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Abstract
Scale variation is one of the most significant challenges for object detection task. In comparison
with previous one-stage object detectors that simply make feature pyramid network deeper without
consideration of speed, we propose a novel one-stage object detector called LADet, which consists
of two parts, Adaptive Feature Pyramid Module(AFPM) and Light-weight Classification Function
Module(LCFM). Adaptive Feature Pyramid Module generates complementary semantic informa-
tion for each level feature map by jointly utilizing multi-level feature maps from backbone network,
which is different from the top-down manner. Light-weight Classification Function Module is able
to exploit more type of anchor boxes without a dramatic increase of parameters because of the uti-
lization of interleaved group convolution. Extensive experiments on PASCAL VOC and MS COCO
benchmark demonstrate that our model achieves a better trade-off between accuracy and efficiency
over the comparable state-of-the-art detection methods.
Keywords: Object detection, Feature pyramid, Scale variation

1. Introduction

Scale variation is one of the most significant challenges for object detection task. In recent years,
deep neural networks have achieved great success Ren et al. (2015); Zhao et al. (2018); Redmon and
Farhadi (2018) in object detection. Recent object detectors with high accuracy can be categorized
into two-stage detectors and single-stage detectors. The two-stage detectors firstly generate a sparse
set of proposals, and then each proposal is further classified and regressed. The one-stage detectors
detect objects by regular and dense sampling over locations, scales and aspect ratios.

The main advantage of one-stage approach is its high computational efficiency while the detec-
tion accuracy is often lower than the two-stage detectors. Previous study shows that the higher-level
semantic features and denser scale coverage are keys of improving the accuracy of one-stage detec-
tors which detect objects by enumerating a large number of anchor boxes. Therefore, Some recent
methods suggest that feature pyramidal representations and careful anchor boxes design can boost
the performance of one-stage approach.

Feature pyramid approach exploits different scale feature maps to detect multi-scale objects. To
the best of our knowledge, the Single Shot Detector (SSD) Liu et al. (2016) is one of the first at-
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tempts on utilizing such an approach. SSD directly generates predictions from multiple feature maps
with different scales to naturally handle objects of various sizes. However, the low-level semantic
information from the shallow feature maps limit the ability of classification and regression of SSD.
To compensate the absence of semantics in shallow feature map, Scale-Transferrable Detection Net-
work(STDN) Zhou et al. (2018) exploit scale-transfer module to the last block of DenseNet Huang
et al. (2017) to generate high-resolution feature maps with higher-level semantic information. FPN
Lin et al. (2017a), DSSD Fu et al. (2017) and RON Kong et al. (2017) augment a top-down pathway
and lateral connections to incorporate strong semantic information in high-level features. However,
only the low-level feature map can benefit from the top-down pathway with stronger semantic infor-
mation. High-level feature maps have large valid receptive field because of the large downsampling
factors, which is good for image classification but restricts the object location ability. M2Det Zhao
et al. (2018) firstly uses Feature Fusion Module to fusing feature maps of the backbone and then
generates a group of multi-scale features through a set of Thinned U-shape Modules. In addition,
SFAM aggregates the features into the multi-level feature pyramid. Although M2Det obtains strong
semantic information from different scale feature maps, the intensive computation compromises the
efficiency of the detector.

Most of the previous state-of-the-art one stage detectors are based on enumerating anchor boxes,
which need careful design. A set of anchor boxes are usually chosen by handcraft Ren et al. (2015)
or statistical methods Redmon and Farhadi (2017, 2018) like clustering. MetaAnchor Yang et al.
(2018) takes advantage of weight prediction to obtain a dynamic anchor function, which is more
robust in comparison with anchor settings. In order to cover objects of different shapes, the pre-
defined anchor boxes should have multiple aspect ratios. YOLOv3 Redmon and Farhadi (2018)
exploits 3 anchor box with different aspect ratios at each pyramid feature map for detection while
RetinaNet Lin et al. (2017b) has 9 anchors for denser scale coverage. However, the more anchor
boxes we use, the more dramatic increase of parameters in anchor functions, especially if the number
of classes is large.

