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Abstract

Image-text matching has been a hot research endeavor recently. One promising direction is
to infer fine-grained correspondences between visual instances and textual concepts, which
makes learning instance-level visual features fundamental to this task. Detection-based ap-
proaches extract visual features directly from region proposals, but they are neither end-to-
end learnable requiring extensive annotations nor adaptive to unseen instances. Attention-
based approaches sequentially attend to different visual semantics in fixed time steps with
global context as reference, but they are not flexible to handle situations when varying
number of instances exist in different images. In this paper, we propose Self-Attention
Visual-semantic Embeddings (SAVE), which aggregates instance-level semantics from all
potential positions of the image in an end-to-end manner. Specifically, feature maps with
spatial size k×k are first divided into k2 instance candidates. For each instance candidate,
we explore two variants of self-attention mechanisms to model its correlation with oth-
ers and aggregate similar semantics, which exploits flexible spatial dependencies between
distant regions. Furthermore, a multi-scale feature fusion technique is utilized to obtain
different levels of semantic concepts for richer information from different representation
scales. We evaluate our model on two benchmark datasets: MS-COCO and Flickr30K,
which demonstrates both effectiveness and applicability of our method with favorably com-
petitive performance as the state-of-the-art approaches.

Keywords: visual-semantic embeddings, end-to-end, self-attention, multi-scale

1. Introduction

Research at the intersection of vision and language has been popular in recent years. In
this paper we attend to the problem of image-text matching, which is to search images for
given sentences with visual descriptions or to retrieve sentences that are relevant to given
image queries.

The primary challenge of this task lies in the heterogeneity of data since images and
texts are of different modalities. Given that the essence of image-text retrieval is to measure
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Figure 1: A comparison of different ways to capture instance-level image features.

the visual-semantic similarity between pairwise images and sentences, it is crucial to map
multi-modal data into a shared semantic space in the first place. The question is how to
conduct this mapping appropriately.

Some previous approaches [Frome et al. (2013); Kiros et al. (2014); Vendrov et al. (2016);
Yan and Mikolajczyk (2015); Wang et al. (2016); Zheng et al. (2017)] attempt to map
global representations (i.e., features extracted from whole images and full sentences) into
the joint embedding space. However, high-level semantics entailed in the global context
are not sufficient for the retrieval of images or sentences with well-aligned local details,
such as objects in images and phrases in sentences. Recently, [Gu et al. (2018); Huang
et al. (2018)] incorporate generative processes into the cross-modal embedding in order to
improve the global representations, but training together with generative models such as
GAN Goodfellow et al. (2014) makes the overall system complicated and possibly unstable.

In contrast, several approaches [Karpathy et al. (2014); Niu et al. (2017); Huang et al.
(2017); Nam et al. (2017); Lee et al. (2018)] have shown the benefits to infer local correspon-
dences between visual objects and textual words, which is essential to more interpretable
image-text matching. To this end, the model should capture fine-grained representations
from salient objects or stuff in images (namely instance-level features), and then align
them with word or phrase embeddings in the shared semantic space. In this case, learning
instance-level image features is fundamental to the retrieval task.

To obtain instance-level image features, [Karpathy et al. (2014); Niu et al. (2017); Lee
et al. (2018)] attend to salient regions explicitly predicted by the pre-trained object de-
tectors. Despite preciseness, these approaches are not end-to-end trainable, which makes
it hard to apply them to different contexts due to inconsistent optimization objectives for
detection and retrieval. In addition, training object detectors [Shaoqing et al. (2015); Ross
et al. (2014)] usually requires expensive human annotations. To circumvent this situation,
[Nam et al. (2017); Huang et al. (2017)] harness global context as the reference and attend
to different regions for instance-level features sequentially in a pre-defined number of steps,
despite the number of visual instances varys in different images. In terms of the retrieval
performance, these approaches are not satisfactory compared to detection-based ones.

In this paper, we strive to capture instance-level visual features from all potential in-
stances in an end-to-end manner. Inspired by detection-based approaches [Lee et al. (2018);
Niu et al. (2017)], we attempt to replace region proposals with self-attention mechanism
(Figure 1) and investigate its effectiveness in aggregating instance-level semantics. The
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method we proposed, namely SAVE, applies self-attention to multi-scale feature maps for
different levels of visual semantics. Specifically, features maps of spatial size k×k are evenly
split into k2 instance candidates, corresponding to k2 regions in the input image. For each
instance candidate, we explore two different ways, Deterministic Self-Attention (DSA) and
Adaptive Self-Attention (ASA), to estimate its correlation with all candidates as the atten-
tion, and aggregate instance-level semantics as a weighted sum of all candidates from the
feature maps.

