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Abstract

In a software life cycle, bugs could happen at any time. Assigning bugs to relevant compo-
nents/developers is a crucial task for software development. It is also a tough and resource
consuming job. First, there are many components in a complex system and it is hard to
understand their interactions and identify the root cause. Second, the list of components
keeps growing for actively developed products and it is not easy to catch all updates. This
task also faces several challenges from the machine learning point of view: 1) the ground
truth is mixed with multiple levels of labels; 2) the data are severely imbalanced. 3). con-
cept drift as future bugs are unlikely to come from the same distribution as the historical
data. In this paper, we present a machine learning based solution for the bug assign-
ment problem. We build component classifiers using a multi-layer Neural Network, based
on features that were learned from data directly. A hierarchical classification framework
is proposed to address the mixed label problem and improve the prediction accuracy. We
also introduce a recency based sampling procedure to alleviate the data imbalance and con-
cept drift problem. Our solution can easily accommodate new data and handle continuous
system development/update.

Keywords: Bug triage, Hierarchical classification, Machine Learning Application, Imbal-
anced Data, Recency based sampling

1. Introduction

As more and more features and functionalities are added to a software system, it is inevitable
that software bugs will emerge. For example, nearly 1000 new bugs are reported each month
for a commercial software product that is developed by our organization. To fix them timely,
bugs have to be assigned to the right developers. In the industrial environment, personnel
changes (internal transfer/leaving company) are frequent, but software components and
their related developers are always well defined. Therefore, instead of directly assigning
to individual developers, we try to assign each bug to the component which is the root
cause of the bug. Then the bug can be resolved by the developers who are maintaining
the component. However, assigning bugs to the right components is a very challenging
task. First, there are usually many components (~ 200 for our product); just memorizing
their names is not easy. It is much more difficult to understand the interactions between so
many components and determine the root cause. In addition, the list of components keeps
growing, especially when the system undergoes significant updates. For instance, we have
observed new components almost every month during the past year. It is not trivial for bug
assigners to keep the up-to-date knowledge on all components. All these challenges make
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the bug assignment process time consuming and error prone. According to our Quality
Engineers, it often takes days or even weeks to get bugs assigned correctly. On the other
hand, the ever-growing bug reports offer us a large amount of historical data that we can
learn from. Therefore, we propose a machine learning based solution to alleviate the human
burden and speed up the process.

1.1. Problem Definition

We use JIRA to track bug reports. Each bug comes with its unique symptom, which is
elaborated in the “description” field in the JIRA ticket. We can also see the assigned
component for historical bugs in the “component” field. Our JIRA bug data set spans over
14 years and exhibits huge variations. It includes inputs from numerous people with all
kinds of reporting and writing styles. Since the software is used internationally, bug reports
include multiple languages. In addition, the lengths of bug descriptions vary substantially,
from one sentences to multiple paragraphs and hundreds of sentences. Figure 1 shows a
relatively short example:

There are two logs display in Usage and Access Log page after viewing a project in
workspace. Steps: 1. Login qe5. 2. Go to Workspace—Click an existing project to open
it. 3. Click Admin —Logs. 4. Click “Usage and Access Log”. 5. Observe Result: There
are two same logs about “Project Viewed”. Expect: There should only 1 log display.
Notes: 1. The issue does not occur if delete a project. The log of “Project Deleted” is
only 1 log. 2. No “Project Viewed” log displays if open a project on PNW today. But
we can see logs generated before, also have 2 same logs of “Project Viewed”.

Figure 1: An example bug description.

To understand the process of assigning bugs to related component, we introduce some
background about the “component” field in the JIRA database. Typically, a component
name contains two levels of information, e.g., “Reports & analytics: Segmentation”. The
component name suggests that it belongs to “Reports & analytics” in the group level com-
ponent (also called super-component in this paper) and “Segmentation” in the level of
fine-grained component (sub-component) within “Reports & analytics”. Currently, our
data contains 202 sub-components and 40 super-components. A super-component usu-
ally contains multiple sub-components. For instance, “Reports & analytics” has 17 sub-
components. Usually multiple teams of developers are connected to a super-component,
while a sub-component is typically maintained by a small team or even one developer. Ob-
viously, the more specific the component assignment, the more quickly the bug can reach
the responsible developer and get resolved. Thus, it is desirable to assign the corresponding
sub-component for each bug.

