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Abstract

I argue that natural selection sometimes depends on
objective imprecise probabilities. I give a general ar-
gument for the existence of objective imprecise proba-
bilities. I then argue that natural selection, whether in-
volving objective imprecise probabilities or not, would
give rise to organisms whose behavior was imprecisely
probabilistic, and that this would mean that other or-
ganisms’ environments were imprecisely probabilistic.
Since natural selection can be influenced by the envi-
ronment, it therefore sometimes depends on objective
imprecise probability. I explain why the absence of
reports of objective imprecise probability in evolution
is nevertheless unsurprising, and provide illustrations
of ways to model natural selection with objective im-
precise probabilities.

Keywords: objective imprecise probability, biological
fitness, natural selection, set-chain, hi-lo method

1. Introduction

Natural selection occurs when there are differences in bi-
ological fitness. A common view, which I adopt as my
starting point, is that biological fitness depends on objec-
tive probabilities for outcomes such as organisms having
particular numbers of offspring. Such probabilities depend
not only on organisms’ traits, but also on the character of
the environments in which they live. For example, con-
sider rabbits living in a dense forest in a warm climate,
with predators that hunt rabbits by sight. In this environ-
ment rabbits with brown fur rather than white fur may have
greater fitness in the sense of having a higher probability
of survival and reproduction. This relationship between fur
colors might be reversed in an environment with a great
deal of snow and ice.

I argue that some biological outcomes have objective im-
precise probabilities—imprecise analogues of real-valued
objective probabilities—in such a way that fitness, and
hence natural selection, can be expected to depend on objec-
tive imprecise probabilities. I first give a general argument
for the existence of objective imprecise probabilities. I then
argue that natural selection, whether involving objective
imprecise probabilities or not, would give rise to organisms
whose behavior was imprecisely probabilistic. This behav-
ior would then be part of the environment of other organ-
isms in ways that would make their fitnesses imprecisely
probabilistic. As a result, natural selection should some-
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times depend on objective imprecise probability. I explain
why the absence of reports of objective imprecise probabil-
ity in evolution is unsurprising, and outline approaches to
modeling imprecisely probabilistic evolution.

2. Objective Imprecise Probability

Several authors have argued for the existence of objective
imprecise probabilities of particular kinds (e.g. [14, 19,
23, 22, 29, 32, 33, 35, 45, 61, 63, 70]). Here I present a
general argument for the existence of objective imprecise
probabilities.

2.1. Erraticity

An objective probability is a probability of an outcome in a
space of alternatives, where an outcome is a set of physical
occurrences (token events), or the realization of a type by an
occurrence, or the fact that a proposition would be true. Ob-
jective probabilities that are of the most interest in science
are often those that Abrams [2015] calls causal probabili-
ties. These are probabilities realized by physical factors that
can be used to manipulate frequencies in experiments or
natural conditions. For example, one can often manipulate
dice outcome frequencies by changing the distribution of
weight within the dice that are tossed. My discussion of
(precise) objective probabilities below is restricted to this
variety.! That there is a precise objective probability r that
an outcome A will occur does not guarantee that the relative
frequency of A will remain close to r in a large number of
trials, but that is (at least) what usually happens.? Objective
imprecise probabilities will allow manipulation of frequen-
cies in a looser sense. That there is an objective imprecise
probability of A, for example with its value the interval
[r1,r2], does not guarantee that the relative frequencies of
A will remain in or near the interval [r|,r;], but that should
be what usually happens.

Now consider mutually exclusive occurrences or token
events e; and e;. If these two occurrences have objective

1. T assume that outcomes realized only by effects of deterministic
processes can have objective probabilities other than 0 and 1, perhaps
as long-run propensities [27, 12], or perhaps as what have been
called “natural range", “Spielraum", microconstant, or mechanistic
probabilities [3, 4, 11, 53, 54, 55, 56, 62].