Besides, multi-scale fusion is applied to these features for both spatial details and global
semantics. To evaluate the performance of our approach, we perform a series of experiments
on two benchmark datasets: MS-COCO Lin et al. (2014) and Flickr30K Plummer et al.
(2015). In summary, our contributions are four-fold:

1. Two variants of self-attention are explored to aggregate instance-level visual semantics
from all potential regions and capture spatially long-range dependencies.

2. SAVE simultaneously infers all possible alignments between images and sentences in
an end-to-end manner, which improves both flexibility and adaptability.

3. Multi-scale feature fusion is applied to further enhance the semantics entailed in
instance-level features, which incorporate both low-level spatial details and high-level
semantic concepts for the retrieval.

4. Our model achieves results on par with or better than the state-of-the-art approaches
on both datasets. However, it neither involves additional generative processes nor uses
object detectors pre-trained on large datasets with expensive human annotations.

2. Related Work

2.1. Visual-Semantic Embeddings Learning

A few works directly captured global representations for image-text matching. Frome et al.
(2013) proposed the first visual-semantic embedding model, with CNN Alex et al. (2012) and
Skip-Gram Mikolov et al. (2013) to extract features for images and labels respectively. A
hinge-based triplet ranking loss was optimized to ensure the matched image-label pairs have
smaller distances than mismatched pairs. Kiros et al. (2014) proposed a similar framework,
which replaced Skip-Gram with LSTM Hochreiter and Schmidhuber (1997) as the sentence
encoder. Vendrov et al. (2016) introduced an improved objective which can preserve the
partial order structure of visual-semantic hierarchy. Wang et al. (2016) additionally con-
sidered within-view constraints to capture structure-preserving representations. Similarly,
Zheng et al. (2017) proposed the intra-modal instance loss to learn more discriminative
embeddings. Faghri et al. (2018) optimized the ranking objective with hardest negatives.
Gu et al. (2018) incorporated generative processes to learn local grounded features, while
Huang et al. (2018) used a context-gated sentence generation scheme to enhance semantics
in image representations.

Other works explored the alignment of visual objects and textual words. Karpathy
and Fei-Fei (2015) performed the learning of local similarities between pairwise image in-
stances (detected by R-CNN Ross et al. (2014)) and words. Niu et al. (2017) adopted a
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Figure 2: The proposed SAVE captures instance-level features by aggregating semantics
from visually similar regions rather than local regions of fixed shape. In each case, the first
image shows three representative query locations with red bounding boxes. The other three
images are attention maps for those query locations, with the transparency summarizing
the most-attended regions.

tree-structured LSTM Tai et al. (2015) to embed phrases and model hierarchical interac-
tions between visual objects and phrases. Most recently, Lee et al. (2018) obtained image
instances with Faster R-CNN Shaoqing et al. (2015) and proposed Stacked Cross Attention,
similar to bi-directional attention flow Minjoon et al. (2017), to aggregate local similari-
ties attentively. Instead of aggregating instance-level image features with object detectors,
Huang et al. (2017) proposed a context-modulated attention theme to selectively attend
to a pair of instances which appear in both the image and sentence. Likewise, Nam et al.
(2017) proposed Dual Attention Network to capture fine-grained interplay between vision
and language through multiple steps. Our approach also infers local correspondences be-
tween image-sentence pairs. However, rather than object detectors or multi-modal global
context, we aggregate instance-level image features with self-attention mechanisms.

2.2. Self-Attention Models

Self-attention [Cheng et al. (2016); Parikh et al. (2016)] computes the response at a position
in a sequence by attending to all positions within the same sequence. Vaswani et al. (2017)
demonstrated that machine translation models could achieve state-of-the-art results by
solely using a self-attention model. Wang et al. (2018) formalized self-attention as a non-
local operation to model the spatial-temporal dependencies in video sequences. Zhang
et al. (2018) integrated GAN with self-attention to allow long-range dependency modeling
for image generation. In spite of this progress, self-attention has not been well explored
in the context of cross-modal retrieval. Rather than applying self-attention as non-local
blocks between convolutional layers to model long-range dependency, we purely impose it
on feature maps to aggregate similar semantics and obtain instance-level image features for
the retrieval task.
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3. The Proposed Method

In this section, we present the details of the proposed SAVE method. We begin with deep
convolutional neural networks to capture image features as instance candidates. Mean-
while, recurrent neural networks are leveraged to embed words in sentences. Following
that, we impose self-attention on candidate image features to aggregate instance-level se-
mantics. Multi-scale feature fusion is explored to further enhance the semantics. Finally,
Stacked Cross Attention Lee et al. (2018) is adopted to infer the image-sentence similarity
by aggregating local similarities between image instances and words.

