB are marked in italics together with color “blue”.
From the table, we have the following observations:

1. Generally speaking, the words in V KB are more reliable than the words in V t in terms
of their opinion polarity. The reason is clear because the word in V KB is believed by
more than half of the non-target domains.

2. Most words (the ratio is 561/772)2 in V t are specific to the target domain. Only
a small portion (the ratio is 211/772)3 of V t belong to the domain-reliable words
V KB. Thus, V t and V KB should be considered simultaneously because they are
complementary to each other. The result also shows the domain-specific sentiment
problem as mentioned in Section 1.

4.3. Task Evaluation

Now we evaluate how the future task learning performance and the previous task learning
performance can be improved using the proposed model LNB.

2. According to Table 2, 405−91+367−120
405+367

= 561
772

.

3. According to Table 2, 91+120
405+367

= 211
772

.
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Table 2: The resulting domain-dependent words and domain-reliable words on the dataset
in the balanced class distribution.

Positive (+) words Negative (-) words

Domain-dependent words V t in domain “Alarm Clock” (vocabulary size: 1984)

Results in descending order of Qt
+,w: worth,

great, highly, recommend, perfect, love, impressed,
not|beat, durability, setup, adjustable, thick, kit,
boat, downside, not|forget, heaven, definately, picky,
not|happier, satellite, plant, moderately, contrary, tour,
not|overly, role, digit, havent, projector, attend, suffi-
ciently, sensor, not|leg, sensitivity, camping, not|reset,
exterior, projection, seperate, purple, schedule, is-
land, delighted, not|bear, converter, orient, horn,
luggage, smoke, japan, execute, guest, not|demand,
alike, not|sheet, northern, not|disturb, sunshine, skill,
adorable, grateful, not|class, not|energy, wooden,
lightest, not|blinking, lodging, readable, not|nap,
not|bedroom, thunderstorm, underside, manageable,
distraction, not|scare, wisconsin, not|saver, stuffer,
girly, not|rain, gigantic, grandaughter, tide, not|deep,
nighttime, not|opportunity, legible, not|overwhelming,
cleverly, litte, not|halfway, awake, lull, sincere, lithium,
grandchild, not|proof, dresser, clap, ... (in total 405
words).

Results in descending order of Qt
−,w: return,

not|buy, poor, not|waste, refund, not|return, terrible,
horrible, junk, garbage, quit, restart, not|suppose, reset,
not|avail, resort, not|junk, distracting, hum, not|blue,
not|market, times, not|barely, intermittently, not|clock,
buzz, tuning, leap, bum, backlight, inspection, boo, il-
lumination, horrify, bleed, not|functionality, coil, nui-
sance, oct, reinstall, not|terribly, nope, not|credit,
not|worst, not|appearance, not|twenty, not|functional,
drift, chirp, interval, not|snooze, aus, rhythm, relocate,
ineffective, not|backup, not|photo, spiffy, unreadable,
critic, annoyingly, compound, bearly, not|inadvertently,
forgive, embarrass, timex, yup, consequence, realy,
mailing, not|task, babble, module, oxidation, embar-
rassment, abruptly, voicemail, grainy, not|sun, opti-
mistic, not|coby, not|faint, temperamental, inaudible,
vague, not|weak, abysmal, not|reliably, forgivable, nt,
cliff, not|worth, company, disappoint, not|money, bad,
not|product, spend, disappointed, ... (in total 367
words).

Domain-reliable words V KB over 20 domains (accumulated vocabulary size: 16061)

Sorted words in terms of Mt
+,w from big to

small: perfect, add, easy, worth, good, decide, bit,
night, enough, like, job, great, love, highly, simply, fast,
size, long, live, recommend, happy, not|need, excellent,
glad, value, expect, need, best, nice, price, well, fit, true,
simple, complaint, house, home, set, wonderful, solid,
easier, friend, awesome, mind, feature, amazing, bring,
not|big, complain, cheaper, negative, difference, drop,
quick, enjoy, space, amount, pick, heavy, extra, color,
perfectly, life, offer, lower, clear, easily, power, larger,
person, fantastic, pro, provide, older, thank, ease, foot,
investment, deliver, strong, favorite, impressed, avail-
able, test, daily, construction, amaze, pleased, insert,
handy, bigger, not|beat, weight, special, blue, access,
useful, family, carry, eye, ... (in total 219 words).

