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Abstract

Medical image classification is one of the fundamental research topics in the domain of
computer-aided diagnosis. Although existing classification models of the natural image can
produce promising results using deep convolutional neural networks in some cases, it is
difficult to guarantee that these models can generate promising performance for medical
images. To bridge such a gap, we propose a novel medical image classification method for
brain tumors in this paper, termed as Discrimination Oriented Network (DONet). Inspired
by the attention learning mechanism of the human brain, we first propose two categories
of attention learning modules, i.e., the Cascaded Attention Learning (CAL) and the Dual
Attention Learning (DAL), which can learn the discrimination information in both the
spatial-wise and the channel-wise dimensions in a fine-grained manner. By the CAL and the
DAL, the attention information of different dimensions is calculated in a series manner (for
cascaded) and a parallel manner (for dual), respectively. To demonstrate the superiority of
our proposed modules, we implement the CAL and the DAL on the Deep Residual Network
(ResNet) for brain tumor classification. Compared with the ResNet, experimental results
show that the DONet has a significant improvement in accuracy. Moreover, compared with
state-of-the-art classification methods, the DONet can also achieve better performance.

1. Introduction

The brain tumor is a common type of cerebral disease and the advanced one is prone to
cancerization, which can usually cause high clinical mortality. Fortunately, a timely and
individualized treatment plan can relieve patients’ pain and prolong their life expectancy
in practice Pandiselvi and Maheswaran (2019). However, it is time-consuming and painful
for patients to classify the brain tumor via pathological analysis, such as biopsy or spinal
tap Giulioni et al. (2019). To address this problem, the classification methods for brain
tumors using the image processing technology with computer vision methods have attracted
a lot of attention in recent years Vallée et al. (2018). Particularly, methods based on
the Deep Convolutional Neural Networks (DCNNs) have made tremendous progress and
outstanding performance.

Although some existing DCNNs methods have proved that the representative learning
ability can be further improved with deeper networks within limits, the degradation problem
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Figure 1: Illustration of the Discrimination Oriented Network (DONet) for brain tumor
classification. GAP, GBM, PCNSL and CTS means Global Average Pooling,
Glioblastoma, Primary Central Nervous System Lymphoma, Common Tissues
respectively.

may occur in these deeper networks suffering from the low convergence rate. To address
this problem, the ”residual connection” is proposed in the Deep Residual Network (ResNet)
to skip some unimportant layers spontaneously without additional parameters He et al.
(2016). ResNet is an effective network structure, and numerous works have demonstrated
its preeminence. In recent years, inspired by the visual perception of the human brain, state-
of-the-art methods demonstrated that the performance of DCNNs models can be improved
by explicitly modeling the inter-dependencies between the channels or the spatial positions
of their convolutional features Wang et al. (2017).

Because of the uncertainty of location, shape, and size of brain tumors, it is a challenging
task to classify brain tumors with only the image information. Although many methods
have been proposed in recent years Afshar et al. (2018), there are still three intractable
problems: (1) Lack of training samples. Usually, there are only few annotated training
images in the medical image dataset. Therefore, it is difficult for DCNNs models to achieve
satisfactory performance since the scarce training samples cannot make the DCNNs models
reach their optimization. (2) The between-class variation (BV) is small, while the within-
class variation (WV) is large. The small BV implies that different categories of brain tumors
usually have very similar appearances, while the large WV implies that even for the same
category of brain tumors, their appearances are not always uniform. (3) Uncertainty of
brain tumor status. Because of the extreme complexity of brain structure, the status of
a brain tumor is also hypercomplex. There are usually problems of occlusion, interference
and invalid information for the classification of brain tumors. To make matters worse, some
pivotal information about the lesion may be obscured by normal tissue in the brain, making
it difficult to classify tumors.
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In this paper, we propose a novel framework for brain tumor classification, termed
as the Discrimination Oriented Network (DONet), illustrated in Figure 1. Recalling that
the attention learning mechanism has advantages of discriminative learning, we designed
two attention learning modules to capture visual features dependencies in the channel and
spatial dimensions respectively, i.e., the Cascaded Attention Learning(CAL) block and the
Dual Attention Learning (DAL) block. Specifically, the channel attention learning module
is used to capture the channel dependencies among different feature maps and assign a
weight to each channel with a weighted summation of all channels. At the same time, the
spatial attention learning module is used to capture spatial correlations among different
coordinates in a specific feature map and assign a weight to each feature grid with the
similar weighted summation of all coordinates. The CAL block is composed of the spatial-
wise weighted feature maps and the channel-wise weighted feature maps in series, while
the DAL block is formed by parallel connection of the spatial-wise weighted feature maps
and the channel-wise weighted feature maps. Based on the proposed CAL and DAL block,
we can build two different forms for DONet, which can quickly focus on certain spatial
locations and channels, whose features have strong discriminative information inside. To
demonstrate the superiority of DONet, experiments are carried out on our internal brain
tumor dataset, which consists of two categories of common brain tumors and a category of
common tissue with magnetic resonance imaging images.