3.1. Input Representation

3.1.1. Image Representation

Given an input image I, we aim to represent it with a set of instance-level features V =
{v1, · · · , vk}, vi ∈ RD, such that each feature attends to a salient object or region in the
image. However, it is difficult to obtain these features directly, since the visual content is
arbitrary where the instances could appear in any location with various scales. Different
from [Karpathy and Fei-Fei (2015); Niu et al. (2017); Lee et al. (2018)], which capture image
features from region proposals predicted by object detectors [Ross et al. (2014); Shaoqing
et al. (2015)], we directly encode images with plain neural networks, e.g., VGG Simonyan
and Zisserman (2015) or ResNet He et al. (2016).

To obtain instance-level visual semantics, we first define candidate semantics based on
feature maps as follows. For a feature layer of spatial size M × N with C channels, we
concatenate values at each spatial location along the channel dimension in order to obtain
k = M × N feature vectors U = {u1, · · · , uk}, ui ∈ RC . These features encoding specific
regions in the raw input image are thus regarded as candidate semantics for those regions.
We then impose self-attention on these features in order to aggregate instance-level visual
semantics V . More details are introduced in Section 3.2.

3.1.2. Sentence Representation

For a sentence S = {w1, · · · , wn}, the underlying instances mostly exist in the word level
or phrase level. Therefore, the goal here is to learn word (or phrase) embeddings. We
first tokenize and split the sentence into words, and then employ a bi-directional GRU
(BGRU) Bahdanau et al. (2015) to embed the words along with the sentence context.

For the i-th word wi in the sentence, we first represent it with an one-hot vector Ii
to indicate its position in the vocabulary, and then embed Ii into a d-dimensional vector
xi with an embedding matrix Wx, i.e., xi = WxIi, i ∈ [1, n]. These word embeddings are
sequentially taken as the input for a bi-directional GRU and we average the hidden states
in both directions at the same timestep as the final embedding ei ∈ RD for each word.

3.2. Self-Attention Mechanisms

We aggregate instance-level visual semantics based on the correlations between candidate
features, which can be interpreted as a kind of self-attention. Two variants are proposed to
estimate this attention, namely the Deterministic Self-Attention (DSA) and the Adaptive

944



Multi-Scale Visual Semantics Aggregation with Self-Attention

Visual – ResNet Textual – BGRU

49×1024

Down x2 Down x2

1024×𝑇

28×28×512 14×14×1024 7×7×2048

14×14×512 7×7×1536 7×7×3584

Multi-Scale
Aggregation

Similarity 
Measurement

Ranking 
Loss

28×28×512 14×14×1024 7×7×2048

Feature Fusion

Stacked 
Cross 

Attention

C
on

v1

C
on

v2
_x

C
on

v3
_x

C
on

v4
_x

C
on

v5
_x

Self-Attention Self-Attention Self-Attention

M
ax

po
ol

M
ax

po
ol

C
on

ca
t

C
on

ca
t

FC

A golden retriever
laying down on
the side of a pool
and a tree.

ℎ.ℎ/ℎ0ℎ1

Figure 3: An overview of the proposed SAVE method. 1) ResNet He et al. (2016) and
BGRU Bahdanau et al. (2015) are leveraged to capture visual and textual features respec-
tively. 2) Self-Attention is imposed on different scales of feature maps in order to aggregate
different levels of visual semantics. 3) Feature Fusion is conducted sequentially by down-
sampling and concatenation to reduce the number of image instances. 4) Stacked Cross
Attention Lee et al. (2018) is applied to measure the final image-text similarity. 5) The
overall model is optimized end-to-end by minimizing the ranking loss.

Self-Attention (ASA). DSA is an intuitive solution, which calculates the attention maps di-
rectly from cosine similarities between all pairs of instance candidates, while ASA adopts the
non-local operation Wang et al. (2018) to model the correlations between them adaptively.
Instance-level features are then aggregated from candidates according to the attention maps.

3.2.1. Deterministic Self-Attention

For an input image I, we have defined a set of instance candidates U = {u1, · · · , uk}, ui ∈
RC . To aggregate instance-level features V = {v1, · · · , vk}, vi ∈ RD, we first compute the
cosine similarity matrix for all possible candidate pairs, i.e.,

sij =
ui
Tuj

||ui||||uj ||
, i, j ∈ [1, k], (1)

where sij represents the similarity between the i-th candidate ui and the j-candidate uj .
We follow [Lee et al. (2018); Karpathy et al. (2014)] to threshold sij at zero and normalize

the similarity matrix as sij = [sij ]+/
√∑k

i=1[sij ]
2
+, where [x]+ ≡ max(x, 0).