In order to address the previous issues without impairing the efficiency of the detectors, we
develop an Adaptive Feature Pyramid Module(AFPM) and Light-weight Classification Function
Module(LCFM). On one hand, AFPM is designed to overcome the disadvantage of the top-down
pathway structure and enable the multi-level feature fusion to be more flexible. Breaking the tradi-
tional top-down pathway structure, AFPM is a new attempt to build feature pyramid network and
has the potential to generate multi-level feature maps with higher-level semantic information. In
AFPM, we first rescale the multi-level feature pyramids extracted from a backbone network to the
same resolution and then feed them into a channel-wise attention module to extract complemen-
tary semantic information separately, which will be added to the original feature pyramids. On
the other hand, to utilize to feature maps generated by AFPM for multi-scale objects detection, we
develop LCFM and it is composed of two group convolution layers, which have structure-sparse
kernels. An intermediate permutation operation is exploited between the two convolution in order
to approximate the original dense or high-rank kernel. The basic motivation of LCFM is to recon-
struct the classification function with a sequence of sparse kernels, which can reduce the number of
parameters.

To evaluate the effectiveness of AFPM and LCFM, we embedded these two modules into Re-
fineDet Zhang et al. (2018) to yield a novel end-to-end one-stage object detector we call LADet.
The proposed network achieves remarkable performance with an mAP of 81.4% on PASCAL VOC
benchmark and mmAP of 33.6% on MS COCO benchmark at speed of 20.8 FPS.
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The main contributions of this paper are summarized as follows:

• We propose the Adaptive Feature Pyramid Module to enhance the feature pyramids by gen-
erating complementary semantic information;

• We propose the Light-weight Classification Function Module which can be exploited to re-
duce the number of parameters of classification subnet;

• LADet achieves a better trade-off between accuracy and speed over the comparable state-of-
the-art detectors.

2. Related Work

Previous works have paid much attention to scale variation problem of object detection and re-
searchers have made great efforts on it. As for feature map, feature pyramid structure are widely
used to embed high-level semantic information into multi-scale feature maps. To further utilize the
enhanced feature maps, many state-of-the-art one-stage detectors use more anchor boxes to produce
predictions of classification scores and bounding boxes.

2.1. Feature Pyramid

Feature pyramid is one of the tactics to deal with scale variation. In the task of object detection, it
is wildly acknowledged that keeping the valid receptive fields in consistence with object sizes is the
key to improving the detection accuracy. However, the valid receptive fields are different according
to the depth of feature maps and fixed in a certain layer when the neural network is specified.
Therefore, the feature pyramid network take advantage of the multi-level feature maps to detects
objects of different scales. SSD Liu et al. (2016) and MR-CNN Gidaris and Komodakis (2015)
directly utilize multi-scale feature maps from different layers. FPN Lin et al. (2017a), YOLOv3
Redmon and Farhadi (2018), RetinaNet Lin et al. (2017b) and RefineDet Zhang et al. (2018) fuse
the deep and shallow layers in a top-down manner nearby to enhance the semantic information of
the low-level feature maps. M2Det Zhao et al. (2018) augments a Thin U-shape module to yield
feature maps with different scales and then feeds them into the detection subnet.

2.2. Anchor box

Most of the previous works model anchor boxes via enumeration. After, one-stage detectors detect
objects by regular and dense sampling on strong semantic feature maps which are extracted from
backbone network and feature pyramid network. Taking the different valid receptive fields of multi-
level feature maps into consideration, SSD uses anchors at three aspect ratios at each pyramid
level. For denser scale coverage, RetinaNet adds anchors of sizes {1, 21/3, 22/3} of the original
set of 3 aspect ratio anchors at each level. However, the number of anchor boxes have negative
impacts on the number of parameters and computational efficiency due to the enumeration strategy.
To address this issue, YOLOv2 and YOLOv3 propose a statistical method like clustering which
is good for choosing high-quality anchor boxes. RetinaNet reduces the number of parameters by
sharing weights across all pyramid levels at classification subnet and box regression subnet.
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Figure 1: An overview of our proposed model. Multi-level feature maps extracted from the backbone network
are fed into AFPM to generate pyramid feature map with complementary semantic information, and then the
LCFM and the box regression subnet produce classification scores and dense bounding boxes based on the
enhanced feature maps.