Our main contributions can be summarized as follows: (1) Two novel attention learning
blocks are proposed, i.e., CAL and DAL, to capture visual features dependencies in the
channel and the spatial dimensions at the same time. (2) We design and implement a novel
medical image classification framework with two forms, named as DONet. The learning
blocks make the DONet have a strong discriminative learning ability, which is very suitable
for the classification task of medical images. (3) To demonstrate the superiority of the
DONet, we implement the classification of brain tumors on our internal dataset. Compared
with the baseline, DONet can provide a significant improvement in both quantitative and
qualitative metrics. Experimental results demonstrate the superiority of DONet.

2. Related Work

2.1. Medical Image Classification

Most current traditional pathological examinations make patients experience a long and
painful diagnostic process for brain tumors Giulioni et al. (2019). To solve this problem, re-
searchers combine medical imaging and image processing technology with traditional patho-
logical diagnosis approaches. In recent years, magnetic resonance imaging images have been
widely used for medical image classification Reddy et al. (2019). Recently researchers have
proposed many brain tumor classification methods that make use of shallow features such as
histogram of oriented gradients, local binary patterns, discrete wavelet transformation Shree
and Kumar (2018). They employ classifiers such as support vector machine, random for-
est to classify brain tumors Shree and Kumar (2018). However, the expression ability of
representations generated by classical feature extractors is limited, which makes traditional
models unable to make full use of image information. Moreover, the computation cost of
classical models increases with the number of data samples, which makes the computation
cost beyond acceptance.

365



Zhang Zhang Xiang

2.2. Deep Convolutional Neural Networks models

With the development of deep learning, Deep Convolutional Neural Networks (DCNNs)
models have shown their potential in many domains, such as image classification, semantic
segmentation, and object detection etc Bai et al. (2018). Researchers attempted to train
networks with deep structures because previous studies have proven that the increasing
depth can enhance the semantic information for the features extracted by networks. Thus,
many DCNNs models such as Very Deep Convolutional Networks Simonyan and Zisserman
(2014), GoogLeNet Szegedy et al. (2015) or Inceptions Szegedy et al. (2016) have been
proposed in recent years. However, classical DCNNs models may suffer from the problems
of low convergence rate which become the obstacle of deep networks. The degradation
problem can be addressed by Deep Residual Network (ResNet) through the identity skip
connections Wu et al. (2018). ResNet provides a stable backbone for many models and
makes them achieve developments for many fields.

2.3. Self-attention Learning

Under the inspiration of the human visual system, self-attention mechanisms are proposed
to learn a distribution of weights through DCNNs models themselves, which helps DCNNs
models concentrate on discriminate features Cao et al. (2018). The self-attention mecha-
nisms employed in DCNNs models mostly use feature maps with high semantic information
in deep layers to guide the learning process of feature representations with low semantic
information in shallow layers. Researchers mainly concentrate on self-attention mechanisms
in spatial dimension Jaderberg et al. (2015) and channel dimension Hu et al. (2018). Spatial
attention helps focus more attention on regions that play a crucial role in visual tasks, while
channel attention is a process for semantic attribute selection.

3. Our Approach

In this section, based on the channel-wise and the spatial-wise attention learning, we first
design two kinds of attention learning blocks for Deep Convolutional Neural Networks (DC-
NNs), i.e., the Cascaded Attention Learning (CAL) block and the Dual Attention Learning
(DAL) block. Then, on the basis of CAL block and DAL block, two different forms of
brain tumor classification networks based on attention learning is established. Since CAL
and DAL have advantages of discriminative learning, we name the proposed network as
Discrimination Oriented Network (DONet).

3.1. Cascaded and Dual Attention Learning

To seek out important features with different channels and spatial coordinates at the same
time, intuitively, we combine two different attention learning mechanisms. Suppose we
have a bunch of deep learning feature maps U ∈ RC×H×W as U = [u1,u2, ...,uC ] which
are generated by a DCNNs model with an arbitrary input image, where ui ∈ RH×W ,
i = 1, 2, ..., C is the channel dimensions. Therefore, the attention weight can be generated
by the attention learning function as:

W = Att(U). (1)

366



Cascaded and Dual: Discrimination Oriented Network for Brain Tumor Classification

𝑪 ×𝑾×𝑯

𝑪× 𝟏 × 𝟏 𝑪 ×𝑾×𝑯

GAP ReLU Sigmoid

𝑪 × 𝟏 × 𝟏

(a) Channel-wise Attention Learning Module

𝑪 ×𝑾×𝑯

𝟏×𝑾×𝑯𝑪/𝟐×𝑾×𝑯

𝟏×𝑾×𝑯𝑪/𝟐×𝑾×𝑯

Sigmoid

(b) Spatial-wise Attention Learning Module

Figure 2: Architectures of the used Channel-wise Attention Learning (CAL) Module and
the Spatial-wise Attention Learning (SAL) Module.