2. Talk of “what usually" happens is incredibly vague, but reflects
scientists’ intuitions about finite numbers of outcomes in systems
they model, and is difficult to eliminate without circularity.
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probabilities, they do so “under some description": It is
as realizations of properties that e; and e, have objective
probabilities. However, even if every occurrence has an
objective probability as a realizer of some property, that
doesn’t imply that every algebra over a set of possible, mu-
tually exclusive occurrences defines a space of outcomes
with a common objective probability distribution. For ex-
ample, suppose I define a space of outcomes by partitioning
into three sets (A, B, C) the possible percentages of ink (by
mass) in pieces of paper. Consider the “chance setup" [31]
that consists of averaging the densities of ink in pieces of
paper in the pockets of the next 10 people that any reader of
this article happens to meet after finishing it, and determin-
ing whether that average falls into A, B, or C. Must C, for
example, have an objective probability? I suspect not. Of
course, the outcome C will either occur or not, because the
particular circumstances in which the current reader (let’s
say) finds herself or himself after reading this paper is one
in which processes in the world lead to meeting particular
people with particular things in their pockets. It may be that
these processes are merely deterministic, or not. However
the setup described by the italicized text need not describe
a process with outcomes that have a particular objective
probability distribution common to every case in which the
setup is realized.

I’ll therefore assume that for some setups, outcomes have
no objective probabilities. We can refer these outcomes as
occurring erratically [33], or with erraticity. I emphasize
that the fact that a set of outcomes occur erratically does
not mean that the token events that realize these outcomes
happen for no reason. Such occurrences are caused, ei-
ther deterministically, or indeterministically in the way that
quantum mechanical events are thought to occur. Moreover,
erratically occurring outcomes have relative frequencies
in practice. However, there is no predictability to their fre-
quencies from the fact that they are outcomes of the setup in
question. Particular occurrences that realize the outcomes
may be predictable, and frequencies for outcomes of par-
ticular set of realizations of the setup may be predictable
from other circumstances than those that define the setup.
However, another set of occurrences that realize outcomes
in the same space from the same setup type might routinely
have radically different frequencies.

2.2. Objective Imprecise Probability

Suppose we have two alternative chance setups for the
same outcomes, but each setup gives these outcomes differ-
ent (precise) objective probabilities. We can embed these
chance setups in what I’ll call a complex setup, in which
one of the preceding setups is chosen by an outcome of
a third setup. For example, suppose that one of two pairs
of loaded dice is chosen by the result of a fair coin toss,
and then the chosen pair is tossed. Let one pair of dice, d3,
give “ones" (i.e. two ones) an objective probability of 1/30,

while the other pair, d4g, gives it an objective probability
of 1/40. In this case the objective probability of ones as an
outcome of the complex setup would clearly have a precise
value: (1/2x1/30)+ (1/2 x 1/40) ~0.029.

Suppose instead that we choose the dice to toss using
something like the ink setup above, in which the outcome
is determined erratically. Then what is the objective prob-
ability of ones on the new complex setup? It is neither
1/30, nor 1/40, nor a weighted average of the two: There
is no probability with which to weight the alternative dice
pairs dsg, dao. Note that in sequences of repeated trials of
this complex chance setup, the frequency of ones among
large numbers of tosses of the dzg pair would usually be
near 1/30, and the corresponding frequency among tosses
of d4o would usually be near 1/40. However, there would
be no particular overall frequency of ones that would usu-
ally occur, since no particular frequencies for dzg and dyg
should often occur. It seems most reasonable to hold that
ones would have no (precise) objective probability as an
outcome of the new complex setup. Nevertheless, it doesn’t
seem appropriate to say that the ones outcome occurs er-
ratically in the way that the choice of dice pairs was. For
example, in long sequences of trials of the complex setup,
frequencies of ones would usually be found in or near the
interval [1/40, 1/30]. It seems that ones occurs as a sort of
erratic mixture of the precise probabilities determined by
the two biased pairs of dice. We should say that the occur-
rence of ones has an an objective imprecise probability.? T
don’t assume that objective imprecise probability can only
arise as an erratic mixture of precise objective probabilities,
but such mixtures provide a simple illustration.

3. Objective Imprecise Probability in
Evolution Is Possible

In this section of the paper, I argue that natural selection
can depend on imprecise probabilities.

3.1. Fitness and Environmental Variation

Natural selection is always relative to an environment: Were
a population of organisms placed in a different environment
(a cold rather than warm one, for example), the naturally se-
lected traits might differ. Biologists sometimes extend this
idea to smaller “environments" (habitats, patches, suben-
vironments) within an overall environment. These variant
environments may be arranged spatially within the over-
all environment, or they may occur at different times, or
both. Consider a toy example like ones in [1] or [71]: In a
population of animals of small mammals, one genetically
influenced trait, deep, leads its bearers to dig deep burrows,

3. Combining erraticity with precise probabilities in this sort of way
is related to some other schemes for generating objective imprecise
probabilities in which the role played by erraticity above is restricted
to narrower ranges of cases [20, 70, 19, 23, 61].