To gather correlative candidate semantics with respect to i-th instance candidate ui, we
define a weighted combination of all the candidates as the attended instance-level features

ai =

k∑
j=1

αijuj , (2)

where

αij =
exp(sij)∑k
j=1 exp(sij)

. (3)
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We also add a fully-connected layer to transform ai into a D-dimensional feature vector

vi = Wvai + bv. (4)

Therefore, the final representation of an image I is a set of instance-level embedding
vectors V ⊂ RD.

As is shown in Figure 2, attention maps computed by DSA on 7 × 7 feature maps to
some extent comply with the shape of visual instances in the input image. In terms of the
convolution operation, the similarity of candidate features at a given location is high in local
neighbourhood and in visually similar regions of the image. Therefore, from appropriate
query locations, we can aggregate meaningful instance-level visual semantics.

3.2.2. Adaptive Self-Attention

In fact, we can adopt the non-local operation Wang et al. (2018) to model the correlations
between all pairs of instance candidates and adaptively learn the attention maps.

Given image feature x ∈ RC×M×N , we first reshape it into a two-dimensional matrix
u ∈ RC×k, k = M×N , which represents k instance candidates as explained in Section 3.1.1.
To obtain the attention map α ∈ Rk×k, u is mapped into two feature spaces θ, φ, where
θ(u) = Wθu, φ(u) = Wφu, and

αij =
exp(sij)∑k
j=1 exp(sij)

, (5)

where
sij = θ(ui)

Tφ(uj), i, j ∈ [1, k]. (6)

αij indicates the extent to which the model attends to the j-th candidate when ag-
gregating semantics for the i-th candidate. Then the output of the attention layer is
a = (a1, a2, · · · , ak) ∈ RC×k, where

ai =

k∑
j=1

αijg(uj). (7)

In the above formulation, g(uj) = Wguj , and Wθ ∈ RC×C , Wφ ∈ RC×C , Wg ∈ RC×C are
the learned weight matrices, which are implemented as 1× 1 convolutions. We use C = C

2
in all our experiments.

Besides, we follow [Wang et al. (2018); Zhang et al. (2018)] to further map the output of
the attention layer by a scale parameter γ and add back the input feature maps. Therefore,
the final output is given by

yi = γai + ui, (8)

where γ is initialized as 0 for identity mapping [Goyal et al. (2017); He et al. (2016)]. Similar
to Equation (4), we leverage a fully-connected layer to transform yi into a D-dimensional
vector vi.
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Method
Sentence Retrieval Image Retrieval

Sum
R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

SM-LSTM (VGG) Huang et al. (2017) 42.5 71.9 81.5 2 30.2 60.4 72.3 3 358.8
DAN (ResNet) Nam et al. (2017) 55.0 81.8 89.0 1 39.4 69.2 79.1 2 413.5
VSE++ (ResNet) Faghri et al. (2018) 52.9 80.5 87.2 1 39.6 70.1 79.5 2 409.8
DPC (ResNet) Zheng et al. (2017) 55.6 81.9 89.5 1 39.1 69.2 80.9 2 416.2
SCO (ResNet) Huang et al. (2018) 55.5 82.0 89.3 - 41.1 70.5 80.1 - 418.5

DVSA (R-CNN, AlexNet) Karpathy and Fei-Fei (2015) 22.2 48.2 61.4 4.8 15.2 37.7 50.5 9.2 235.2
HM-LSTM (R-CNN, AlexNet) Niu et al. (2017) 38.1 - 76.5 3 27.7 - 68.8 4 -
SCAN (Faster R-CNN, ResNet) Lee et al. (2018) 67.4 90.3 95.8 - 48.6 77.7 85.2 - 465.0

Ours: (ResNet)
SAVE (DSA) 65.2 88.6 93.7 1 49.0 77.1 85.3 2 458.9
SAVE (ASA) 64.9 88.5 92.4 1 48.7 77.4 85.5 2 457.4
SAVE (ASA + ms2) 66.6 89.0 94.0 1 49.2 78.1 86.2 2 463.1
SAVE (ASA + ms3) 67.2 88.3 94.2 1 49.8 78.7 86.2 2 464.4

Table 1: Comparison of the cross-modal retrieval results in terms of Recall@K(R@K) on
Flickr30K.

3.2.3. Summary

The main purpose of proposing DSA and ASA is to show that it is feasible to aggregate
instance-level visual semantics with self-attention, regardless of concrete implementations.
Both DSA and ASA are general and beneficial to the retrieval task.