3. Proposed Method

The overall architecture of the proposed method is shown in Figure 1. Firstly, multi-level fea-
ture maps are extracted from the backbone network and then fed into AFPM to refine the feature
maps by generating complementary semantic information. Finally, dense bounding boxes and clas-
sification scores are produced based on the learned feature maps, followed by the non-maximum
suppression(NMS) to produce the final results. AFPM is consist of two steps, i.e. Feature Fusion
and Adaptive Channel-wise Feature Refinement. Feature Fusion applies scale normalization opera-
tion across all levels to obtain super-resolution feature maps, which will be concatenated together.
Adaptive Channel-wise Feature Refinement yields attention maps for each pyramid level via fully-
connected layers. LCFM is composed of two group convolution layers, which have structure-sparse
kernels. An intermediate permutation operation is exploited between the two convolution in order
to approximate the original dense or high-rank kernel. More details about the two core modules and
network configurations are introduced in the following.

3.1. Adaptive Feature Pyramid Module

Scale variance is one of the fundamental challenges of object detection task. Most of the previous
feature pyramid structure is based on the top-down pathway, which is beneficial to the low-level
feature maps but not the high-level feature maps. A drawback of this approach is its unidirectional
flow of semantic information while the high-level feature maps need detail semantic information
to alleviate the problem of blurry boundary for large object localization. To address this problem,
we propose AFPM to generate complementary semantic information from the fusion feature map to
enhance the semantic information for each pyramid level. The comparison between top-down style
and AFPM is shwon Figure 2.

Feature Fusion Module. To fuse the feature maps across all pyramid levels, we have to nor-
malize the multi-level feature maps with same resolution. Inspired by the super-resolution approach
Shi et al. (2016), we develop a scale normalization operation to rescale pyramid feature maps with
different sample factor. Supposed that the shape of the input feature map is (C ·r2)×H×W , where
r is the sample factor. Scale normalization is an operation of periodic rearrangement of elements at
the same spatial space of r2 channels, which is mathematically formulated as follows:

FMHR
c,y,x = FMLR⌊

c
r2

⌋
,y+

⌊
mod(c,r2)

r

⌋
,x+mod(mod(c,r2),r)

(1)
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Figure 2: Structure Comparison between top-down style and AFPM.

Where FMHR are high-resolution feature maps and FMLR are low-resolution feature maps. Com-
pared with up-sampling operation, the output feature maps only have 1/r2 times of orginal chan-
nels. Otherwise, the number of channels will dramatically increase after concatenation. To fuse the
super-resolution feature maps, we concatenate the multiple outputs of scale normalization.

Adaptive Channel-wise Feature Refinement. The next step is to generate complementary
semantic information for each pyramid level, which is called Adaptive Channel-wise Feature Re-
finement. At each level, We firstly feed the fused feature map ffmc,x,y to a global average pooling
layer and Z l

c denotes the output tensor. The channel-wise attention map AM l
c is produced by two

fully-connected layers. Eq.4 will generate the complementary semantic information via a channel-
wise multiplication between AM l

c and ffmc,x,y, and frlc,x,y denotes the final enhanced feature
map.

Z l
c = GAP (ffmc,x,y) (2)

AM l
c = σ(W l

2δ(W
l
1Z

l
c)) (3)

frlc,h,w = AM l
c ⊗ ffmc,x,y (4)

Let l denotes the pyramid level, the two fully-connected layers W l
2 and W l

1 are implemented
by two 1 ∗ 1 convolutional layers with batch normalization, δ refers to the ReLU function, σ is the
sigmoid activation, ⊗ denotes the channel-wise multiplication. Finally, several convolution layers
which kernel sizes are 3∗3 and strides are set to 2 will be applied to the frlc,h,w for down-sampling,
followed by an element-wise addition with the original feature map at lenvel l.
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Figure 3: Illustration of Light-weight Classification Function Module

3.2. Light-weight Classification Function Module

The classification function module predicts the probability of object presence at each spatial position
for each of the anchor boxes and object classes. For the purpose of improving the detection accuracy,
one-stage detectors use multiple anchors boxes at each spatial position to cover boxes of various
scales and aspect ratios. With more anchor boxes are utilized, the average IoU between predefined
anchor boxes and ground truth bounding boxes grows higher, which is beneficial to training the
detectors. The classification function module is a k ∗ k conv layer with C ∗ A filters attached to
the pyramid feature maps. Here C denotes the number classes, A denotes the number of anchor
boxes and k refers to the kernel size. Therefore, the more anchor boxes we use, the more dramatic
increase of parameters in anchor functions, especially if the number of classes is large.

