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Abstract

Recently, Siamese networks have drawn great attention in the visual tracking community
because of their balanced accuracy and speed. However, most existing Siamese frame-
works describe the target appearance using a global pattern from the last layer, leading
to high sensitivity to similar distractors, non-rigid appearance change, and partial occlu-
sion. Addressing these issues, we propose a Multi-branch Siamese network (MSiam) for
high-performance object tracking. The MSiam performs layer-wise feature aggregations
and simultaneously considers the global-local patterns for more accurate target tracking.
In particular, we propose a feature aggregation module (FAM) keeping the heterogeneity
of the three types of features, further improving the discriminability of MSiam using both
high-level semantic and low-level spatial information. To enhance the adaptability to non-
rigid appearance change and partial occlusion, a multi-scale local pattern detection module
(LPDM) is designed to identify discriminative regions of the target objects. By considering
various combinations of the local structures, our tracker can form various types of structure
patterns. Extensive evaluations on five benchmarks demonstrate that the proposed track-
ing algorithm performs favorably against state-of-the-art methods while running beyond
real-time.

Keywords: Visual tracking, deep learning, Siamese network

1. Introduction

Visual object tracking is an essential field of computer vision with many applications, such
as automated surveillance, human-computer interaction, autonomous driving, and vehicle
navigation. The core task for a single object tracking is to locate an arbitrary target in
constantly video sequences. It still remains challenging due to practical factors like scale
variation, fast motion, occlusions, deformation, background clutter, and other variations.
In recent years, deep convolutional neural networks (CNNs) demonstrated their superior
capabilities in various vision tasks. CNNs have also significantly shown the state-of-the-art
performance of object tracking. Some trackers Danelljan et al. (2015); Qi et al. (2016);
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?); Sun et al. (2018) integrate deep features into conventional correlation filters tracking
approaches and benefit from the expressive power of CNN features. However, these track-
ers cannot train a deep architecture from end to end leading to insufficient data-driven
utilization and low efficiency. Some trackers Nam and Han (2016); Fan and Ling (2017);
Wang et al. (2016) directly use CNNs as classifiers and take full advantage of end-to-end
training. With a high volume of CNN features and the online model update application, it
is computationally expensive to perform online tracking.

Recently, the Siamese architectures show their great potential in single object tracking
owing to its balanced accuracy and speed. Bertinetto et al. (2016a) design a fully off-
line convolutional network without a model update to improve the speed of the tracking
process. Despite having achieved the promising result, the model drift may occur due to
two reasons: (1)Low-level spatial features are not fully explored. Ounly features from
the last layer, which contain more semantic information, are employed to locate the target
object. Nevertheless, background distractors and the target may have similar semantic
features Zhang and Vela (2015), in such case, the high-level semantic features are less
discriminative in distinguishing target or background. (2)The entire object is described
in a single global pattern. The first frame determines the template feature maps of the
Siamese network, and the target in the first frame is always clear without any occlusion.
Thus, the partial occlusion and non-rigid appearance change may lead to model drift if we
describe the entire object in a single global pattern.

Addressing the above issues, we propose a Multi-branch Siamese network (MSiam) for
improving tracking performance. Compared to previous solutions, MSiam has two advan-
tages: (1) Leverage features from different layers in the neural networks have been proven to
be beneficial for model discriminability Lin et al. (2017); Long et al. (2015). To fully explore
both the high-level semantic and the low-level spatial features for the Siamese network, we
design a novel feature aggregation module (FAM) to combine different level information.
Instead of using features from the last single layer in Siamese architecture, FAM enables
us to fuse the high-level features into low-level features, which further improves its discrim-
inative power to deal with the complex background, resulting in better performance. (2)
To adapt to non-rigid appearance change and partial occlusion circumstance, we identify
object parts with discriminative patterns using a local pattern detection module (LPDM).
During the off-line training phase, we train different scale local pattern detection module
with multi-level supervision, separately. During the online tracking phase, we integrate dif-
ferent scale local pattern score maps into the final score map to locate the target. Besides,
we investigate the best scale local pattern combination to improve tracking performance.
To guarantee high tracking efficiency, all these learning processes are performed during the
offline training stage. Extensive analyses and evaluations on the latest tracking bench-
marks Wu et al. (2013, 2015); Huang et al. (2018) and challenges Kristan et al. (2015, 2017)
verify the effectiveness and efficiency of the proposed model.