Usually, the attention learning function contains two fundamental forms: channel-wise at-
tention and spatial-wise attention. The channel-wise attention learning function is described
as:

Wcha = σ1(FC2(δ(FC1(GAP (U),Wc
1)),W

c
2)), (2)

where Wcha ∈ RC×1×1 denotes the weight of channel-wise attention. GAP denotes the
Global Average Pooling, FC denotes the Fully Connected layer, Wc

1,2 denotes the parame-
ters in channel-wise attention learning module. δ denotes the ReLU function, σ denotes the
Sigmoid function. Figure 2 (a) shows an illustration of the channel-wise attention learning.

W1
spa = Conv21(Conv11(U,Ws,1

1 ),Ws,2
1 ), (3)

W2
spa = Conv22(Conv12(U,Ws,1

2 ),Ws,2
2 ), (4)

Wspa = σ2(W
1
spa + W2

spa), (5)

where Wspa ∈ R1×H×W , Conv denotes the convolutional operation, Ws
1,2 denotes the

parameters in the spatial-wise attention learning module. For the spatial-wise attention
learning function Wspa, a spatial-wise Sigmoid function is used to find out the focal spatial
coordinates. Figure 2 (b) gives an illustration of the spatial-wise attention learning module
used in this work. Based on the attention learning weights generated by Eq.(2) and Eq.(5),
we can obtain the weighted feature maps as:

Uspa = U ·Wspa, Ucha = U ·Wcha, (6)

where Uspa ∈ RC×H×W denotes the spatial-wise weighted features and Ucha ∈ RC×H×W

denotes the channel-wise weighted features.
Based on Eq.(6), we further propose two forms of enhanced attention learning blocks, as

shown in Figure 1 (b) and Figure 1 (c), i.e., the CAL block and the DAL block, which can
weight the features in the spatial-wise and the channel-wise simultaneously. Specifically, the
CAL block is composed of the spatial-wise attention learning and the channel-wise attention
learning in series, while the DAL block is composed of parallel connection of the spatial-wise
attention learning and the channel-wise attention learning. The CAL block Ucal is modeled
as:

Ucal = β Ucha(Utem) + Utem, (7)
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where
Utem = α Uspa + U. (8)

The DAL block Udal is modeled as:

Udal = WT (α Uspa + β Ucha) + U, (9)

where WT is the weight parameter to be learned, α and β are two hyper-parameters in the
range [0, 1] and α + β = 1. The spatial location information and the channel information
of feature maps are taken into account in the CAL block and DAL block at the same time.
Therefore, the discriminative ability can be enhanced in these two blocks.

3.2. Residual Cascaded and Dual Learning Block

CAL and DAL are two generalized attention learning blocks, which can be used in any
deep learning model to enhance its discriminative learning ability. Recall that the Deep
Residual Network (ResNet) He et al. (2016) has the advantage of small sample learning, it
can be used to solve the problem of scant training samples in medical image classification.
Therefore, we try to fuse the CAL and DAL blocks into the residual block for brain tumor
classification. As shown in Figure 1 (b) and Figure 1 (c), for the DAL block, the residual
concatenation is added into the sum of the two attention modules; for the CAL block, the
residual concatenation is added into the result of the spatial-wise attention and the channel-
wise attention, respectively. We name the basic residual block with the CAL block and DAL
block as ResCAL block and ResDAL block, respectively. In the network implementation,
the residual attention learning block is added into the output of the last convolution layer
of each residual block from Stage2 to Stage5. The weighted features are merged into the
residual features as the output of the current block. Therefore, output with the CAL block
Outcal can be expressed as:

Outcal = F (U) + UResCal, (10)

where
UResCal = β Ucha(URestem) + URestem, (11)

and
URestem = α Uspa + F (U) + U, (12)

where F (U) is the residual features. Output with the DAL block Outdal is expressed as

Outdal = F (U) + Udal. (13)

3.3. Discrimination Oriented Network

With the ResCAL block and the ResDAL block, we can establish an attention-based image
classification DCNNs model with any depth. In this paper, the ResNet18 and the ResNet50
are selected as two baselines for brain tumor classification, which are widely used in many
deep learning tasks and their learning abilities have been fully recognized and verified. For
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Table 1: Network architectures of ResNet18, ResCALNet18, ResDALNet18, ResNet50,
ResCALNet50 and ResDALNet18. ” + ” means that this is a complete Stage
rather than a commonplace convolution operation.