Specifically, DSA directly calculates the cosine similarities between candidate features,
which is straightforward but effective to model correlations among high-level semantics
(7×7 feature maps). However, when it comes to lower-level feature maps (14×14, 28×28),
adaptively modeling the correlations with learnable parameters (ASA) can obtain more
promising performance. Ablation studies in Section 4.4 have demonstrated this difference.

3.3. The Overall Architecture

Figure 3 illustrates the pipeline of the proposed SAVE method. We introduce the details
of multi-scale feature fusion and similarity measurement as follows.

3.3.1. Multi-Scale Feature Fusion

As is depicted in Figure 3, we apply self-attention to different scales of feature maps and
then fuse them together by sequentially down-sampling larger-scale feature maps. Low-level
features are typically interpreted as fine-grained spatial details while high-level features are
abstract semantic concepts. By combining both of them, we expect learned features to
contain both local details and global semantics. Note that up-sampling smaller-scale feature
maps for the fusion is not a wise choice, as large-scale feature maps may yield excessive
image instance candidates for the retrieval task.

Importantly, different from Wang et al. (2018) adding self-attention to different stages
of ResNet in order to model long-range dependency, we directly impose self-attention on
multi-scale feature maps to aggregate instance-level features and obtain different levels of
semantics. Extensive experiments in Section 4 demonstrate the effectiveness of our ap-
proach.
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Figure 4: An example illustrating the difference between object detectors (left) and self-
attention (right) in capturing visual semantics from occluded instances. Detection-based
methods are stuck in occluded cases caused by only recognizing decentralized and uncorre-
lated instances (e.g., body parts of the dog), while SAVE can capture visual semantics with
correlations by modeling spatial dependencies, which further facilitates retrieval.

3.3.2. Similarity Aggregation

For a whole image I and a full sentence S, we have already obtained instance-level image fea-
tures V = {v1, · · · , vk}, vi ∈ RD and context-aware word embeddings E = {e1, · · · , en}, ei ∈
RD. To obtain a similarity score between I and S, we adopt Stacked Cross Attention Lee
et al. (2018) with two directions, i.e., Image-Text (i-t) and Text-Image (t-i). i-t attends to
words given each image instance, while t-i attends to instances given each word.

Take the i-t direction for example, given the i-th image instance vi, the attended textual
vector ati is obtained as the weighted sum of all word embeddings {e1, · · · , en}, where the
importance of each word ej is calculated by its similarity to the image instance vi.

Local similarity R(vi, a
t
i) is computed as the cosine similarity between vi and ati. Global

similarity between I and S is then aggregated by either LogSumExp pooling (LSE)

SLSE(I, S) = log(

k∑
i=1

exp(λ2R(vi, a
t
i)))

(1/λ2), (9)

which approximates to max
i
R(vi, a

t
i) as λ2 →∞, or average pooling (AVG)

SAV G(I, S) =
1

k

k∑
i=1

R(vi, a
t
i). (10)

3.4. Learning Objective

Our model can be trained with a hinge-based triplet ranking loss which encourages the sim-
ilarity scores of matched image-sentence pairs to be larger than those of mismatched pairs.
We follow Faghri et al. (2018) to emphasize the hardest negatives in a mini-batch for train-
ing. For a matched pair (i, s), the hardest negatives are defined as ih = arg maxx 6=i S(x, s)
and sh = arg maxy 6=s S(i, y). The hinge-based ranking loss is then measured by

Lr = [m− S(i, s) + S(ih, s)]+ + [m− S(i, s) + S(i, sh)]+, (11)

where m is the margin and [x]+ ≡ max(x, 0).
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3.5. Why Self-Attention for Visual Semantics

3.5.1. Instance-Level Aggregation

In terms of attention, recent research [Huang et al. (2017); Nam et al. (2017)] leverages
global context to aggregate instance-level semantics by sequentially attending to different
regions simply with high cosine similarities. However, semantics of different visual instances
are intricately entangled in the global context, which may reduce its correlation with features
from specific instances.

In contrast, self-attention simultaneously aggregates instance-level semantics by auto-
matically capturing disentangled representations and accumulating correlated semantics
from positions with high responses. This allows us to preserve relatively disentangled fea-
tures and exploit richer information of specific instances, which facilitates more precise
instance-wise retrieval.

3.5.2. Spatial Dependency

Aggregating semantics from regions with spatial dependencies is particularly important for
difficult situations (e.g., occluded or unseen objects). As shown in Figure 4, detection-
based methods can only capture features from decentralized parts without recognizing the
occluded dog instance by uncorrelated semantics (e.g., body parts).