However, due to the challenging nature of the problem, sometimes human experts are
uncertain about which sub-component to assign for a bug. Nevertheless, they can attribute
the bug to a super-component because this is much easier with less choices (40 vs. 202
possible components). In our data set, over 1/3 cases were assigned super-component labels
only, e.g. “Admin Console”, instead of more specific component labels such as “Admin
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Console: Code Manager”. Consequently, the human labeled ground truth data is mixed with
both group level labels and fine-grained level labels. Those labels are not mutually exclusive
and can make the classification problem ill posed. Here is an example for explanation:
assuming there are six bugs which are evenly split between two sub-components: “Platform:
Billing” and “Platform: Export”. If one bug from each sub-component is assigned the
super-component label (“Platform” only), we will see 3 labels in the data set: “Platform:
Billing”, “Platform: Export” and “Platform”. Notice the “Platform” component contains
bugs from both sub-components. If we try to learn a classifier using these component labels
directly, i.e., treating the group component the same as the two fine-grained components,
the classification problem would be inherently flawed.

The task also involves severely imbalanced data as shown in Figure 2. From the ma-
chine learning point of view, each component is a class. There are 202 classes in the sub-
component level and the numbers of data for different classes vary significantly. In general,
standard learning algorithms expect balanced class distributions. For severely imbalanced
data, machine learning algorithms tend to overfit training data and perform unfavorably on
unseen data He and Garcia (2009). Another challenge from the machine learning perspec-
tive is the concept drift problem as the distribution of bugs is not stationary. For example,
let’s say that most bugs came from the “Data workbench” component in the previous quar-
ter, but the “Admin Console” component has more bugs this quarter, and next quarter
more bugs may arise from the “Platform” component. This is highly possible because com-
ponents have different development schedule. Usually bugs are likely to emerge from the
component that is actively evolving.

To use machine learning to solve the problem, we have to address these 3 issues: mixed
labels, data imbalance and concept drift. The remainder of the paper is organized as follows.
Section 2 describes our solution and how we address these machine learning challenges. Then
we discuss experiments in Section 3 and related work in Section 4. We conclude the paper
in Section 5.
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Figure 2: Distribution of the number of instances for all sub-component classes. The Y-
axis is the number of instances per class. The X-axis is the indexed label of sub-
components (the labels are omitted). The index is based on the first occurrence of
each class. The most common class has 1000x more instances than the uncommon
classes.
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2. Our Solution

We propose a novel hierarchical classification framework to handle the problem of mixed
ground truth labels. It contains a super-component classifier and a sub-component classi-
fier. The two classifiers are trained separately, using the same training pipeline. In Section
2.2, we describe how to build these component classifiers. Then we present the hierarchical
probability propagation and refining algorithm in Section 2.3. Note the word “hierarchical”
refers to the semantic relationship between the super-component and sub-component clas-
sifiers, not that the two classifiers run in a hierarchical fashion like previous work. Figure 3
illustrates how the hierarchical classification works when doing prediction. We will discuss
Hierarchical

more on this in Section 4.
Super-component
Classifier
refining
Sub-component ¢
Classifier result

Figure 3: The prediction workflow: the two classifiers run in parallel, then their results are
refined using Algorithm 2 and return to the user.

New bug

We also introduce a recency based sampling algorithm to tackle the problem of data
imbalance and concept drift. This algorithm manipulates the training data that is used by
the machine learning module.

2.1. Recency Based Sampling

As shown in Figure 2, the numbers of data instances vary significantly across different
component classes. The majority classes have overwhelmingly more data instances than that
of the minority classes. This problem has to be mitigated so the learned model can generalize
to unseen data. The concept drift problem comes from the following facts: 1). Components
that are under heavy development are likely to produce bugs. 2). Bugs are more likely
to emerge from components that produced bugs recently than components that are more
stabilized. These properties of bug reports have been demonstrated experimentally in Ye
et al. (2014); Jonsson et al. (2016). We take it into consideration and propose Algorithm
1, a recency based sampling process to make the training data more balanced and adapt to
concept drift. The “recency” of a bug measures the age of the bug, which is defined as the
number of days between the training date and the date that it was reported.