To summarize, the main contributions of this work are three-fold.

e We propose a novel feature aggregation module to combine the high-level and the
low-level layers information for the Siamese network, leading to an enhancement in
discriminability between target and distractor.
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e We propose a local pattern detection module, which can identify discriminative local
parts of target objects, and we investigate the best scale local pattern combination to
overcome the model drift problem caused by partial occlusion and non-rigid appear-
ance change.

e We perform the proposed algorithm on multiple benchmark datasets and demonstrate
outstanding performance with real-time tracking speed.

The rest of the paper is organized as follows. We first discuss related work in Section 2.
Section 3 discusses our main contribution for target representation via the feature aggre-
gation module and the multi-scale local pattern detection module, and we also present the
overview of the proposed algorithm in this section. In Section 4, we provide experimental
results. Finally, we perform the summarized conclusion of this paper in Section 5.

2. Related Works

2.1. Deep learning for visual tracking.

Deep convolutional neural network (CNN) showed the great successes in classification
task Krizhevsky et al. (2012), the CNN had also been introduced into visual tracking and
demonstrated excellent performances Danelljan et al. (2015, 2016a, 2017); Nam and Han
(2016); Fan and Ling (2017); Song et al. (2018). Danelljan et al. (2015, 2016a, 2017) com-
bined deep CNN features with the hand-craft features in the traditional Correlation Filter
(CF) tracking model, achieving remarkable gains. Nam and Han (2016) proposed a multi-
domain branch architecture with online fine-tuning. The light architecture was used to
learn generic feature for tracking target. Fan and Ling (2017) introduced Recurrent Neural
Networks (RNN) to learn different directional features, leading to more powerful features
for locating the target object.

2.2. Tracking by Siamese Network.

Siamese network based trackers Held et al. (2016); Tao et al. (2016); Bertinetto et al.
(2016Db); Li et al. (2018); Wang et al. (2018) consist of two branches. One is an exemplar
branch for selecting target patches, the other is a template branch. The goal of Siamese
trackers is locating the target object in subsequent frames using the features from the
exemplar branch and template branch. Held et al. (2016) learned a regression model to
predict the location using concatenated pairs of consecutive frames. Tao et al. (2016) trained
a Siamese architecture to learn a metric for online target matching and formu- lated visual
tracking as a verification problem. Bertinetto et al. (2016b) learned to measure the feature
similarity between the template and candidates. Owing to its light structure and without the
model update, SiamFC runs faster than the real-time speed at 80 frames per second. Wang
et al. (2018) introduced multiple attention mechanisms into Bertinetto et al. (2016b) to
produce effective deep feature learning for visual tracking. Li et al. (2018) combined Siamese
network with Region proposal Network (RPN), achieving excellent performance.

Despite all these significant progress, these trackers still suffer from two problems. First,
only the feature information from the last layer is employed to predict the location of the
target. These features contain semantic information which is easily distributed by distractor
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belonging to the same category with the target. Second, these trackers employ the global
pattern to describe the target but ignore part information. Thus, partial occlusion and
non-rigid appearance change may lead to model drift.

2.3. Multi-level features for tracking.

The features from different layers in the neural network contain different information. The
high-level feature consists of more abstract semantic cues, while the low-level layers contain
more detailed spatial information Long et al. (2015). In visual tracking, Ma et al. (2015)
employed features from three different layers to obtain score maps and fused these score
maps into the final output score map to locate the target. Danelljan et al. (2016¢) merged
different level deep features with hand-craft features to enhance the robustness, and achieved
the-state-of-art results on multi-benchmarks. Wang et al. (2015) developed a regression
model with two-layer features to distinguish similar semantic distractors. However, these
tracking methods can not develop an end to end model.

2.4. Part-based Trackers.

Nowadays, most existing trackers can barely deal with extreme deformations. Some trackers
try to solve the problem by exploiting part information. Son et al. (2015) proposed an online
gradient boosting decision tree to integrate individual patches into the merged patch. Liu
et al. (2015) tracked objects based on parts with multiple correlation filters in real-time
speed. In Yang et al. (2015) a trackable confidence function was proposed to compute and
select the reliable patches, which is capable of capturing the underlying object geometry.
However, these methods are hard to design, and the patches lack the cues combination
between the local and global view leading to insufficient semantic information.