Sorted words in terms of Mt
−,w from big to

small: month, product, not|time, not|purchase, money,
not|work, break, amazon, not|worth, day, not|buy, item,
not|well, poor, happen, state, not|good, not|recommend,
completely, piece, receive, bad, not|make, guess, call,
buy, not|money, ok, customer, waste, not|enough,
suppose, problem, return, end, pay, contact, disap-
point, not|product, company, week, wrong, disappointed,
spend, back, order, refund, cheap, not|happen, send,
save, dollar, couple, stop, lose, hard, design, fail, review,
issue, notice, throw, wait, service, low, unfortunately,
not|waste, today, brand, stick, hour, ship, not|back, be-
gin, rating, not|anymore, horrible, die, not|hold, actual,
barely, total, terrible, annoying, useless, description,
suck, not|case, not|return, not|star, mail, worse, worst,
not|amazon, not|close, pain, wonder, poorly, junk, cut,
... (in total 258 words).

The number of positive co-occurrence words in V t and
V KB is 91.

The number of negative co-occurrence words in V t and
V KB is 120.

* Due to space limitations, here we only show the top 100 words in each block.

Baselines. We compare our LNB model with Näıve Bayes (NB), SVM Chang and Lin
(2011), LSC Chen et al. (2015), Lifelong Voting (LLV) Xia et al. (2017), and Sentiment
classification by leveraging the Retained Knowledge (SRK) Lv et al. (2019). For SVM, LSC
and SRK, we obtained the original systems from its authors. For LLV, we use its first voting
method that can improve a past model using future knowledge. Note that traditional NB
and SVM only work on a single domain data. To have a comprehensive comparison, three
variations of NB and SVM are created respectively following Chen et al. (2015):

a) NB and SVM are trained and tested on the target domain, denoted by NB-T and
SVM-T.
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b) NB and SVM are trained on the combined data from all non-target domains and
tested on the target domain, denoted by NB-S and SVM-S.

c) NB and SVM are trained on the combined data from all domains (including the target
domains) and tested on the target domain, denoted by NB-ST and SVM-ST.

As NB-T and SVM-T only use the data from the target task, they are non-lifelong
learning methods. NB-S, NB-ST, SVM-S and SVM-ST can be regarded as simple lifelong
methods because they use the data from other tasks. For NB, λ is set to 0.1 for Lidstone
smoothing. For SVM, we use the default parameters settings 4. For LSC, LLV and SRK,
we use their original parameters settings. Note that, for the deep learning baseline SRK,
we didn’t use validation sets to perform early stop as all the other methods do not require
any validation sets.

New Task Evaluation: Following Chen et al. (2015), each domain in the 20 domains
is treated as the new (target) domain with the rest 19 domains as the past domains. For
those non-lifelong methods (NB-T and SVM-T), we ran them on the new domain data
independently. For those simple lifelong methods (NB-S, NB-ST, SVM-S and SVM-ST),
we ran them on the combined data from past domains or new domain. For the three
existing lifelong methods (LSC, LLV and SRK), we ran them as they were done in their
original papers. Table 3 shows the average F1-scores of the negative class in the natural
class distribution over the 20 domains. Table 4 shows the average accuracy of two classes
in the balanced class distribution over the 20 domains.

Table 3: Average F1-score of the negative class in the natural class distribution over 20
domains. Note that negative class is the minority class (see Table 1) and thus
very harder to classify.

Method NB-T NB-S NB-ST SVM-T SVM-S SVM-ST LSC LLV SRK LNB

F1-score 45.20 55.00 56.49 50.39 52.66 59.15 56.62 47.46 52.45 64.96

Table 4: Average accuracy of the positive and negative classes in the balanced class distri-
bution over 20 domains.

Method NB-T NB-S NB-ST SVM-T SVM-S SVM-ST LSC LLV SRK LNB

ACC 77.40 74.82 80.04 76.09 75.79 79.29 82.09 78.59 80.34 83.17

From Table 3 and Table 4, we make the following observations:

• Our model LNB achieves the best F1-scores and accuracy on two variant sets of the
datasets respectively. The results show the superiority of our LNB.

• NB-S (and SVM-S) is inferior to NB-T (and SVM-T), both of which are inferior to
NB-ST (and SVM-ST). This shows that simply combining the training data from all
past domains and the new domain is slightly beneficial, but worse than our model.

4. See: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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• LLV performs poorly as its voting method does not fit our setting because in Xia et al.
(2017) all tasks are from the same domain (the dataset of each task is a subset of a
large dataset), but our tasks are from different domains.