In Algorithm 1, the parameter 7 controls the probability of adding a data instance (bug
in this case) to the sample. For example, if 7 = A*, the most recently reported bug (age=0)
has 50% probability of being added, while a median-aged bug has 25% probability and the
oldest has 0 chance. The actually number of instances in .S will vary due to different bug
distributions. We set 7 = A*/100 in our experiments. Thus the most recent bugs are almost

809



ZHANG CHALLIS

Algorithm 1 Recency based sampling

1. Initiate an sample S = {}

2. Determine the threshold 7T, for separating the majority /minority classes.

T. = median({N;}), where N, is the number of instances in class C, € [1, M], where
M is the total number of classes.

3. For each data instance d; in the training data:

(a) Find its corresponding class C%. If Noi < T., add it to the sample S (keep
minority instances).

(b) Otherwise, sample the majority instances:

i. Calculate the probability p; of putting the data instance to S. p; = 1— ﬁii;,

where A; is the age of d;, A* is the maximum age of all bugs, 7 is a controlling
parameter.

ii. generate a random number r € [0, 1], if < p;, add it to the sample S.

4. Return S.

certain to be put to S, while old bugs are greatly reduced in the sample. Figure 4 shows the
distribution of bug ages in the original data vs. the resulting sample. This sampling process
will also change the ratio of data sizes between classes. Besides data instances of majority
classes being reduced in general, if most instances of a class happened in the distant past,
the sample S will contain few instances from the class. While for another class whose bug
instances happened recently, S will retain almost all its instances. So this sampling process
helps the learning module to focus more on components which have recent bug reports and
are prone to new bugs. The components with old bugs are in more stable condition and
less likely to produce new bugs; this property is implicitly encoded in the recency based
sampling procedure.

2.2. Building The Component Classifier

Based on the sampled bug instances, we train classifiers to predict which component is
responsible for a new bug. We first extract features from the bug description, and then feed
the feature vector to the machine learning module for training/prediction. The difference
is that training involves back propagation to minimize the training error, while prediction
requires only the forward pass.

2.2.1. FEATURE EXTRACTION

First, a language model is built offline based on a large corpus of bug descriptions, which
consists of JIRA bugs that are at least 180 days older than the current training date. This is
done in the following steps: 1). preprocessing, including tokenization, removing stop-words
and stemming. 2). build a word frequency matrix based on the processed text, which is
specific to the bug data set. Then Latent Dirichlet Allocation (LDA) Blei et al. (2003) is
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(a) Original data. (b) After sampling.

Figure 4: Distribution of bug ages before and after the recency based sampling. The X-axis
is the number of days since the bug has been reported. The older the bug, the
bigger the X value. The Y-axis is the number of instances for that time period.

used to extract a number of topics from this bug corpus. Each topic represents a distribution
of words.

Once the set of topics is extracted, we can represent any bug description as a distribution
of these topics. The weights of all topics form a fixed-size vector, which is used as the
feature vector for the bug. We empirically set the number of topics to be 500, based on
experimenting with different numbers. This compact yet discriminant feature enables us to
build predictive models using various machine learning algorithms.

2.2.2. BuiLD PREDICTIVE MODEL BASED ON NEURAL NETWORK

To learn the map between a bug’s feature vector and its associated human label (com-
ponent), we use a Deep Neural Network (DNN) model. After trying different network
structures, we adopted a DNN with 4 fully connected layers and Rectified Linear Unit
(ReLU) as the activation function. It achieved the best tradeoff between bias and vari-
ance for our problem based on our comparative study. We implemented the network using
PyTorch Paszke et al. (2017).

2.2.3. TRAINING OF SUPER-COMPONENT VS. SUB-COMPONENT CLASSIFIERS

The two classifiers are trained using the same pipeline. The only difference is that their
training data and labels are different. When training the sub-component classifier, we
discard those instances which do not have a sub-component label. Thus, every label in its
training data is a sub-component label and the mixed label problem is eliminated.