3. Multi-branch Siamese Network

In our observation, some tracking failures are related to similar distractors and the lack
of partial detection. We propose a deep network named Multi-branch Siamese network
(MSiam) for high-performance object tracking. Figure. 1 shows the pipeline of our proposed
framework. In contrast to the basic framework (SiameseFC, Bertinetto et al. (2016b)), we
propose the feature aggregation module (FAM) and the multi-scale local pattern detection
module (LPDM) to solve the above problems separately. In the rest of this section, we
will show the overview of MSiam in Section 3.1 Then, FAM and LPDM will be shown in
Section 3.2 and 3.3.

3.1. Overview

In this work, we propose a Multi-branch Siamese network, which simultaneously performs
discriminative pattern detection and feature integration in an end-to-end manner. Figure. 1
shows the pipeline of our tracking algorithm. Inputs of the proposed network are a 127 x 127
template image z within a larger 255 x 255 search image . We prepare z and = by the same
way with SiameseFC Bertinetto et al. (2016b). The model learns a similarity function to
densely compare the all translated sub-windows within the search image in one evaluation.
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Figure 1: Hlustration of the architecture of the MSiam tracking method. MSiam includes
a Siamese network for feature extraction, the feature aggregation module for
multi-level feature integration, and the local pattern detection module for the
local pattern description. Different level feature maps are sensitive to detect
different objects. We integrate three level feature maps using FAM to enhance
discriminative ability between the target and background. Besides, the Siame-
seFC Bertinetto et al. (2016b) method exploits the holistic model for target rep-
resentation and ignore detailed information. To resolve the problem, LPDM is
employed to match partial feature maps between the template Z and the search
region X. Best viewed in color.

To achieve this, the cross-correlation layer is proposed

fi(z, ) = i(2) * pi(z) + bi (1)

where ¢; is an identical transformation generated by each network stream; b; € R de-
notes the bias for each location; f;(z, z) represents the predicted confidence score map that
highlights the 17 x 17 target region; and i € {1,2,3,6} denotes the scale of local pattern
detection. To obtain ¢;(z) and ¢;(x), we combine the feature maps from the Siamese

Network
¢(2) = FAM(¢3(2) , ¢4 (2) , ¢5 (2)) @)
p(x) = FAM (¢3 () , ¢4 (z) , ¢5 ()
where F'AM represents feature aggregation transformation. Then, we employ convolutional
layers with different scale kernel size to tansfer ¢(z), p(z) to ¢;(z) and p;(x), respectively.
We take the ¢(z) as an example.
©1(2) = Convl x 1 (¢(z
w2(2) = Conv2 x 2 (p(z
(2) = Conw3 x 3 (o(
w4(z) = Convb x 6 (¢(z

z

)
)
)
)
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Each f; (z,z)) is independently supervised by the same ground-truth label y € {+1,—1}
as Bertinetto et al. (2016b). The final score map is the sum of the four independent score
maps

{1727374}

four =Y (fi+b) (4)
7
The two streams of the network share the same architecture and parameters, consisting of
three components: Siamese network for feature extraction, the feature aggregation module
for multi-level feature integration, and the local pattern detection module for the local
pattern detection. The details of these components are presented in the following sections.
Finally, we combine multiple level feature maps using cross-correlation and evaluate the
network once on the larger search image is mathematically equivalent to combining feature
maps using the inner product and evaluating the network on each translated sub-window
independently.
The loss of each branch is defined as

1
L; = W Z li(y,v) (5)

ueD

where L;(y,v) is ith branch loss; D — R denotes the map of scores; and /;(y, v) represents
the logistic loss on the one position defined as

Li(y,v) = log(1 + exp(—yv)) (6)

where v is the real-valued score of a single exemplar-candidate pair and y is its ground-truth
label. The final loss is a combination of the loss from four branches

{1,2,3,4}

L= Y AxI (7)
i
where )\; the weight parameter is a constant value equal to 0.25 in our algorithm.