NATURAL SELECTION WITH OBJECTIVE IMPRECISE PROBABILITY

while the other, shallow, leads its bearers to dig shallow
burrows. The deep trait makes drowning more likely during
periods of torrential rain, but it is better than shallow during
hot, dry periods, because cool burrows are advantageous.
Suppose deep animals have an average of 1 offspring dur-
ing wet (rainy) periods and 2 offspring during dry periods,
while shallow animals have an average of 2 offspring dur-
ing wet periods and 1 offspring when during dry. (Take
these averages to be sum of numbers of offspring, weighted
by their objective probabilities conditional on the wet or
dry environment.*) Which trait will natural selection most
likely favor? If the wet and dry environments have equal
objective probabilities, and so are likely to occur roughly
with equal frequency over a long period of time, it’s likely
that animals with either deep or shallow will have 1 off-
spring on average roughly half of the time, and 2 offspring
on average the rest of the time. In that case natural selection
doesn’t favor one trait over the other. However, if the wer
environment has a greater objective probability, then shal-
low will be more likely to increase in frequency, because
shallow animals have two offspring on average in wet envi-
ronments, while deep animals have only one offspring on
average. Similarly, if dry has a greater objective probability,
then deep is more likely to increase in frequency. Thus
the overall probability of evolutionary success depends on
the overall environment—defined, in part, by the objective
probabilities of the wet and dry environments.

3.2. Environmental Erraticity

It’s often assumed that that there are determinate probabili-
ties of environmental fluctuations, or of organisms finding
themselves in different environments (e.g. [42, 17, 26, 48,
1]). but this assumption doesn’t seem required. Perhaps
there are cases in which some environmental changes obey
no probabilities: Though in any particular period of time,
organisms would encounter some environments more of-
ten than others, there would be no reason for this pattern
to be likely to continue over many generations. Given the
complexity and variety of environmental variation in na-
ture, it doesn’t seem implausible that such cases might
exist. This would make the determination of environments
analogous to the erratically-chosen dice setup. Such errat-
ically determined environmental conditions could make
traits’ fitnesses, and natural selection, depend on objective
imprecise probabilities.

4. Defining fitness as an expectation of numbers of offspring has a
long history in philosophy of biology beginning with [43, 16]; sim-
ilar ideas can be found in some biological publications (e.g. [60]).
However, what’s important in this part of the paper is just that fit-
nesses and hence natural selection be treated as functions of objective
probabilities of outcomes for organisms.

4. Objective Imprecise Probability in
Evolution Is Actual

The preceding section suggested that objective imprecise
probability could play a role in evolution by natural se-
lection. I’ll argue next that a role for objective imprecise
probability in evolution is no mere a possibility; it’s likely
that objective imprecise probability often plays a role in
evolution by natural selection.

4.1. Behavioral Imprecision

If mechanisms that influence behaviors of an organism
have effects whose objective probabilities are imprecise,
the imprecision could affect the determination of behaviors.

Here is a well-known example. In humans, behavior may
be determined in large part by interactions between be-
liefs and desires, which I will suppose are realized as brain
states that have degree properties, epistemic probabilities
and utilities, that affect behavior. It would be possible, then,
that people acted in ways that more or less approximate
some proposed decision theory (e.g. [50, 38]). However,
it’s widely thought that human behaviors routinely fail to
satisfy the traditional decision theoretic requirements (e.g.
[28, 51]). It seems more plausible to say that we instead act
as if our epistemic probabilities or utilities are imprecise.
That is, it may well be that our behaviors fluctuate in ways
that are best explained by internal cognitive mechanisms
that reflect imprecise epistemic probabilities or imprecise
utilities. These imprecise epistemic probabilities and util-
ities need not be realized in a way that makes them into
objective imprecise probabilities (although I think that is
one possibility). Nevertheless, the result would be fluctu-
ations in behavior under similar conditions that was as if
it were the result of objective imprecise probabilities and
imprecise utilities. Behavior would then be imprecisely
probabilistic, whether or not its causes were.