Intuitively, our self-attention simulates long-range dependency Vaswani et al. (2017)
differently in the spatial dimension. In this case, SAVE aggregates semantics from any dis-
tant regions by spatial dependencies and bridges communication among different correlated
semantics of the same instance. It yields large-range dependencies and correlations which
enhances informative representation ability for the inference in retrieval tasks.

3.5.3. End-to-End

To obtain instance-level visual semantics, detection based approaches [Karpathy and Fei-Fei
(2015); Niu et al. (2017); Lee et al. (2018)] require additional annotations to pre-train the
object detectors. Besides, features captured from region proposals are frozen for subsequent
training of the rest of the retrieval model, which limits the flexibility of these approaches,
especially when deployed in novel tasks. In contrast, SAVE aggregates visual semantics
based on internal correlations among instance candidates in an end-to-end manner without
any task-specific supervision, which is more adaptive and applicable.

4. Experiments

4.1. Datasets

We evaluate the SAVE method on MS-COCO Lin et al. (2014) and Flickr30K Plummer
et al. (2015) datasets. Flickr30K contains 31, 783 images collected from Flickr website,
and each image is associated with 5 text descriptions. Following the split in Kiros et al.
(2014), we use 29, 000 images for training, 1, 014 images for validation and 1, 000 images for
testing. MS-COCO contains 123, 287 images, each of which is annotated with five captions.
According to Kiros et al. (2014), the dataset is split into 82, 783 training images, 5, 000
validation images and 5, 000 test images. We follow [Faghri et al. (2018); Lee et al. (2018)]
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Method
Sentence Retrieval Image Retrieval

Sum
R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

1K Test Images

SM-LSTM (VGG) Huang et al. (2017) 53.2 83.1 91.5 1 40.7 75.8 87.4 2 431.8
2WayNet (VGG) Eisenschtat and Wolf (2017) 55.8 75.2 - - 39.7 63.3 - - -
VSE++ (ResNet) Faghri et al. (2018) 64.6 90.0 95.7 1 52.0 84.3 92.0 1 478.3
DPC (ResNet) Zheng et al. (2017) 65.6 89.8 95.5 1 47.1 79.9 90.0 2 467.9
GXN (ResNet) Gu et al. (2018) 68.5 - 97.9 1 56.6 - 94.5 1 -
SCO (ResNet) Huang et al. (2018) 69.9 92.9 97.5 - 56.7 87.5 94.8 - 499.3

DVSA (R-CNN, AlexNet) Karpathy and Fei-Fei (2015) 38.4 69.9 80.5 - 27.4 60.2 74.8 - 351.2
HM-LSTM (R-CNN, AlexNet) Niu et al. (2017) 43.9 - 87.8 2 36.1 - 86.7 3 -
SCAN (Faster R-CNN, ResNet) Lee et al. (2018) 72.7 94.8 98.4 - 58.8 88.4 94.8 - 507.9
SCAN (Faster R-CNN, ResNet) † 71.3 94.4 98.2 1 57.3 88.1 94.4 1 503.7

Ours: (ResNet)
SAVE (DSA) 69.4 92.1 97.0 1 56.0 87.1 94.0 1 495.6
SAVE (ASA) 70.1 92.6 97.1 1 56.2 87.1 94.1 1 497.2
SAVE (ASA + ms2) 70.8 93.2 97.6 1 56.9 87.6 94.4 1 500.5

5K Test Images

VSE++ (ResNet) Faghri et al. (2018) 41.3 71.1 81.2 2 30.3 59.4 72.4 4 355.7
DPC (ResNet) Zheng et al. (2017) 41.2 70.5 81.1 2 25.3 53.4 66.4 5 337.9
GXN (ResNet) Gu et al. (2018) 42.0 - 84.7 2 31.7 - 74.6 3 -
SCO (ResNet) Huang et al. (2018) 42.8 72.3 83.0 - 33.1 62.9 75.5 - 369.6

SCAN (Faster R-CNN, ResNet) Lee et al. (2018) 50.4 82.2 90.0 - 38.6 69.3 80.4 - 410.9
SCAN (Faster R-CNN, ResNet) † 46.7 78.6 88.1 2 34.2 65.3 77.3 3 390.2

Ours: (ResNet)
SAVE (DSA) 44.9 75.0 84.7 2 33.3 63.6 75.9 3 377.4
SAVE (ASA) 45.5 75.1 85.0 2 33.3 63.8 76.1 3 378.8
SAVE (ASA + ms2) 46.7 76.3 86.1 2 34.0 64.8 77.0 3 384.9

Table 2: Comparison of the cross-modal retrieval results in terms of Recall@K(R@K) on
MS-COCO. Note that † denotes the reproduced best result of SCAN Lee et al. (2018) under
exactly the same experimental settings.

to use additional 30, 504 images that were originally in the validation set of MS-COCO but
have been left out in this split for training (113, 287 training images in total). The results
are reported by either averaging over 5 folds of 1K test images or testing on the full 5K
test images. Note that some early works such as [Kiros et al. (2014); Huang et al. (2017)]
only use a training set containing 82, 783 images.