3.2. Feature Aggregation Module

Different layers encode different types of features that are sensitive to different objects. As
shown in Figure. 2, the Conv3 has a high response on the face, while it has a low response
on the dog and head. Besides, the Conwv4 is sensitive to the head, and the Conv5 is sensitive
to the dog. To effectively leverage multi-level features, we introduce Feature Aggregation
Module (FAM) to fuse information from different layers, so that our model is capable of
sharing low-level features with high-level features to improve the discriminability.

The FAM is illustrated in Figure. 1. We gradually integrate features from different
layers. The aggregation strategy is enlightened by Ronneberger et al. (2015), the FAM
consists of four convolutional layers. Three of them are employed to integrate features from
consecutive layers, and the kernel sizes of these layers are 3 x 3 with padding 1, each of
the three convolutional layers is followed by a ReLU layer. To improve the efficiency of our
method, the other convolutional layer with the kernel sizes 1 x 1 and, no padding is used
to compress the number of channels.
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Search image Conv3 Conv4 Conv5

Figure 2: Response maps from different layers. The first column contains three correspond-
ing search regions from OTB-2015 Wu et al. (2015) dataset. The second, third,
and fourth column are response maps from the Conwv3, Conv4, and Conv5 layer,
respectively.

Figure 3: Random occlusion for data augmentation.

For a brief description, we define the last, second-to-last and third-to-last feature maps
from Siamese Network as ¢5(x), ¢4(z), and ¢3(x), respectively. The typical workflow of fea-
ture aggregation is described as follows. Firstly, we transfer ¢5(z) with convolutional layer
and concatenate the transferred features with ¢s(x); Then, we transfer the concatenated
features and concatenate these features with the center cropped ¢4(x); Repeat this process
for ¢3(z); Finally, the output feature maps are thrown into 1 x 1 convolutional layers to
obtain the final aggregated features. The final output feature maps has the same size as

¢5(x)
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3.3. Multi-scale Local Pattern Detection Module

Informative local patterns are crucial cues to characterize target appearance. We design
the multi-scale local pattern detection module to identify discriminative patterns through
end-to-end training. The LPDM contains four scale convolutional layers with a kernel size
of 1 x1,2x2,3x 3, and 6 x 6, respectively.

Each of four scale convolutional layers corresponds to a specific local pattern. For
instance, the size of ¢(z) is 6 x 6 and 6 x 6 kernel size convolutional layer is applied to
detect the target from the global view, 1 x 1 kernel size convolutional layer is applied to
identify the target from the pixel view. It is only a pixel in feature maps, but it is a part
of the object in the template image due to the receptive field. Thus, we accomplish local
pattern detection using convolutional layers with different kernel scales. The reason why we
choose these four scales is our experimental results that are shown in Table. 2. The LPDM
can better focus on local regions of the target and preserve more detailed information. This
design is also consistent with recent findings Danelljan et al. (2016¢) in visual tracking that
detailed low-level features are more discriminative and suitable for target matching.

One of the primary purposes of LPDM is to improve the adaptive ability for partial
occlusions. To further achieve this purpose, the random occlusion is used for data aug-
mentation. The area of occlusion is a constant value 40 with arbitrary height and width,
as shown in Figure. 3. In consideration of occlusive frames are only a tiny proportion in
videos, we add on five percent occlusion frames for all training videos.

4. Experiments

To validate the proposed approach, we conducted experiments on the popular Object Track-
ing Benchmark 2013 (OTB-2013) Wu et al. (2013), Object Tracking Benchmark 2015 (OTB-
2015) Wu et al. (2015), Visual Object Tracking 2015 (VOT2015) Kristan et al. (2015),
Visual Object Tracking 2017 (VOT2017) Kristan et al. (2017) and GOT-10K Huang et al.
(2018), compared with state-of-the-art trackers, and analyzed performance of our tracker by
ablation studies. All benchmark details can be found from the corresponding reference Wu
et al. (2013, 2015); Kristan et al. (2015, 2017); Huang et al. (2018), respectively.

4.1. Implementation Details

MSiam is implemented using PyTorch on a PC with an Intel(R) Xeon(R) 2.60GHz CPU
and a single Nvidia GTX1080Ti with 12GB memory. To avoid over-fitting, our MSiam is
trained on the video object detection dataset of ImageNet Large Scale Visual Recognition
Challenge (ILSVRC15) Russakovsky et al. (2015). The backbone Siamese Network adopts
the modified AlexNet Bertinetto et al. (2016b). The parameters of all convolution layers
are randomly generated. We apply stochastic gradient descent (SGD) with the momentum
of 0.9 to train the network, and the weight decay is set to 0.0005. The learning rate
exponentially decays from 1072 to 107°. The model is trained for 50 epochs with a mini-
batch size of 32. To adapt to the scale variations, we search for the object over three scales
1.025{-1.0:1},
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Figure 4: Overall performance on the OTB-2013 and OTB-2015.