A similar point applies to organisms’ behaviors more
generally. First note that organisms’ behaviors would some-
times come to be tuned to precise objective probabilities
of various environmental conditions. For example, small
birds such as house sparrows have to make a choice about
whether and when to eat from a food source (e.g. a clump
of plants) that is not sheltered from the sky. Incautiously
eating from such sources might be selected against if eating
in the open increased the risk of predation. On the other
hand, completely forgoing food from sources open to the
sky could be selected against if the result was inadequate
nutrition. In practice, birds often interrupt eating to scan
the sky to see if raptors (e.g. merlins) are present, and some
birds may wait for other small birds to arrive so that these
sky-scanning responsibilities can be shared [18, 7].

The optimal behavioral tendencies for such potential
prey birds then depend on probabilities of raptors seeing
a prey bird given where food is located, the probability
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that a raptor will be noticed by the prey birds, the overall
influence on fitness (or utility) of various food sources, etc.
Natural selection should then favor mechanisms that alter
behavior in ways that are sensitive to objective probabili-
ties of conditions in an organism’s environment. However,
that doesn’t mean that the mechanisms that produce such
behavioral variation will do so perfectly. Human behaviors
aren’t precisely tuned to what’s adaptive; it’s implausible
that other organisms’ behaviors are, either, as I’ll explain.

4.2. Behavioral Precision Is Expensive

Organisms’ environments are complex, cellular processes
are complex, physiological processes are complex, and ner-
vous systems are complex. Moreover, there are tradeoffs
involved in the energy required for construction and mainte-
nance of nervous systems. More elaborate nervous systems
that might be capable of more accurate assessment and
rapid decision making may require more energy, special nu-
trients, etc. Genetic variation in populations also constrains
how they can evolve, and even where some adaptive genetic
variants exist in a population, adaptation through natural se-
lection can take many generations. All of these factors make
it unlikely that natural selection will always produce organ-
isms whose behavioral choices are precisely and optimally
tuned to probabilities in their environments. Natural selec-
tion will favor organisms with behavioral strategies that
are better tuned to environmental probabilities and costs
and benefits than other strategies that had been present in
the same population, but it will also favor organisms that
can make choices that are good enough, quick enough, and
that don’t require inordinate time or resources compared to
alternative behavioral strategies. present in the population.
To use Herbert Simon’s term, natural selection “satisfices"
[59].

One way that an organism’s behaviors might be poorly
tuned to the environment could involve producing behav-
iors that would be appropriately tuned if the environment
were different. Such a behavior might be (precisely) prob-
abilistic. That is, it could be that for some environmental
contexts s;, an organism exhibited a range of behaviors
{b1,...,bj,...b,} with probability P(b;|s;), even though
behaving according to some other, similar pattern would
have greater fitness. However, maintaining behavior in this
way—producing exactly the same pattern of behavior in
identical situations—could itself be expensive, requiring
insensitivity to irrelevant environmental variation, physio-
logical variation, tiredness, illness, or intrinsic variation in a
nervous system. Thus it seems likely that a common kind of
failure of precise behavioral calibration to the environment
would involve variation in patterns of behaviors, even in
the same external circumstances. There would be no need,
in any event, for selection to favor maintenance of a precise
objective probability distribution over behaviors if all of
the behaviors b; that might be chosen given condition s;

are more or less good enough—in the sense that they pro-
duce fitness that is greater than that of any competitors in
the same population. Thus it seems likely that often organ-
isms’ behaviors would exhibit patterns that, even if close
to optimal patterns, would exhibit erratic or imprecisely
probabilistic variation, even in identical situations, because
of complex cost-benefit tradeoffs.

4.3. Imprecise Behavior as an Environmental Factor

However, in general, the behaviors of members of a pop-
ulation of one species will be part of the environment of
members of other species in ways that are relevant to sur-
vival and reproduction of those other species. For example,
consider choices made by house sparrows in the presence
of their food sources, as described above. The patterns of
their choices might affect the survival and reproduction of
raptors such as merlins that eat them. If this sort of behavior
by the house sparrows were precisely probabilistic, then
to the extent that the survival of raptors depended on that
behavior, there would be selection for merlin behaviors that
reflected the precise probabilities that characterize house
sparrow behavior. On the other hand, if the house spar-
row behaviors were imprecisely probabilistic, that would
introduce objective imprecise probability into merlins’ envi-
ronment in ways that could be relevant to their survival, and
thus to natural selection.” Here objective imprecise proba-
bilities in prey behaviors plays a role analogous to objective
imprecise probabilities due to wet and dry environmental
conditions in section 3.2.