• The deep learning baseline SRK is inferior to our method as deep learning usually
requires a large amount of training data, but the training data of each domain in
our setting is very small. Another reason is probably due to the catastrophic forget-
ting problem French (1999) in deep learning. Although SRK can address this prob-
lem slightly by training a knowledge retention network to memorize domain-specific
knowledge, it still forgets previously learned knowledge after learning a long sequence
of domains (e.g., 15). Our model has a knowledge base to store the previously learned
knowledge from each domain separately.

• Our model is slightly better than LSC on the dataset in the balanced class distribution,
but markedly better than LSC on the dataset in the natural class distribution 5. The
reason is that LSC extracts knowledge with bias from non-target domains. Our model
adopts a voting method to extract knowledge. In practice, we follow the knowledge
associated with a word only if more than half of non-target domains believe in this
word. Note that this is not our main results as our main goal is to go back to help
previous/past domain models without retraining, which LSC cannot do because LSC
needs the past domain data to optimize its objective function.

S1: 17© 7©16©11©10©13©12© 6© 5© 8©18© 4©14© 2© 9© 1©15©19© 3©20©
S2: 14©13©19©10© 2©12©20© 1©16© 5©11© 4© 8© 9© 2©17© 7© 6©15©18©
S3: 5© 7©17© 9© 4©16©15©12©10©14©11© 8©19©18© 6©13© 2© 3©20© 1©
S4: 14© 4©20© 7©17©15©16© 8©13© 9©12© 6© 2© 3© 5©10©18©11© 1©19©
S5: 5©16© 2©20©18© 8©13© 4© 6© 9©10©19© 7© 3©11© 1©14©15©12©17©
S6: 15©11© 4©20©17© 3© 7©10©16©12©18© 1© 2©13© 5© 8©19© 6© 9©14©
S7: 20©13© 2©15© 9©17©14© 5©16©18© 7© 4©11© 6© 1© 8©10© 3©19©12©
S8: 18©11© 6©12©13© 1© 5© 7© 3©16© 2© 4©14© 8©15©19©17©10© 9©20©
S9: 16© 2©10© 9©12©19© 6©11©18©20© 4© 1© 3©17© 5©13©15© 8©14© 7©

S10: 12©16© 6© 8©19© 2© 7© 1©13©17© 3© 9© 4©11©18©15©20© 5©10©14©

Figure 2: The randomly created 10 domain sequences.

Previous Task Evaluation:
In this experiment, we evaluate how
each previous domain performs af-
ter some new/future domains have
been learned. Since LSC and SRK
cannot use the future knowledge to
improve past domain models with-
out retraining, for each past do-
main, we use the classifier built
when the past domain was the new
domain at that time. For NB-S,
NB-ST, SVM-S and SVM-ST, we
also use the classifier built at that
time. For NB-T and SVM-T, we use the classifier built on each previous domain. Since LLV
is a voting model, it can also use future models to vote in any past domain classification.
We give the results after all 20 domains have been learned. Thus, in this setting, we show
the test results of the previous 19 domains only. Since in this case the ordering of domains is
significant and can affect the experiment results, we randomly created 10 domain sequences
as shown in Figure 2. For each sequence, the test results of the previous 19 domains are
averaged and the average values are reported in Table 5 and Table 6.

From Table 5 and Table 6, we clearly see that LNB again outperforms all baselines on
the two datasets. Although in helping future domain learning on the dataset in the balanced

5. In Table 3, the F1-scores (56.62) for LSC is not the same as that reported in Chen et al. (2015) because
we used 80% reviews of each past domain for training while Chen et al. (2015) used all reviews for
training because we need to test on past domains, while Chen et al. (2015) does not do that.
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Table 5: Average F1-score of the negative class (in natural class distribution) over 19 pre-
vious domains for each sequence.

Task-Sequence NB-T NB-S NB-ST SVM-T SVM-S SVM-ST LSC LLV SRK LNB

S1 43.04 49.66 54.25 51.16 50.21 57.34 54.89 44.25 51.43 63.80
S2 44.42 51.16 51.98 51.80 51.13 58.62 53.93 44.32 48.69 63.56
S3 42.35 49.37 52.29 49.99 46.70 59.60 51.80 44.76 50.78 63.62
S4 42.64 42.22 45.07 50.60 45.22 54.90 50.15 43.87 48.54 63.66
S5 42.65 46.16 51.90 50.05 49.54 59.35 48.43 44.46 47.82 63.39
S6 42.48 45.56 52.10 50.50 49.30 60.16 53.45 43.83 51.74 63.64
S7 45.63 46.28 52.21 51.44 50.15 59.29 52.02 46.78 50.31 65.09
S8 43.05 50.74 51.34 51.16 48.96 57.52 52.64 44.25 50.56 63.80
S9 43.15 49.61 50.78 50.72 48.41 58.08 54.14 43.15 51.11 63.30
S10 42.48 51.23 52.26 50.50 48.95 57.11 51.05 43.83 49.25 63.64

(↑) Ave.1 43.19 48.20 51.42 50.79 48.86 58.20 52.25 44.35 50.02 63.75

1 (↑) Ave. denotes the average value over the above 10 task sequences (S1, ..., S10).