Layer name Output size ResNet18 ResCALNet18 ResDALNet18 ResNet50 ResCALNet50 ResDALNet50

Conv1+ 112 × 112 Conv, 7 × 7, 64, stride 2

Conv2+ 56 × 56
Max pool, 3 × 3, stride 2

3 × 3, 64

3 × 3, 64

 × 2


3 × 3, 64

3 × 3, 64

CAL

 × 2


3 × 3, 64

3 × 3, 64

DAL

 × 2


1 × 1, 64

3 × 3, 64

1 × 1, 256

 × 3


1 × 1, 64

3 × 3, 64

1 × 1, 256

CAL

 × 3


1 × 1, 64

3 × 3, 64

1 × 1, 256

DAL

 × 3

Conv3+ 28 × 28

3 × 3, 128

3 × 3, 128

 × 2


3 × 3, 128

3 × 3, 128

CAL

 × 2


3 × 3, 128

3 × 3, 128

DAL

 × 2


1 × 1, 128

3 × 3, 128

1 × 1, 512

 × 4


1 × 1, 128

3 × 3, 128

1 × 1, 512

CAL

 × 4


1 × 1, 128

3 × 3, 128

1 × 1, 512

DAL

 × 4

Conv4+ 14 × 14

3 × 3, 256

3 × 3, 256

 × 2


3 × 3, 256

3 × 3, 256

CAL

 × 2


3 × 3, 256

3 × 3, 256

DAL

 × 2


1 × 1, 256

3 × 3, 256

1 × 1, 1024

 × 6


1 × 1, 256

3 × 3, 256

1 × 1, 1024

CAL

 × 6


1 × 1, 256

3 × 3, 256

1 × 1, 1024

DAL

 × 6

Conv5+ 7 × 7

3 × 3, 512

3 × 3, 512

 × 2


3 × 3, 512

3 × 3, 512

CAL

 × 2


3 × 3, 512

3 × 3, 512

DAL

 × 2


1 × 1, 512

3 × 3, 512

1 × 1, 2048

 × 3


1 × 1, 512

3 × 3, 512

1 × 1, 2048

CAL

 × 3


1 × 1, 512

3 × 3, 512

1 × 1, 2048

DAL

 × 3

GAP 1 × 1 Global Average Pooling

Output 3 Fully Connected Layer

the sake of distinction, the ResNet that has the ResCAL block is named as ResCALNet,
and the ResNet that has the ResDAL block is named as ResDALNet. Since the ResCALNet
and the ResDALNet both have a strong discrimination learning ability, we call these two
models as DONet.

The detailed network structure is shown in Table 1. ResNet18 and ResNet50 have a
similar structure except for convolution kernel sizes in some blocks. Both networks start
with a 7×7 convolution kernel, and they are then connected to a maximum pooling layer for
down-sampling. After that, four consecutive Stages1 are stacked together, with two blocks
(2, 2, 2, 2) for each Stage in ResNet18 and three to six blocks (3, 4, 6, 3) for each Stage
in ResNet50. Moreover, each block of the ResNet18 is composed of two consecutive 3 × 3
convolution layers and each block of the ResNet50 is composed of one 1 × 1 convolution
layer, one 3× 3 convolution layer and one 1× 1 convolution layer. At last, a global average
pooling layer and a fully connected layer are used for classification.

4. Experiments

In this section, we first briefly introduce the evaluation metrics and the experimental dataset.
Then, we present the implementation details in the training stage. After that, experimental
results under different settings are compared and analyzed. At last, to make the experimen-
tal results more intuitionistic, we visualize features of different attention learning methods.

1. We follow feature pyramid networks Lin et al. (2017) to define that layers producing feature maps with
the same spatial size are in the same network Stage.
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Compared with state-of-the-art image classification methods on brain tumors, the validity
of the proposed Discrimination Oriented Network (DONet) is further confirmed.

4.1. Evaluation Metrics

We select the quantitative metric and the qualitative metric to evaluate the DONet. By
the quantitative metric, we refer to the accuracy, the sensitivity, the specificity, and the
Area Under the receiver operating characteristic Curve (AUC). Among these metrics, the
accuracy is used to measure the ratio between the number of samples correctly predicted
and the total number of samples, which is defined as:

accuracy =
TP + TN

TP + FN + TN + FP
, (14)

where TP , FN , TN and FP denote the True Positive, the False Negative, the True Negative
and the False Positive respectively. The sensitivity and the specificity are used to determine
whether a patient has the brain tumor (actually a binary classification task) which are
expressed as:

sensitivity =
TP

TP + FN
, specificity =

TN

TN + FP
. (15)

Besides, AUC is used as a composite metric to reflect the sensitivity and specificity with
continuous variables, and each point on the AUC curve can reflect the sensitivity to the
same signal stimulus. The definition of AUC is expressed as:

AUC =

∫ 1

0
tpr(fpr)dfpr = P (X1 > X0), (16)

where tpr is the true positive rate, fpr is the false positive rate, X0 and X1 are confidence
scores for the negative and the positive instance, respectively.

In addition to the quantitative evaluation metrics mentioned above, by the qualitative
metric, we refer to the Classification Activation Mapping (CAM). As proposed in Zhou
et al. (2016), we name the feature grid (i, j) in the C-th channel from feature maps of the
global average pooling layer as fc(i, j) and we define Mt as the CAM for class t, where each
feature grid Mt(i, j) can be expressed as:

Mt(i, j) =
∑
c

Wt
cfc(i, j), (17)

where Wt
c indicates the weight from the C-th channel to class t. The Mt(i, j) denotes

contributions made by feature grid (i, j) to classifying an image to class t. The final CAM
can be obtained by up-sampling the current class activation maps with bilinear interpolation
operations.