4.2. State-of-the-art Comparison

OTB benchmark OTB-2013 Wu et al. (2013) is a widely used public tracking bench-
mark. The OTB-2013 and OTB-2015 dataset respectively include 50 and 100 sequences
tagged with 11 attributes, and all sequences are fully annotated. We evaluate the pro-
posed algorithms with comparisons to state-of-the-art trackers including DSST Danelljan
et al. (2016b), SiamFC Bertinetto et al. (2016b), CNNSVM Hong et al. (2015), Sta-
ple Bertinetto et al. (2016a), CF2 Ma et al. (2015), DeepSRDCF Lukezic et al. (2017),
SRDCFdecon Lukezic et al. (2017), SINT Tao et al. (2016). All the trackers were initialized
with ground-truth object states in the first frame and average success plots were reported.
The OPE criteria for OTB is applied to evaluate our MSiam. Figure. 4 hows the success
plots in AUC, which is the bounding box overlapped ratio measures the Intersection-over-
Union (IOU) ratio between the tracked bounding box and the ground truth. The left column
is the success plots on OTB-2013, and the right column is success plots on OTB-2015. Ac-
cording to Figure. 4, our MSiam achieves the best performance among the state-of-the-art
trackers on both datasets. The success plots are 0.660 on OTB-2013 and 0.640 OTB-2015,
respectively.

VOT benchmark The VOT2015 Kristan et al. (2015) dataset consists of 60 sequences,
aiming at assessing the short-term performance of trackers. The toolkit applies a reset-based
methodology. The overall performance is evaluated using the Expected Average Overlap
(EAO), which takes account of both accuracy and robustness.

Figure. 5 illustrates the EAQO score evaluated on VOT2015, and 62 other state-of-the-art
trackers are compared with our tracker. Although, our MSiam ranks second in terms of
EAO score, MSiam can conduct at 37 FPS, which is more than 37 times of MDNet (first
rank).
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Figure 6: Overall performance on the VOT2017 real-time benchmark.

Compared with VOT2015, VOT2017 Kristan et al. (2017) replaces with 10 challenging
sequences. Besides, a new real-time experiment is conducted. The real-time experiment
requires trackers to deal with real-time video stream at least 25 FPS if the tracker fails to
submit the tracking result in 40ms, the bounding box of the last frame will be reused as
the result in the current frame.

Figure. 6 reports the results of MSiam against 51 other state-of-the-art trackers concern-
ing the EAO score. MSiam achieves the first rank according to EAO score. Specifically,
MSiam surpasses the original SiamFC by 21%. GOT-10K benchmark The GOT-10k
benchmark test set embodies 84 object classes and 32 motion classes with only 180 video
segments. The success rate (SR) is used for the evaluation of trackers, and it measures the
percentage of successfully tracked frames where the overlaps exceed 0.5.

The success curves on GOT-10k benchmark is shown in Figure. 7. In this experiment,
we compare our method with several representative trackers, including SiamFC Bertinetto
et al. (2016b), GOTURN Held et al. (2016), CCOT Danelljan et al. (2016a), ECO Danelljan
et al. (2017), MDNet Nam and Han (2016), BACF Kiani Galoogahi et al. (2017), and
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Figure 7: Overall performance on the GOT-10K bechmark.

SRDCF Lukezic et al. (2017). MSiam obtains 0.361 success score and achieves the best
performance on this benchmark.

4.3. Comparison with baseline SiameseFC

As shown in Figure. 8, all compared sequences come from OTB-2015 benchmark, we com-
pare our MSiam with SiameseFC Bertinetto et al. (2016b) on four challenging series: Mo-
torRolling (the first column) with non-rigid appearance change, Bolt2 (the second column)
with similar distractors, Bird! (the third column) with full occlusion, and Girl2 (the fourth
column) with partial occlusion.