Table 6: Average accuracy of two classes (in balanced class distribution) over 19 previous
domains for each sequence.

Task-Sequence NB-T NB-S NB-ST SVM-T SVM-S SVM-ST LSC LLV SRK LNB

S1 78.81 71.84 77.76 76.57 73.42 80.26 81.84 79.47 80.29 85.26
S2 78.15 71.71 78.55 76.18 69.73 78.68 81.97 80.26 81.17 84.74
S3 78.55 73.02 79.86 75.92 71.31 78.55 81.18 79.21 79.96 84.60
S4 78.29 70.00 78.55 75.79 69.34 76.97 79.99 79.07 79.84 84.74
S5 78.16 71.97 77.50 75.65 71.97 80.26 80.65 78.94 79.52 84.87
S6 78.68 68.55 80.26 75.92 67.89 76.71 81.84 79.60 80.01 85.26
S7 78.68 69.73 77.76 75.52 69.34 77.23 79.21 79.34 80.25 84.47
S8 78.81 71.44 80.39 76.57 71.84 79.21 82.36 79.47 81.13 85.26
S9 78.95 71.97 79.21 76.71 71.05 80.26 81.57 79.60 81.65 85.26
S10 78.68 72.10 78.29 75.92 71.97 80.92 80.39 79.60 80.30 85.26

(↑) Ave. 78.57 71.23 78.81 76.07 70.78 78.90 81.10 79.46 80.41 84.97

class distribution, LNB is only slightly better than LSC (see Table 4), the ability of LNB to
improve past domain models using future knowledge clearly shows its superiority to LSC.

4.4. Effect of Number of Future Domains

As our main contribution is to go back to help the past domain models without retraining,
here we empirically evaluate the effects of our model using different number of new/future
domains (denoted by #future domains). In this experiment, we treat the first domain in
each domain sequence (see Figure 2) as the target domain and vary the number of future
domains (max is 19). For each domain sequence, we record the test results with different
number of future domains. The curve of the average test results over 10 domain sequences
is shown in Figure 3. The curve clearly shows that LNB performs better with more future
domains. This indicates that LNB indeed has the ability to go back to improve the past
domain models using future knowledge.
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Figure 3: Effect of #future domains on LNB. (Left): F1-scores of negative class with #fu-
ture domains in the natural class distribution. (Right): Accuracy of two classes
with #future domains in the balanced class distribution.

4.5. Running Time

For the running time experiment, we take domain sequence S1 in Figure 2 as an example.
We recorded the running time of each method (except for SRK because SRK used a different
running environment than the others as introduced early) in the previous task evaluation.
Due to the space limitation, here we only give the results on the dataset in the natural class
distribution because the results for the other are similar. The results are shown in Table 7.
From the table, we can see that LNB performs more efficiently than all lifelong learning
methods including those simply methods NB-S, NB-ST, SVM-S and SVM-ST. The reasons
are 2-fold: (1) LNB does not need iterative optimization, whereas SVM-S, SVM-ST and LSC
need. (2) LNB accumulates knowledge from each new domain. Updating the knowledge
takes O(|V |), where |V | is the vocabulary size, as discussed in the computational complexity
section. NB-S, NB-ST, SVM-S, SVM-ST and LLV do not accumulate knowledge. That is,
they need to retrain for each target domain.

Table 7: Running time (in seconds) of each method on the dataset in the natural class
distribution.

Method NB-T NB-S NB-ST SVM-T SVM-S SVM-ST LSC LLV LNB

running time 7.915 21.309 28.035 12.011 230.070 273.800 45.211 312.641 11.470

5. Conclusions

This paper studied a new lifelong learning setting where the system can use the knowledge
learned in future tasks to improve past task models with no retraining using the training
data of the past tasks. We proposed a novel approach in this new lifelong learning setting
for sentiment classification by exploiting the generative model parameters of näıve Bayes.
Extensive experiment results on 20 product domains from Amazon.com showed the effec-
tiveness of the proposed approach. We believe that this new setting is a promising direction
for lifelong learning because we humans often learn new knowledge to solve past problems
and future problems.
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