4.2. Dataset

Experiments are carried out on our internal brain tumor image dataset, which includes 215
individuals with the resting state Magnetic Resonance Imaging (MRI) images. The data
collection began in 2008 and ended in 2018. A total of 10 years of clinical brain tumor
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Table 2: Statistical properties of brain tumor dataset.

GBM PCNSL CTS

Sex

Number 87 63 74

Male 58 34 30

Female 29 29 44

Age

0-30 3 2 5

30-60 53 37 47

> 60 31 24 22

Mean Age 55.4 56.8 52.4

images were collected, including 80 Glioblastoma (GBM) individuals, 61 Primary Central
Nervous System Lymphoma (PCNSL) individuals, and 74 Common Tissue (CTS) individ-
uals. MRI images of each patient are composed of dozens of different modalities, including
the T1 Weighted (T1), the T2 Weighted (T2), and the Fluid Attenuated Inversion Recovery
(FLAIR), etc. The data of each modality is composed of images from three different angles:
coronal view, sagittal view, and horizontal view. All images were investigated on a Mag-
netom Trio 3T (Siemens AG, Germany) scanner, collected in the Nanjing Brain Hospital,
Jiangsu, China. Figure 3 shows some demo images in this dataset under different modali-
ties with the horizontal view, in which the left two columns are the GBM individuals, the
middle two columns are the PCNSL individuals and the right two columns are the CTS
individuals. Each modality contains a series of images, and each image corresponds to a
different slice of space in the brain. For the sake of display convenience, we only select some
of the images as demos. All patients volunteered to participate in the study prior to data
collection. To protect the patients’ privacy, all individual information is hidden in MRI
images. The collected parameters for three common modalities are as follows:

• T1: TR=300 ms, TE=2.7 ms, slice thickness=4 mm, 25 slices, flip angle=90, image
size=640× 640× 25 px, voxel resolution=0 : 313× 0 : 313× 4 mm3.

• T2: TR=6000 ms, TE=93 ms, slice thickness=5 mm, 20 slices, flip angle=90, image
size=640× 640× 20 px, voxel resolution=0 : 719× 0 : 719× 2 mm3.

• FLAIR: TR=8000 ms, TE=97 ms, slice thickness=5 mm, 20 slices, flip angle=150,
image size=640× 640× 20 px, voxel resolution=0 : 449× 0 : 449× 5 mm3.

The corresponding statistical properties of the investigated individuals are summarised
in Table 2. From Table 2, it can be seen that the distribution of this dataset is scientific and
there is no imbalance problem, which can be used as a standard experimental dataset. Before
using brain tumor images to train the DONet, all original MRI images with Digital Imaging
and Communications in Medicine (DICOM) format are transformed into 256 × 256-pixel
two-dimensional images with jpg format by the RadiAnt DICOM software 2. The images of
each type of brain tumor are randomly divided into 70% training set, 10% validation set and
20% test set according to the upward integer number, i.e. the training set includes 56 GBM
individuals, 42 PCNSL individuals and 52 CTS individuals; the validation set includes 8

2. https://www.radiantviewer.com/en/
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T1

(a) GBM

T2

Flair

(b) PCNSL (c) CTS

Figure 3: Demo samples of the three modalities with the horizontal view. Images of the
same column belong to the same patient.

GBM individuals, 7 PCNSL individuals and 8 CTS individuals; the test set includes 16 GBM
individuals, 12 PCNSL individuals, and 14 CTS individuals. In the following part, we will
verify the classification performance of DONet on different modalities through comparative
experiments.

4.3. Implementation Details

Our models are pre-trained on ImageNet Deng et al. (2009). Before training on brain tumor
images, we first implement data augmentation as Zhang et al. (2019), which includes random
rotation from −15◦ to 15◦, random horizontal and vertical flip transformation, random scale
(the scale factor is selected from [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]). After that, all images
are resized into 224×224 with the bilinear interpolation as Sarkar et al. (2019). For the sake
of simplicity, all data augmentation procedures are collectively referred to as Multi-Scale
(MS) process in this paper. For optimization of ResNet18 and its extensions, we adopt the
Adam optimizer and the initial learning rate is 0.00005, rate decay is set to 0.8 in every
5000 iterations. For optimization of ResNet50 and its extensions, we adopt the Nesterov
momentum optimizer with momentum=0.9 and the initial learning rate is 0.001, rate decay
is also set to 0.8 in every 5000 iterations. The batch size is set to 64 for ResNet18 and its
extensions, while the batch size is 32 for ResNet50 and its extensions. The weight decay is
1e-4 and the maximum iteration is set to 160000. For each experiment, we run it for five
times and report the mean and the Standard Deviation (STD) to ensure that our results
are reliable.