When training the super-component classifier, we aggregate sub-components to their
group level (super-component) labels. For example, all “Data workbench: xxx” labels are
converted to “Data workbench” (the corresponding super-component label). These cases
which were only given the super-component labels are also included in this group. After
aggregation, there are 40 group level super-component labels and their associated data
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instances. As opposed to the training of the sub-component classifier, the super-component
classifier is learned based on the entire training data and their grouped labels.

The super-component classifier has the advantage that it has more instances per class.
Usually the more training data, the more reliable the model. This is a clear advantage
over the sub-component classifier. On the other hand, the symptoms of bugs from differ-
ent sub-components might be quite dissimilar, although it is semantically meaningful to
aggregate fine-grained labels. As a result, the learning itself is more challenging for the
super-component classifier. The sub-component classifier has the exact opposite pros and
cons. Thus, the two classifiers are complementary to each other and we combine them to
improve the final result.

2.3. Hierarchical Refining

Denote the probability distribution of the super-component classification result as F;, and
the sub-component probability distribution as @7, where i € [1, k|, k is the number of super-
components, j € [1, f%], f* is the number of sub-components for the i*" super-component.
Qg is not on the same domain as F;, but they are semantically related; more specifically
there is a hierarchical relationship between the two classifiers. We improve the overall
performance by propagating probabilities between them using Algorithm 2.

Algorithm 2 Probability propagation and refining

1. Aggregate results over sub-components to obtain the corresponding group-level prob-
ability distribution.

fi
Qi = Z Q!
j=1
the result is a probability distribution over k super-components.

2. Update probability over super-components by stacking two probabilities P and Q.

A~

PZ‘:OéXPZ'—I—(l—CV)XQZ'

« is a parameter learned from validation data, so that the resulting P, achieves the
best accuracy on the validation data.

3. Update the probability for sub-components:
P x Q!

bk
©“="0

We first refine the super-component probability by stacking the two classifiers, then

propagate the probability down to the sub-component level. Qg will be higher if B is bigger
(because the super-component classifier assigns a higher probability to the i*" component).

If P, is smaller, Qf will be lower as well. Qg is still a probability distribution and sum to 1.
The proof is as follows:

812



SOFTWARE COMPONENT PREDICTION FOR BuG REPORTS

LA Y AN R
DDIDITED ) DEers 1)

i=1 j=1 i=1 j=1
E oA fi
P, .
-y Ay
i=1 ' =1
E A k
P -
=Y g x@=) R=
i=1 ¢! i=1

Our experiments confirm that this hierarchical framework improves system performance
across all metrics (accuracy and recalls). Moreover, we can achieve better accuracy without
speed loss: the super-component and the sub-component classifiers are independent of each
other and can proceed in parallel. During test time, they share the same input feature vector
- they only differ in the DNN model. The probability propagation and refining process in
Algorithm 2 only involves a few hundred summation/multiplication/division operations.
Thus the computational overhead is negligible and the performance is boosted without
sacrificing speed.

3. Experiments

We use the JIRA data set of a commercial software product to train and evaluate our
solution. It is a large data set with 91,626 JIRA bugs, dated from 08/2004 to 06/2018. The
performance metrics that we use are: accuracy and recall@K. Recall@K is the percentage of
test cases that have the ground truth within the top K ranked list of predicted components.
The accuracy is equivalent to recall@1, the percentage of correct prediction when checking
only the 1% prediction result.

Our service is online and under regular update. Currently we follow a monthly updat-
ing/training cycle. During each training cycle, we pull all available data from the JIRA
server, keep the latest month of data for testing and the previous data for training and
validation. The language model is updated less often in a 6 month cycle, since the overall
vocabulary and topics are not expected to change frequently. Three months of data are
used as the validation data for estimating the parameter o used in Algorithm 2.