To overcome this problem, we propose a Light-weight Classification Function Module to build
a lightweight and efficient module. Ideally, the increase of parameters and computational complex-
ity should be smooth when the number of anchor boxes is growing. Additionally, the new module
should keep dense connectivity between input and output channels, which can increase the expres-
sive capacity of networks. Bearing the above two demands in mind, we take advantage of Thin
Feature Map Li et al. (2017) and Interleaved Low-Rank Group Convolutions Sun et al. (2018) to
design the LCFM. As shown in Figure 3, we divide the 3∗3 conv layer into two group convs, whose
kernel sizes are 1 ∗ 3 and 3 ∗ 1. The LCFM can be formulated as follows:

y =W 2PW 1x (5)

where x = [xc1, x
c
2, · · · , xcclasses] is the input feature map, xci ∈ R

cin
classes

×H×W . The classes pre-
diction output is denoted as y ∈ RA×classes×H×W and P refers to the permutation matrices. Two
structured-sparse kernels(W 1 ∈ R(A×classes)× cin

classes
×1×3 and W 2 ∈ R(A×classes)×A×3×1 ) are

mathematically formulated as:

W i =


W i

1 0 0 0
0 W i

2 0 0
...

...
. . .

...
0 0 0 W i

classes

 (6)

Here W i
g(i=1 or 2) denotes the kernel matrix over the corresponding channels in the gth branch.

This method adopts two sparse kernel as an approximation of the original dense or high-rank ker-
nel, which can reduce parameters of classification function module and improve computational
efficiency.
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Method Backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Faster Ren et al. (2015) VGG-16 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
ION Bell et al. (2016) VGG-16 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4
Faster He et al. (2016) Residual-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
MR-CNN Gidaris and Komodakis (2015) VGG-16 78.2 80.3 84.1 78.5 70.8 68.5 88.0 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85.0 76.4 48.5 76.3 75.5 85.0 81.0
R-FCN Dai et al. (2016) Residual-101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
SSD300 Liu et al. (2016) VGG-16 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 83.9 79.4 52.3 77.9 79.5 87.6 76.8
SSD512 Liu et al. (2016) VGG-16 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0
DSSD321 Fu et al. (2017) Residual-101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4
DSSD513 Fu et al. (2017) Residual-101 81.5 86.6 86.2 82.6 74.9 62.5 89.0 88.7 88.8 65.2 87.0 78.7 88.2 89.0 87.5 83.7 51.1 86.3 81.6 85.7 83.7
STDN300 Zhou et al. (2018) DenseNet-169 78.1 81.1 86.9 76.4 69.2 52.4 87.7 84.2 88.3 60.2 81.3 77.6 86.6 88.9 87.8 76.8 51.8 78.4 81.3 87.5 77.8
STDN321 Zhou et al. (2018) DenseNet-169 79.3 81.2 88.3 78.1 72.2 54.3 87.6 86.5 88.8 63.5 83.2 79.4 86.1 89.3 88.0 77.3 52.5 80.3 80.8 86.3 82.1
STDN513 Zhou et al. (2018) DenseNet-169 80.9 86.1 89.3 79.5 74.3 61.9 88.5 88.3 89.4 67.4 86.5 79.5 86.4 89.2 88.5 79.3 53.0 77.9 81.4 86.6 85.5
RefineDet512 Zhang et al. (2018)∗ VGG-16 79.7 88.2 86.1 79.3 74.1 69.2 88.0 87.6 88.1 64.6 86.5 72.1 84.3 88.6 85.6 83.1 49.8 80.2 76.5 86.2 76.4
LADet VGG-16 80.4 87.5 86.2 80.4 74.9 69.4 87.3 88.7 88.8 64.4 86.4 75.2 84.6 87.4 85.3 84.0 52.7 80.6 78.9 87.7 77.4
LADet DenseNet-169 81.4 87.6 85.5 81.4 73.5 71.6 87.2 88.9 88.8 67.8 86.4 77.0 85.7 89.1 88.0 84.8 54.8 82.6 81.4 87.0 78.9

Table 1: Detection results on PASCAL VOC2007 dataset. ∗ refers to our implementation.