4.4. Ablation Study

In the first experiment, we mainly explore the performance of ResCAL block, ResDAL block,
MS on ResNet18 and ResNet50, respectively. α and β are set to 1. Experiments are carried
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Table 3: Classification performance of the ablation study.

Methods ResCAL ResDAL MS
ResNet18 ResNet50

ACC AUC Sensitivity Specificity ACC AUC Sensitivity Specificity

Baseline 75.0±1.92 84.2±2.50 78.4±3.52 79.0±3.91 76.9±3.48 85.2±1.04 79.7±2.95 80.3±3.02

Baseline X 76.2±2.41 85.9±3.58 80.0±0.92 80.2±3.63 78.4±1.69 87.9±0.57 81.0±2.01 82.5±2.27

DONet X 76.6±3.49 86.1±3.91 80.7±2.90 80.5±2.06 78.5±2.65 87.7±4.20 80.9±2.47 80.8±3.74

DONet X 76.8±3.03 86.5±3.70 81.2±3.10 81.0±0.98 78.7±1.46 87.8±2.51 80.4±2.52 81.8±3.95

DONet X X 77.4±2.49 88.7±0.39 82.3±1.38 81.7±4.34 79.8±2.47 89.8±1.64 82.9±2.41 83.4±1.24

DONet X X 77.7±2.94 89.1±3.26 82.4±4.15 82.1±1.53 80.1±1.67 90.1±2.21 83.6±2.67 83.7±1.89

out on three common modalities (T1, T2, FLAIR) at the same time, that is images of three
modalities are mixed up without discrimination. ACC is used to measure the classification
accuracy of three categories, i.e. the GBM, the PCNSL, and the CTS. AUC, Sensitivity, and
Specificity are used to measure the condition of whether there is a brain tumor, i.e. the CTS
and others. Experimental results with their STD on the test set are shown in Table 3. The
results of the baseline are based on ResNet18 and ResNet50, respectively. From Table 3, we
can draw the following conclusions: (1) Compared to ResNet18 and its extensions, ResNet50
and its extensions can achieve a better performance on four evaluation metrics, which implies
that ResNet50 and its extensions can achieve a closer fit to the brain tumor images; (2) MS
can obviously improve the performance, no matter for the baseline or the DONet. The
improvement is 1.3% and 1.4% in the ResCALNet50 and ResDALNet50. It suggests that
the input of multi-scale images plays an important role in medical image classification.
(3) Compared to ResCALNet, ResDALNet can achieve a better performance both on the
individual-scale and multi-scale images. There is a 1.7% improvement in accuracy with the
multi-scale images for ResDALNet, which indicates that the ResDAL block is more suitable
for the classification of brain tumors.

In the second experiment of the ablation study, we mainly explore the effect of α and β on
the classification performance with images of three modalities. The weight for the spatial
attention branch α is set to [0, 0.1, 0.2, 0.4, 0.8, 1], respectively, and the corresponding
weight for the channel attention branch β is set to [1, 0.9, 0.8, 0.6, 0.2, 0]. When α = 0, it
implies that we only consider the channel attention in our model, vice versa. Experimental
results of the DONet on the test set are shown in Figure 4. As we can see in Figure 4, the
DONet can achieve the best results when α = 0.4 and β = 0.6. Besides, compared with
the ResCALNet, the ResDALNet can achieve better performance with the same α and β.
Further, we can conclude that the performance of the classification network is improved by
setting from α = 0 to α = 1. It indicates that the proposed attention learning model and
the original ResNet are internally consistent, otherwise the performance of the network will
decline to a certain extent.

4.5. Results on Different Modalities

MRI images with different modalities can not only reflect the human anatomy but also reflect
physiological functions, such as blood flow or cell metabolism. To seek out which modality is
more suitable for the classification of brain tumors, we survey classification performance for
brain tumors of different modalities in this section. We divide brain tumor images set into
70% training set, 10% verification set and 20% test set according to different modalities,
i.e. the common modalities of T1, T2, FLAIR. Except for experimental images, other
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Figure 4: Effects of α on the experimental results with DONet18 and DONet50.

Table 4: Classification performance on different modalities.