4.2. Results on Flickr30K

Table 1 lists quantitative results1 on Flickr30K, where all formulations of our approach
outperform other end-to-end trainable models (listed in the first section) in all measures.
Our best result is achieved by adaptive self-attention (ASA) with 3 scales of feature fusion,
which is comparable to the state-of-the-art approach, i.e., SCAN. However, our model does
not require additional images or human annotations to train object detectors.

4.3. Results on MS-COCO

Table 2 presents experimental results1on MS-COCO 1K and 5K test sets, where our best
result is achieved by adaptive self-attention (ASA) with 2 scales of feature fusion, which
outperforms other end-to-end trainable models (listed in the first and fourth section) in all

1 For each formulation, we follow Lee et al. (2018) to average similarity scores obtained in two directions (i-t
and t-i) and report final retrieval results.
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Method
Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

i-t LSE:
visual genome 42.2 74.8 85.3 32.1 62.5 74.9
pascal voc 29.9 62.2 74.9 21.1 48.6 61.8

t-i LSE:
visual genome 43.1 75.1 85.7 29.9 60.3 73.2
pascal voc 31.6 62.1 74.6 20.8 47.3 60.9

Table 3: Effect of visual features extracted by object detectors pre-trained on different
datasets (Visual Genome Krishna et al. (2017) and Pascal VOC Everingham et al. (2010))
and evaluated on MS-COCO 5K test set. Results are reported in terms of Recall@K(R@K).

measures. However, there are gaps in results between our method and SCAN, especially in
the 5K test set.

Several factors may account for this phenomenon. 1) The object detector used by SCAN
is pre-trained on Visual Genome Krishna et al. (2017) with additional images (51, 208 new
images for MS-COCO) and annotations (1, 600 object classes and 400 attribute classes),
which leads to better generalizability of features. 2) Table 3 has shown the importance of a
good detector to SCAN. The retrieval performance drops dramatically as we pre-train the
same object detector on PASCAL VOC Everingham et al. (2010) rather than Visual Genome
dataset, which reveals the weakness of these non end-to-end approaches when applied to
different contexts. 3) We reproduce the results reported by SCAN Lee et al. (2018) after
multiple trials under exactly the same experimental settings2 though with non-negligible
gaps. We ascribe this problem to the unstable performance of detection which should be
improved by tuning tricks. We provide the best results reproduced by SCAN in Table 2 for
comparison.

4.4. Ablation Studies

To systematically evaluate the proposed method, we perform comprehensive ablation studies
in terms of the following three aspects:

1) Effect of self-attention. Three variants of SAVE are compared in Table 4 to
evaluate its effect on 7×7 feature maps. Specifically, no-SA directly measures the similarity
between instance candidates and word embeddings, while DSA and ASA additionally apply
deterministic self-attention and adaptive self-attention to instance candidates for instance-
level semantics aggregation.

Results on two datasets under two different settings have shown that self-attention can
stably improve the retrieval performance. Note that DSA achieves better results than
ASA in nearly all measures, which verifies the effectiveness of deterministic self-attention
in modeling the correlations among high-level candidates.

2) Effect of multi-scale instance-level features. For convenience, we conduct ex-
periments with at most 3 scales of feature maps (28 × 28, 14 × 14, 7 × 7) denoted as c3,
c4 and c5 respectively. Two variants of SAVE are proposed, where ms2 fuses 2 scales of
feature maps (c4 + c5 ) and ms3 fuses 3 scales of feature maps (c3 + c4 + c5 ). To compare
with approaches where self-attention is sequentially added to different stages of ResNet as

2 Project: https://github.com/kuanghuei/SCAN
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Method
Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

MS-COCO 5K Test Images

i-t AVG:
no-SA 38.4 68.6 80.4 27.2 57.6 71.3
DSA 42.3 72.7 83.5 31.2 61.3 73.6
ASA 42.2 72.5 83.2 30.7 60.8 73.2

t-i LSE:
no-SA 39.7 70.6 81.9 28.6 58.7 71.8
DSA 40.8 72.0 83.0 30.8 61.0 73.5
ASA 40.2 71.2 82.3 29.0 59.0 71.9

Flickr30K Test Images

i-t AVG:
no-SA 60.0 85.4 91.8 42.1 74.0 83.0
DSA 59.8 86.0 91.7 45.5 75.4 83.6
ASA 61.7 85.7 90.6 45.6 74.5 83.1

t-i LSE:
no-SA 57.6 85.0 90.4 43.6 74.0 82.6
DSA 62.8 87.3 93.0 47.2 75.8 84.2
ASA 60.9 84.4 90.0 44.1 73.9 82.2

Table 4: Effect of self-attention on Flickr30K and MS-COCO 5K test set. Results are
reported in terms of Recall@K(R@K).