We observe that MSiam can distinguish the target from distractors, while SiameseFC
drifts to the background in Bolt2. This fact proves the FAM is effective in recognizing
distractors. In addition, compared to SiameseFC, our MSiam with multi-brach is able to
deal with non-rigid appearance change, full occlusion, and partial occlusion in MotorRolling,
Bird1, and Girl2. The results show that multi-branch bring local patterns detection ability
to our model. Comparison between the green line (MSiam) and yellow line (MSiam without
data augmentation) in sequence Bird! indicates that Msiam without random occlusion data
augmentation can not tackle full occlusion problems. However, our model achieves a better
way to tackle partial occlusion and non-rigid appearance change circumstances.
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Figure 8: Comparisons between MSiam and SiameseFC.

4.4. Comparison with other variations of SiameseFC

In this section, we compare our MSiam with other variations of SiameseFC including
StructSiam Zhang et al. (2018), Siam-tri Dong and Shen (2018), CIResNet-16 Zhipeng
et al. (2019), and CIResNet-43 Zhipeng et al. (2019) on OTB-2015 benchmark. Table. 1
shows that our MSiam achieves best the best performance among the other variations of
SiameseFC. It is worth mentioning that StructSiam also proposes a local structure learning
method, but our method shows a better performance. Besides, CIResNet-16 and CIResNet-
43 are ResNet-driven Siamese network while our method is AlexNet-driven. This fact proves
our method is more effective even if the backbone is a shallow network.

Table 1: The comparisons of different variations of SiameseFC.
Tracker | SiamFC | StructSiam | Siam-tri | CIResNet-16 | CIResNet-43 | MSiam
AUC 0.583 0.621 0.592 0.632 0.638 0.640

4.5. Ablation Study

To show the impacts of different components of our tracker, we perform six variants of our
tracker by employing the different combination of branches and evaluate them on OTB-
2015 dataset. In this section, all training parameters and the dataset is the same for the
variants. We test six variants of multi-branch MSiam in this section: @) represents only
one branch Convl x 1 is applied; @ represents two branches Convl x 1 and Conv6 x 6 are
applied; @) represents three branches Convl x 1, Conv2 x 2, and Conv6 x 6 are applied; @
represents three branches Convl x 1, Conv3 x 3, and Conv6 x 6 are applied; (O) represents
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four branches Convl x 1, Conv2 x 2, Conv3 x 3, and Conv6 x 6 are applied; 6) represents
all six branches Convl x 1, Conv2 x 2, Conv3d x 3, Convd x 4, Convb x 5, and Conv6 X 6
are applied. We list the six types of MSiam with AUC, Params, FLOPs, and Speed in
Table. 2. Compared Single last layer features with Multi-level features, we can conclude
that FAM, which enables our model to integrate multi-level features, improves the tracking
performance for six variants. Moreover, compared (0) and (6) more branches are not always
providing good effects to our method. ) with multi-level features is the best variant in all
six variants.

Table 2: Ablation study of our proposed method on OTB-2015.

\ Multi-branch type

1 2 3 4 ) 6

AUC 0.591 0.599 0.605 0.611 0.623 0.617

Params | 2.402M | 4.762M | 5.024M | 5.352M | 6.401M | 8.302M

Single last FLOPs | 2.771G | 3.424G | 3.559G | 3.668G | 4.043G | 4.691G

layer features | Speed | 96 84 79 77 64 32

AUC 0.598 0.606 0.616 0.625 0.640 0.632

Params | 8.727M | 11.087M | 11.673M | 12.136M | 12.362M | 14.623M

Multi-level FLOPs | 5.991G | 6.644G | 6.888G | 7.019G | 7.023G | 7.911G

features Speed 58 48 44 43 37 18

5. Conclusion

In this paper, we propose a novel multi-branch framework MSiam for visual tracking. Com-
pared with previous arts, MSiam demonstrates more robust performance in handling com-
plex backgrounds such as similar distractors by aggregating multi-level features, non-rigid
appearance change, and partial occlusion by providing multi-scale local pattern detection.
In addition, the proposed FAM enables effective feature leverage across layers for more dis-
criminative representation, LPDM is able to locate the target using local clue. Extensive
experiments on 5 public datasets have validated the advantages of tracking robustness and
efficiency of the proposed method, and our model runs in real-time.
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