3.3. Network Configuration

We embed our proposed methods into RefineDet to yield a novel one-stage object detector called
LADet. We choose DenseNet169 and VGG16 as the backbone networks. As for DenseNet-169,
we append a max pooling layer and two conv layers to the end of the basic network and extract
four feature at different scales, including dense block[2,3,4] and the last output feature map. As
for VGG-16, we adopt the modification according to RefineDet. Firstly, we convert fc6 and fc7 of
VGG-16 to convolution layers conv fc6 and conv fc7 via subsampling parameters. Since conv4 3
and conv5 3 have different feature scales compared to other layers, we use L2 normalization to scale
the feature norms in conv4 3 and conv5 3 to 10 and 8, then learn the scales during backpropagation.
The input size is set to 512 × 512. We replace the TCB module of RefineDet to our propoased
AFPM, which is aimed to generate multi-level feature maps. As for detection, the classification
subnet is replaced by LCFM and the bounding box regression subnet remains the same.

4. Experiments

In this section, we introduce the implementation details and experiment setup first. And then we
present the detection result on PASCAL VOC and MS COCO dataset. Finally, we explore the
effectiveness of AFPM and LCFM.

4.1. Implementation Details and Experiment Setup

Experiments are conducted on three datasets: PASCAL VOC 2007, PASCAL VOC 2012 and MS
COCO. The PASCAL VOC Everingham et al. (2010) and MS COCO Lin et al. (2014) datasets
include 20 and 80 object categories respectively. For PASCAL VOC, LADet is trained on the
PASCAL VOC2007 and PASCAL VOC2012 trainval sets and tested on the VOC 2007 test set. For
MS COCO, following the protocol in MS COCO, we use the trainval35k set for training, which
is a union of 80k images from train split and a random 35 subset of images from the 40k image
val split. To compare with state-of-the-art methods, we report COCO AP on the test-dev split. We
conduct the training process on 4 NVIDIA 1080TI GPUs, CUDA 8.0 and CUDNN 7.0. the batch
size is set to 32(8 each for 4 GPUs). Before training the whole network, the backbone networks are
supposed to be pre-trained on the ImageNet 2012 dataset Russakovsky et al. (2015). By default, we
start training with warm-up strategy for 600 iterations, initialize the learning rate as 2 × 10−3, and
decay it to 2× 10−4 and 2× 10−5 at 300 epochs and 350 epochs, and stop at 400 epochs. At each
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Method Train Data Input Size Backbone FPS Avg. Precision, IoU: Avg. Precision, Area:
0.5 0.75 0.5:0.95 S M L

two-stage
OHEM++ Shrivastava et al. (2016) trainval ∼ 1000× 600 VGG-16 7.0 45.9 26.1 25.5 7.4 27.7 40.3
Faster Ren et al. (2015) trainval ∼ 1000× 600 VGG-16 7.0 42.7 - 21.9 - - -
R-FCN Dai et al. (2016) trainval ∼ 1000× 600 ResNet-101 9.0 51.9 - 29.9 10.8 32.8 45.0
CoupleNet Zhu et al. (2017) trainval35k ∼ 1000× 600 ResNet-101 8.2 54.8 37.2 34.4 13.4 38.1 50.8