Methods Basenet T1 T2 FLAIR
ResCAL ResDAL

ACC AUC Sensitivity Specificity ACC AUC Sensitivity Specificity

Baseline ResNet18 X X X 87.7±1.38 90.1±3.48 92.1±3.78 84.5±3.20 87.7±1.38 90.1±3.48 92.1±3.78 84.5±3.20

DONet18 ResNet18 X 76.5±3.23 86.5±0.93 86.2±1.47 76.1±3.09 76.2±3.61 87.9±1.50 86.2±2.69 77.8±0.29

DONet18 ResNet18 X 77.0±0.57 87.1±3.12 85.6±3.65 84.8±1.38 76.8±3.85 88.9±1.84 84.5±1.39 81.7±2.37

DONet18 ResNet18 X 88.0±0.28 92.1±1.27 93.3±2.18 86.8±4.24 88.3±0.12 93.5±0.43 93.0±1.06 85.2±1.38

DONet18 ResNet18 X X 76.2±2.61 86.8±1.63 86.3±0.91 73.1±3.96 76.6±0.79 87.5±2.45 86.2±2.98 79.3±4.40

DONet18 ResNet18 X X 84.3±1.52 88.5±3.73 87.4±3.82 80.3±1.12 84.9±3.90 89.2±3.31 89.2±1.06 85.9±2.10

DONet18 ResNet18 X X 86.3±3.75 91.8±4.10 92.0±0.28 81.5±2.42 86.7±3.36 90.8±4.30 91.9±3.41 86.4±0.83

Baseline ResNet50 X X X 90.2±3.27 94.0±1.65 92.1±1.74 91.1±2.64 90.2±3.27 94.0±1.65 92.1±1.74 91.1±2.64

DONet50 ResNet50 X 79.2±2.79 90.7±1.61 86.9±2.08 78.9±3.70 80.4±3.41 90.6±1.86 86.0±4.07 79.4±2.38

DONet50 ResNet50 X 80.8±1.32 89.9±3.24 83.3±1.35 85.0±2.98 80.6±2.55 88.7±4.11 83.9±1.97 84.8±2.52

DONet50 ResNet50 X 90.4±1.49 94.8±1.69 91.6±1.39 91.7±2.48 90.7±2.65 95.6±1.43 92.3±4.28 92.6±3.57

DONet50 ResNet50 X X 79.8±3.41 89.2±4.34 84.0±2.41 75.9±1.90 79.6±1.66 89.9±1.97 84.8±1.48 76.5±3.36

DONet50 ResNet50 X X 86.3±2.58 91.6±1.36 85.2±4.21 87.9±3.67 86.4±3.47 92.3±2.74 86.1±3.27 88.5±3.27

DONet50 ResNet50 X X 88.7±0.87 93.9±0.82 93.9±1.93 88.5±4.56 89.3±1.79 96.2±2.67 92.2±4.27 86.3±3.10

experimental settings in this section are consistent with the previous experiment. Table 4
shows the experimental results on the test set of three common modalities. Two baselines
are based on the multi-modality fusion of all modalities. As we can see from Table 4, the
FLAIR modality can achieve the best performance among these modalities. The accuracy
of the ResDAL block and the ResCAL block based on the ResNet50 is up to 90.7% and
90.4% respectively. T1 and T2 modalities have almost the same classification accuracy, but
the classification accuracy decreases when the two are fused together. The accuracy with
the ResCAL block of ResNet18 and ResNet50 is 76.2% and 79.8%, and the accuracy with
the ResDAL block of ResNet18 and ResNet50 is 76.6% and 79.6%, respectively. Models
based on the ResNet50 can achieve a better performance than that of ResNet18.

4.6. Comparison to the State-of-the-Art

In this subsection, we compare DONet with the existing state-of-the-art image classification
methods on Flair modality, including classification models for the natural scene and models
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Table 5: Performance comparison among different methods.
Methods Basenet ACC AUC Sensitivity Specificity

Baseline He et al. (2016) ResNet18 85.1±0.53 89.9±1.84 88.9±1.29 81.2±0.81

VGGNet19 Simonyan and Zisserman (2014) VGGNet 86.5±0.50 89.6±2.52 88.4±1.62 82.2±2.11

GoogLeNet Szegedy et al. (2015) GoogLeNet 85.9±2.01 89.4±2.85 88.8±2.62 83.5±1.79

Inception v3 Szegedy et al. (2016) Inception 87.3±2.45 93.1±1.91 88.6±4.31 83.0±2.15

ResNeXt18 Xie et al. (2017) ResNeXt 87.7±3.65 93.1±1.98 89.9±2.52 85.4±1.79

CANet Hu et al. (2018) ResNet18 87.1±0.30 92.4±1.09 90.2±1.06 85.8±4.24

SANet Jaderberg et al. (2015) ResNet18 86.9±0.33 92.0±1.62 87.1±2.04 83.3±1.03

ResCALNet18 ResNet18 88.0±0.28 92.1±1.27 93.3±2.18 86.8±4.24

ResDALNet18 ResNet18 88.3±0.12 93.5±0.43 93.0±1.06 85.2±1.38

Baseline He et al. (2016) ResNet50 87.8±0.85 93.9±1.71 89.0±1.54 83.5±2.28

FCRN+DRN Yu et al. (2016) ResNet50 88.3±1.36 93.7±2.38 90.6±3.01 84.8±3.65

Color Constancy+ResNet50 Matsunaga et al. (2017) Ensemble 88.1±2.07 94.9±3.86 92.0±1.85 84.7±1.08

Modified ResNet Bi et al. (2017) Ensemble 88.5±2.76 94.7±0.75 89.9±2.57 84.2±2.55