The performance evaluated using the last month is shown in Table 1. To demonstrate the
benefit of the proposed hierarchical refining algorithm, we also list the original performance
of each individual classifier. Clearly, we achieve better result with hierarchical refining. The
running time for each bug prediction is virtually the same as that of the sub-component
classification alone, since the running time of hierarchical refining is negligible. So we
can conclude that the hierarchical refining framework efficiently resolved the mixed label
problem, without sacrificing service time. Similar performance numbers were observed in
the previous training cycles as well. For example, Table 2 shows the performance numbers
when we started the first formal test in 2017.

To understand the robustness of our solution, we also investigated how our system would
perform for bugs further away from the training period. Table 3 shows the results when
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Table 1: Performance of the two individual classifiers vs. final refined results based on the
last month of data (~ 1.1k bugs). All numbers increased after hierarchical refining
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in both component levels.

Individual classifier

Hierarchical refined

Super-component | Sub-component | Super-component | sub-component
Accuracy 0.54 0.44 0.58 0.47
recall@3 0.73 0.61 0.76 0.63
recall@b 0.82 0.68 0.85 0.71
recall@10 0.90 0.76 0.92 0.80

Table 2:  Performance for the first training cycle back in May. 2017.

Accuracy | recall@3 | recall@5 | recall@10
Super-component 0.57 0.77 0.85 0.93
Sub-component 0.45 0.62 0.69 0.78

it was tested with 6 months of unseen bugs after May. 2017 (about 5.5k bugs reported
after the 1%¢ training cycle). We can see that the performance numbers are lower than
the numbers in Table 2. This is as expected since the testing data are further away from
the training data in this case. The bug distribution is evolving continuously and getting
more and more different over time (so called concept drift). Nevertheless, the performance
is degrading gracefully and there is no catastrophic change. We believe that the recency
based sampling algorithm helps to adapt to the drifting distribution.

We also look into the results on a per-class basis. In general, performance on classes with
a large number of instances are fairly reliable, above 80%. Classes with particularly bad
accuracy usually have much less instances in the training data. Table 4 and Table 5 show
the prediction performance for each super-component and their corresponding numbers of
instances. On the sub-component level, the problem is even worse. Many sub-components
have only 10 or fewer instances, as Figure 2 has shown. The lack of data might be because
they are not under active development, or they are the newly added components (bugs are
just starting to emerge). Consequently, the performance on those classes are lower since we
do not have enough data to cover them. Frequent updating is a way to alleviate the issue.
Also, location based approaches Shokripour et al. (2013) may help to address the problem.

To verify the effectiveness of the proposed recency based sampling process, we compared
it against the standard approach of undersampling the majority class Kubat et al. (1997).
Both approaches were used to balance data and train classifiers. The resulting sample sizes
were controlled to be virtually the same. We use 6 months of data for evaluation, so that

Table 3: Performance on the longer testing period.

Accuracy | recall@3 | recall@5 | recall@10
Super-component 0.51 0.73 0.81 0.91
Sub-component 0.36 0.53 0.60 0.69
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Table 4: Performance vs. number of instances for 5 components with highest accuracy.

Component | Ad hoc Analysis | Feedback | Workspace | Client Apps | Warehouse
Accuracy 0.95 0.89 0.88 0.85 0.84
recall@3 0.97 0.89 0.91 0.87 0.84
Data size 6734 860 5545 5685 4638

Table 5: Performance vs. number of instances for 5 components with lowest accuracy.

Component Anﬁljtics Cache Service | Core Platform QE
Accuracy 0.25 0.2 0.11 0 0
recall@3 0.25 0.33 0.37 0.37 0.05
Data size 33 940 69 167 174

the test data is comprehensive and the results are reliable. The training data consists of
bugs before that 6-month period. Figure 5 shows the classification results. The results
based on the recency sampling procedure are clearly better than that of undersampling.

We also experimented with different numbers of topics and DNN layers, to find the best
settings for our problem. We randomly selected 50% data for comparative experiments.
The data was used to train a sub-component classifier. 10 fold cross-validation is used for
performance evaluation. Figure 6 shows the performance comparison with varying numbers
of topics. The performance first improves as the number of topics increases, then it saturates
when the number of topics reaches 500. The performance with different numbers of DNN
layers is shown in Figure 7. We can see that increasing layers does not necessarily bring
better performance as it may overfit. Based on the experiments, we chose a four layer
network. It contains 2 hidden layers with 40 nodes in each layer and a softmax output
layer. The curves in both Figure 6 and Figure 7 are the averaged performance numbers
over the 10-fold evaluation.