one-stage
RON384 Kong et al. (2017) trainval 384×384 VGG-16 15.0 49.5 27.1 27.4 - - -
SSD300 Liu et al. (2016) trainval35k 300×300 VGG-16 43.0 43.1 25.8 25.1 6.6 25.9 41.4
SSD512 Liu et al. (2016) trainval35k 512×512 VGG-16 22.0 48.5 30.3 28.8 10.9 31.8 43.5
SSD513 Fu et al. (2017) trainval35k 513×513 ResNet-101 - 50.4 33.1 31.2 10.2 34.5 49.8
DSSD321 Fu et al. (2017) trainval35k 321×321 ResNet-101 9.5 46.1 29.2 28.0 7.4 28.1 47.6
DSSD513 Fu et al. (2017) trainval35k 513×513 ResNet-101 5.5 53.3 35.2 33.2 13.0 35.4 51.1
STDN300 Zhou et al. (2018) trainval 300×300 DenseNet-169 41.5 45.6 29.4 28.0 7.9 29.7 45.1
STDN513 Zhou et al. (2018) trainval 513×513 DenseNet-169 28.6 51.0 33.6 31.8 14.4 36.1 43.4
CornerNet Law and Deng (2018) trainval35k 512×512 Hourglass 4.4 57.8 45.3 40.5 20.8 44.8 56.7
RetinaNet Lin et al. (2017b) trainval35k ∼832×500 ResNet-101 11.1 53.1 36.8 34.4 14.7 38.5 49.1
M2Det Zhao et al. (2018) trainval35k 512×512 ResNet-101 15.8 59.4 41.7 38.8 20.5 43.9 53.4
RefineDet Zhang et al. (2018) trainval35k 512×512 VGG-16 22.3 54.5 35.5 33.0 16.3 36.3 44.3
LADet trainval35k 512×512 VGG-16 20.8 58.3 39.2 33.6 16.6 37.8 45.2

Table 2: Detection results on MS COCO test-dev

pyramid level we use anchors at three aspect ratios {1 : 2, 1 : 1, 2 : 1}. We implement LADet in
Pytorch1 and code is available at https://github.com/nob87208/LADet.

4.2. Pascal VOC

Table 1 shows our results on the PASCAL VOC2007 dataset. The results of RefineDet512 are
produced by our implementation and other statistical results stem from references.

We compare our methods with state-of-the-art detectors. It is noteworthy that, our proposed
detector with backbone DenseNet169 achieves 81.4% mAP, surpassed most one-stage detector, e.g.,
SSD512, STDN513, RefineDet512, etc. We use RefineDet as our baseline because our detectors are
based on RefineDet architecture. When using the VGG16 as backbone, the accuracy of our proposed
detector is 0.7% higher than that of RefineDet512. Especially, the improvement of accuracy reaches
1.4% in comparison with the original RefineDet512 when using the DenseNet169 as backbone.
The extra 0.5% improvement is contributed by AFPM and LCFM when we compare the results
between STDN513 and LADet(DenseNet-169 backbone). The accuracy of M2Det surpass LADet
on MS COCO, but we do not compare our detectors with M2Det on PASCAL VOC2007 because
the results are not made public and the source code is unaccessible. What’s more, the accuracy is
slightly lower than DSSD513 when the backbone is DenseNet-169. We think the reason may be that
Resdidual-101 has more network parameters than DenseNet-169, and thus the basic feature maps
have stronger semantic information. However, this may decrease the detection efficiency as well.

4.3. MS COCO

To further validate our approach, we test our detectors on MS COCO benchmark and results are
summarized in Table 2. It is important to note that the FPS statistics stem from references Zhao

1. https://pytorch.org/
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Method Backbone Neck input size mAP FPS

RetinaNet DenseNet169 fpn ∼1000 ×600 73.7 10.1
DenseNet169 afpm ∼1000×600 74.1 7.4

RefineDet VGG16 tcb 512×512 79.7 22.3
VGG16 afpm 512×512 80.4 20.9

Table 3: Effect of Adaptive Feature Pyramid Module

et al. (2018). Similarly, we focus on the comparison with RefineDet512. Our proposed method
is 0.6% better than RefineDet512 and achieves better detection accuracies for the objects of all
scales. However, M2Det achieves a higher AP than our detector but its efficiency is 5 FPS slower.
Generally, LADet achieves a better trade-off between accuracy and efficiency when speed is more
important.

4.4. The Exploration of Submodule

Since LADet consists of two modules Adaptive Feature Pyramid Module and Light-weight Classi-
fication Function Module, we need to evaluate each of its effectiveness to the overall performance.