Multi-Scale+Inception v3 DeVries and Ramachandram (2017) Ensemble 88.3±1.31 94.3±2.66 89.2±2.78 84.8±3.54

ARL-CNN Zhang et al. (2019) ResNet50 88.9±2.37 95.1±1.23 91.7±1.19 86.2±1.58

CANet Hu et al. (2018) ResNet50 88.6±1.08 93.6±2.03 89.1±1.97 89.7±1.95

SANet Jaderberg et al. (2015) ResNet50 88.5±1.29 94.7±2.17 90.5±3.20 92.9±3.67

ResCALNet50 ResNet50 90.4±1.49 94.8±1.69 91.6±1.39 91.7±2.48

ResDALNet50 ResNet50 90.7±2.65 95.6±1.43 92.3±4.28 92.6±3.57

(a) Class activation mappings of ResNet50

(b) Class activation mappings of ResCALNet50

(c) Class activation mappings of ResDALNet50

Figure 5: Class activation mappings of different models with ResNet50 backbone.

for the medical images. In the case of the natural scene classification models, we refer
to the Very Deep Convolutional Networks (VGGNet19) Simonyan and Zisserman (2014),
GoogLeNet Szegedy et al. (2015), Inception v3 Szegedy et al. (2016), ResNeXt Xie et al.
(2017). In the case of the medical image classification models, we mainly refer to the
champion methods used in the International Skin Imaging Collaboration (ISIC) skin lesion
classification Codella et al. (2018), such as Yu et al. (2016), Matsunaga et al. (2017), Bi
et al. (2017), DeVries and Ramachandram (2017), Zhang et al. (2019). In order to make
sure that the comparison models are optimized, we use the consistent hyper-parameters in
their papers during training stage, including the learning rate, batch size, image size, max
iteration and training epoch. Experimental results on the test set are shown in Table 5. As
we can see in Table 5, the DONet can achieve a comparable result. Particularly, DONet
based on ResNet50 with the ResDAL block can achieve the best performance among these
models. Therefore, these results further verify the superiority of the proposed method.
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4.7. Visualization of CAM

As discussed in the above subsections, the DONet can achieve very competitive perfor-
mance with only the FLAIR modality. Inspired by previous literature, we hypothesize that
the performance improvement is due to the ability of self-attention learning modules that
can make the model capable of discrimination in the learning process. The ability of dis-
criminative learning enables useful areas to be emphasized in the learning process. That
is, self-attention learning modules give crucial areas more weight information, while some
areas with weak discriminability are given less weight or even ignored in the learning pro-
cess. To validate the hypothesis, we visualize the class activation mappings (CAM) with
the method proposed in Zhou et al. (2016) obtained by ResNet50 and DONet50 in Figure
5, in which (a) shows the CAM of the ResNet50, while (b) and (c) show the CAM of the
ResCALNet50 and the ResDALNet50, respectively. The brighter the region, the stronger
the discrimination ability of the region for classification. From Figure 5, we can draw the
following conclusions: (1) Both the model based on the self-attention learning mechanism
and the common CNN classification model can learn useful areas with the discrimination
ability, such as bright areas in Figure 5 (a), Figure 5 (b) and Figure 5 (c). This phenomenon
suggests that lesions of brain tumors are mostly found in the middle of the brain, while
those near the edges are generally not present. (2) Compared with the CNN model without
the attention learning mechanism in Figure 5 (a), the CNN model based on the attention
learning mechanism can learn some much smaller discriminating areas as shown in Figure
5 (b) and Figure 5 (c). More importantly, the model with smaller bright areas can achieve
better results in the classification of brain tumors, which indicates that the model based
on the self-attention learning mechanism can achieve better discrimination learning effect.
Some useless areas for the classification of brain tumors are ignored in the learning process,
so as to improve the efficiency of the model.

5. Conclusion

Inspired by the attention learning mechanism of the human brain, we propose a novel med-
ical image classification method for brain tumors, named Discrimination Oriented Network
(DONet) in this paper. We first propose two categories of attention learning mechanisms,
i.e., the Cascaded Attention Learning (CAL) and the Dual Attention Learning (DAL), which
can learn the discrimination information in both the spatial-wise and the channel-wise di-
mensions in a fine-grained manner. By the CAL and the DAL, the attention information
of different dimensions are calculated in a series manner (for cascaded) and a parallel man-
ner (for dual), respectively. We implement the CAL and the DAL on the Deep Residual
Network (ResNet) for brain tumor classification. Compared with the state-of-the-art classi-
fication methods, the DONet can achieve satisfactory performance. To make full use of the
structural advantages of deep learning networks, we will consider the combination of the
self-attention mechanism and some other advanced machine learning methods, such as hier-
archical neural architecture search, meta-learning and so on in the future. Besides, since the
annotation of medical images is very expensive, we also consider the use of semi-supervised
or weakly-supervised methods for the analysis and understanding of medical images.
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