Our experiments are carried out using a Dell Precision T7810 workstation. The machine
has Intel Xeon 2.4G CPU and 32GB memory, running with 64-bit Ubuntu 16.04. The
average running time is about 1.1 seconds with the hierarchical classification. This ensures
us to provide a service with 2 seconds turnaround time, even with some overhead in network
and user interface interactions.

4. Related Work

Bug component prediction belongs to the general problem of bug triage, which deals with
the problem of assigning bugs to appropriate developers. There has been considerable
research on bug triage; they can be generally divided into two categories: location based
and activity based Shokripour et al. (2013). Location based approaches Ye et al. (2014);
Linares-Vasquez et al. (2012); Zhou et al. (2012) identify bug assignee by locating the source
code which might produce the bug and the developers of the code pieces. They depend on
bug localization, which may not be quite reliable. Lee et al. Lee et al. (2018) has reported a
comprehensive study on the performance of six state-of-the-art bug localization techniques
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(b) Sub-component result.
Figure 5: Performance using the recency based sampling (blue line) vs. the baseline random
undersampling (red dashed line). We compare the performance on both individual

classifiers (without hierarchical refining), measured by recall@K ranked list for
K =11,2,...,20]. The Y-axis is the recall value and the X-axis is the value of K.
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Figure 6: Performance comparison with different numbers of topics, measured by recall@QK
ranked list for K = [1,2,...,20]. The X axis is the value of K.

based on information retrieval, using about 10k bug reports. Activity based approaches
Xia et al. (2015); Anvik and Murphy (2011); Murphy and Cubranic (2004) assign bugs
based on the developers’ bug fixing history. It is treated as a text classification problem in
Murphy and Cubranic (2004); Anvik and Murphy (2011). They build text feature based
on the frequency of words and learn a predictive model using classification algorithms,
e.g., Naive Bayes Classifier. Tian et al. Tian et al. (2016) instead treat is as a ranking
problem based on the similarity between bug reports and documents. The activity based
approaches do not utilize the source code updating history, which could be quite informative
about who created the bug. Therefore, Tian et al. Tian et al. (2016) proposed combining
the location based approach with the activity based approach. Those existing work were
usually evaluated using relatively small data sets (~ 10k bug reports) from Open Source
projects and were often based on manually designed features. The reported accuracy were
30% ~ 45% depending on data sets.

Jonsson et al. Jonsson et al. (2016) explored a large number of industry bugs. They
used an ensemble of classifiers to achieve better results. In its largest “automation” data
set with about 15k bugs, it obtained ~ 50% accuracy with 10-fold cross-validation. Lee
et al. Lee et al. (2017) proposed to apply deep learning to bug triage and they worked
with industrial bugs as well. They reported ~ 31% accuracy on a data set with 142 active
developers (the number of classes is comparable with the number of sub-components in
our data set), evaluated based on 10-fold cross-validation as well. Our colleagues have
implemented this approach and tested for developer prediction as well, they also obtained
~ 30% accuracy based on 10 fold cross-validation. When trying to evaluate using future
bugs (based on the model learned from past data), a significant accuracy drop (20%) is
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Figure 7: Performance comparison with different numbers of layers in the DNN network,
measured by recall@K ranked list for K = [1,2, ..., 20].

reported by Jonsson et al. (2016). This is not surprising as previous research Rao et al.
(2008) has warned about evaluating performance using cross-validation. When doing cross-
validation, the training and test set are from the same period of time and obey the same
distribution, while for bug reports data sets, future bug distribution usually will not be the
same as the past. Consequently, cross-validation may overestimate the accuracy and may
not be the suitable metric for the problem. We also found that the test accuracy based on
future bugs is considerable lower than that based on 10 fold cross-validation. Nevertheless,
we have achieved promising accuracy numbers when predicting components for future bugs.