4.4.1. EFFECT OF ADAPTIVE FEATURE PYRAMID MODULE

In order to demonstrate the effectiveness of AFPM, we replace the original feature pyramid struc-
tures of RetinaNet and RefineDet to AFPM. The results of Table 3 are produced by test the detectors
on PASCAL VOC2007, with a single NVIDIA 1080TI GPU and the batch size is 1. To reduce the
impact of input size, input images are resized to ∼ 1000 × 600 for ReinaNet-based detectors and
512×512 for RefineDet-based detectors. It can be seen from lines 1 and 2 that mAP increases 0.4%
for RetinaNet. Additionally, we observe a noticeable mAP gain from 79.7% to 80.4% for RefineDet.
What’s more, AFPM boost the accuracy of both ReinaNet-based detectors and RefineDet-based de-
tectors without impairing the efficiency.

4.4.2. EFFECT OF LIGHT-WEIGHT CLASSIFICATION FUNCTION MODULE

Similarly, we conduct experiments on RetinaNet and RefineDet to validate the effectiveness of
Light-weight Classification Function Module. To the best of our knowledge, previous works use
3 ∗ 3 conv layer Lin et al. (2017b) or 1 ∗ 1 conv layer Redmon and Farhadi (2018) to predicts
the probability of object. Thus, we compare LCFM to these two classification function module
on PASCAL VOC2007 benchmark. As shown in the third column in Table 4, we notice that the
original classification function module of RetinaNet has 35.5 times parameters than those of LCFM.
Especially, LCFM has no harm to the accuracy of RetinaNet though it has much fewer number of
parameters. Furthermore, we apply different number of anchor boxes to RetinaNet and RefineDet.
Comparing the results in lines 8, 10 and 12 of Table 5, we can notice that the accuracy increases
from 79.9% to 80.7%, which verifies that denser scale coverage is keys of improving the accuracy of
one-stage detectors. What’s more, taking results in lines 1 and 2 as an example, LCFM can achieve
the same accuracy as the original classification function module. Especially, we observe a slightly
mAP gain from 79.9% to 80.1% in comparison with lines 7 and 8. We think the reason may be that
fewer parameters avoid the detector from overfitting.
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Method Function Module Backbone Params(times) mAP

RetinaNet 3*3 conv DenseNet-169 × 35.5 73.7
RetinaNet 1*1 conv DenseNet-169 × 4 72.5
RetinaNet lcfm DenseNet-169 × 1 73.4

Table 4: Comparison between LCFM and other classification function module. Benefit from LCFM, we
reduce the number of parameters without impairing accuracy.

Method Backbone Anchor type function module Anchor boxes mAP

RetinaNet

DenseNet-169 1 sc * 3 ar ori 16320 71.5
DenseNet-169 1 sc * 3 ar lcfm 16320 71.4
DenseNet-169 2 sc * 3 ar ori 32640 72.8
DenseNet-169 2 sc * 3 ar lcfm 32640 72.3
DenseNet-169 3 sc * 3 ar ori 48960 73.7
DenseNet-169 3 sc * 3 ar lcfm 48960 73.4

RefineDet

VGG16 1 sc * 3 ar ori 16320 79.7
VGG-16 1 sc * 3 ar lcfm 16320 79.9
VGG-16 1 sc * 5 ar ori 32640 79.9
VGG-16 1 sc * 5 ar lcfm 32640 80.1
VGG-16 1 sc * 7 ar ori 48960 80.0
VGG-16 1 sc * 7 ar lcfm 48960 80.7

Table 5: Effect of Multiple anchor boxes setting. 1 sc ∗ 3 ar means we use 1 anchor box scale and at each
scale has 3 aspect ratios for each pyramid level.

4.5. Conclusions

In this work, we propose LADet to address the problem of scale variance in the task of object detec-
tion. Compared with the traditional top-down pathway structure, AFPM has the ability to enhance
the semantic information for each pyramid feature map in a nonlinear way, which is more flexible.
Our study provides a different way to generate pyramid feature maps, which has the potential to
build a better detector to deal with the scale variation problem. To further improve the multi-scale
object detection accuracy, we exploit more anchor boxes with the usage of LCFM. At 20.8 FPS, our
proposed network get 81.4% mAP on PASCAL VOC2007 and 33.6% AP on MS COCO, achieving
a better trade-off between accuracy and efficiency over the comparable state-of-the-art detection
methods.
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