Method
Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

i-t AVG, Flickr30K:
DSA 59.8 86.0 91.7 45.5 75.4 83.6
DSA-ms2 58.8 83.4 91.0 45.0 74.4 83.0
ASA 61.7 85.7 90.6 45.6 74.5 83.1
ASA-ms2 61.3 88.6 93.8 46.8 75.9 84.3
ASA-ms3 64.2 86.3 93.0 47.4 76.4 84.5
NL-ms2 57.2 84.7 91.5 44.8 75.0 83.4

i-t AVG, MS-COCO 5K:
DSA 42.3 72.7 83.5 31.2 61.3 73.6
DSA-ms2 42.4 72.7 83.4 31.2 61.5 74.1
ASA 41.6 72.1 82.7 30.6 60.3 73.0
ASA-ms2 44.2 73.5 83.8 33.0 62.6 74.9
NL-ms2 40.4 69.8 80.8 31.5 61.6 74.3

Table 5: Effect of multi-scale self-attention under i-t AVG setting on Flickr30K and MS-
COCO 5K test set. Results are reported in terms of Recall@K(R@K).

described in Wang et al. (2018), we denote NL-m2 as the variant where self-attention is
applied to 2 scales of feature maps (c4, c5 ) without feature fusion.

Table 5 shows retrieval results on two datasets under the same setting. For adaptive
self-attention (ASA), improvements derived from feature fusion are noticeable, which ver-
ifies the effectiveness of ASA in modeling the correlations among candidate features from
different semantic levels with learnable parameters. For deterministic self-attention (DSA),
no obvious improvement is observed in all measures, which means correlations among lower-
level candidate features are not easily established by cosine similarities. The performance
of NL-m2 is inferior to ASA-m2 in all measures, which demonstrates that our way of
feature fusion illustrated in Figure 3 is more effective for the retrieval task.

3) Effect of multi-scale fusion without self-attention. We are also interested in
the effect of multi-scale fusion of features without instance-level semantics. no-SA-ms2
represents the variant of SAVE which fuses 2 scales of feature maps (14×14, 7×7) without
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Method
Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

i-t LSE:
no-SA 58.3 83.8 90.6 43.5 73.9 83.2
no-SA-ms2 56.5 83.2 90.3 43.7 73.7 83.0

i-t AVG:
no-SA 60.0 85.4 91.8 42.1 74.0 83.0
no-SA-ms2 58.4 83.6 90.7 41.4 73.4 82.9

t-i LSE:
no-SA 57.6 85.0 90.4 43.6 74.0 82.6
no-SA-ms2 48.4 76.0 85.4 37.1 66.7 76.0

t-i AVG:
no-SA 60.5 84.4 90.8 46.4 74.5 83.5
no-SA-ms2 60.2 85.5 91.7 45.0 74.4 82.6

Table 6: Effect of multi-scale features without applying self-attention on Flickr30K test set.
Results are reported in terms of Recall@K(R@K).

self-attention. In comparison, no-SA directly uses feature maps of scale 7 × 7 without
self-attention for cross-modal retrieval.

Table 6 presents results on Flickr30K. Compared to no-SA, the retrieval performance
drops clearly for no-SA-ms2 under four settings especially t-i LSE, which means multi-scale
fusion provides redundant information for the retrieval task. Therefore, simply applying
multi-scale fusion to visual features can not enhance the semantics. It is necessary to
aggregate instance-level features with self-attention beforehand.

5. Conclusion

In this paper, we attempt to aggregate instance-level visual semantics from all potential
image instances in an end-to-end manner. Specifically, two variants of self-attention (DSA
and ASA) are explored to capture spatially long-range dependencies and model the corre-
lations between all pairs of instance candidates, which are utilized as weights to aggregate
instance-level semantics. Besides, our model is capable of inferring all possible alignments
between images and sentences simultaneously, which is adaptable and applicable to retrieval
tasks. Furthermore, we exploit multi-scale fusion on these features to incorporate different
levels of semantics for richer information from different representation scales. Results on
two public datasets, MS-COCO and Flickr30K, demonstrate the effectiveness and flexibility
of our method, which is competitive with several state-of-the-art approaches.
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