For industry applications, assigning a bug to a component makes more sense than as-
signing to individual developers directly, as there are always personnel changes in a product
life cycle. Nevertheless, the component based assignment also introduces the problem of
mixed labels of different levels, which we addressed with the proposed hierarchical frame-
work. The problem does not happen in the previous work, which only have one level of
assignee.

As a fundamental challenge to machine learning, data imbalance has also been studied
in the literature, mainly in the two class classification scenario. Kubat et al. Kubat et al.
(1997) tackled the problem by down-sampling the majority class while keeping the minority
class. Zhang et al. (2017) address the imbalance problem in large scale data by adaptive
sampling the majority and minority classes. Ling et al. Ling and Li (1998) proposed to
combine over-sampling of the minority class with under-sampling of the majority class.
The Synthetic Minority Over-sampling Technique (SMOTE) introduced by Chawla et al.
(2002) proposed to create synthetic positive instances using interpolation so the data could
be more balanced. It is widely used due to effectiveness and simplicity. We didn’t pursue
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this direction since it is not clear whether we can reliably create synthetic bug data. The
problem of learning under concept drift has also been actively investigated. Last Last (2002)
has proposed to rebuild the classification model with the latest examples. Wang et al. Wang
et al. (2003) proposed to use weighted ensembles of classifiers to mine data streams. There
are also several survey papers on concept drift Ditzler et al. (2015); Gama et al. (2014).

Hierarchical recognition Koller and Sahami (1997); Sebastiani (2002) has been used in
the classification scenario for years. However, they usually follow a traditional coarse to
fine pipeline: first do classification using the super-level (group) classifier and select the
most likely group. Then using one or more sub-level (fine grained) classifiers to determine
the final label within the selected group. Consequently, if the super-level classification is
wrong, the sub-level classifiers cannot correct the mistake. Also they have multiple sub-
level classifiers (at least one for each group). Our framework differs significantly: it is not
a sequential process, and we only have two classifiers which run in parallel. We have a
bi-directional probability propagation algorithm instead of one way filtering. The sub-level
classification helps to improve the super-level classification, as opposed to solely depending
on it. The novel probability propagation scheme helps to improve both the super and sub-
level recognition, with virtually no extra cost in computation. The traditional sequential
process incurs more classification (prediction) time, in addition to training of many more
classifiers.

5. Conclusion and Future Work

Assigning bugs to the relevant component or developers has been a daunting task for Quality
Engineer and customer care personnel. In this paper, we present an approach for automat-
ically assigning the responsible component based on the bug description. We use Natural
Language Processing and Deep Neural Network to build component classifiers. We also
propose a hierarchical classification framework to address the mixed ground truth label
problem. By combining two semantically related classifiers, which are complementary to
each other and can run in parallel, we achieve better accuracy with negligible overhead in
computation time. In addition, we introduce a recency based sampling procedure to handle
the data imbalance and concept drift problem. It takes advantage of the time dependent na-
ture of the bug occurrence process. We have built a service based on the proposed approach.
It works in almost real time with ~ 2 seconds service time using a regular workstation. The
service has been tested by internal users and received positive feedbacks.

Our goal is to provide an AT assistant for people who handle bug assignment, so they can
save the time of going through a long list of possible components. Based on our experiments
and user feedbacks, the service works fairly reliably for this purpose. In addition to the
web interface, it could also be integrated into the JIRA reporting interface and serve as an
automated bug assignment agent. The service is updated regularly (e.g. monthly or even
weekly) to accommodate newly added components and new trends in bug occurrence. This
constant updating could be a nightmare for human operator. In our case, we only need to
pull JIRA data periodically, retrain the classifiers and push them to the server.

In the future, we plan to combine the location based approaches with our work to
enhance its performance, as suggested in Tian et al. (2016). We also want to explore ideas
in the research field of one shot learning Fei-Fei et al. (2006), to address the difficulty
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of dealing with new component. Another direction we will investigate is the history of
component assignment. Currently we use only the last assigned component as the ground
truth label. It is not rare for a bug to be re-assigned multiple times before being assigned
to the right component. We could do some kind of hard example mining Shrivastava et al.
(2016) using the re-assigning history to improve the performance.
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