To summarize the argument: It’s likely that in response
to evolutionary tradeoffs, natural selection will often make
some organism behaviors imprecisely probabilistic, and this
will often have an impact on other organisms’ evolution.
Thus it’s likely that environments often involve objective
imprecise probabilities in ways that make evolution depend
on them. Whether we begin by assuming that environmen-
tal factors are precisely or imprecisely probabilistic, we
end up seeing that they are often likely to be imprecisely
probabilistic.

4.4. Where’s the Empirical Evidence?

If, as I claim, natural selection is affected by imprecise
objective probabilities, why don’t evolutionary biologists

5. 1t’s likely that there is sometimes selection for robustness to envi-
ronmental variation (cf. [68]; [73]; [24]). This could mean that some
behavioral imprecision in, say house sparrows, might have no effect
on natural selection for merlins. Nevertheless, robustness to all en-
vironmental variation would be very costly, so it seems likely that
there are cases in which behavioral imprecision in one species affects
selection on another.

6. What would imprecisely probabilistic environmental variation look
like? This is topic for a future work. It requires more discussion than
is appropriate here, in part because of the difficulty of answering the
corresponding question for precisely probabilistic variation in nature
in some systematic way.
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notice this? The answer, in part, is that imprecise probabil-
ity concepts are not part of most biologists’ or statisticians’
thinking.” It’s unclear how one would notice evidence of im-
precise objective probabilities without first having relevant
concepts to guide research. Further, statistical methods and
modeling strategies for imprecise probability are relatively
immature compared to those based on precise probability
[9].

But if objective imprecise probabilities were common
in evolutionary processes, wouldn’t that interfere with the
application of traditional statistical methods? Not necessar-
ily. All that’s needed for traditional statistical methods to
be successful is that whatever imprecision there is to objec-
tive probabilities involve narrow ranges of environmental
fluctuations that can easily be modeled using precise prob-
abilities. The fact that precise probability-based methods
are successful, where that success depends on a match be-
tween modeled probabilities and the world, at best supports
the claim that the relevant aspects of the world are either
precisely probabilistic or imprecisely probabilistic with nar-
row imprecision. The latter is in fact a weaker assumption.
There might also be cases in which precise probabilities are
insufficient for modeling objective imprecise probabilities
that affect evolution. Such cases would not be reflected in
the biological literature ether because researchers would
search to understand the evolutionary processes in terms of
additional causal factors (cf. §2.1), or they would simply
choose another subject to study in the same same research
area. (Scientists abandoning projects doesn’t cause cause
the projects to depend on objective imprecise probabilities;
rather, the dependence on objective imprecise probabilities
causes scientists to abandon their projects.) The result of
this pattern of research would be a lack of evidence for
objective imprecise probability in the research literature,
even if it exists.

5. Modeling Evolution with Imprecise
Probability

One might want further details. What is fitness in an objec-
tive imprecise probability context? How should we model
evolution? I can offer some preliminary illustrations at this
point. It’s not clear whether the concepts and methods de-
scribed below will lead to practical applications, and my
remarks above suggest, for many practical cases, modeling
with precise probabilities will be appropriate even when
what is modeled is somewhat imprecise. The concepts and
methods below at least serve to refine and clarify implica-
tions of my arguments above. Refinements and elaborations
must wait for future work.

7. Samuels’ [58, 57] application to ecological data of methods [34] to
model objective imprecise probability is an exception. Other biolog-
ical research, such as [49, 52, 66], has used imprecise probability
concepts as part of inference and modeling without treating anything
in the world as if it involved objective imprecise probability.

5.1. Imprecise Fitness Comparisons

What is biological fitness given objective imprecise prob-
ability? I’ll modify a very simple model of fitness as ex-
pected number of offspring with erratically determined
environmental variation, without considering long-term
changes in a population.

When there are no probabilities that organisms will en-
counter particular environments, can we ever say that one
trait is fitter than another? Yes. For example, if the expected
numbers of offspring for deep in both wet and dry is greater
than that of shallow in either environment, then whatever
the frequency with which wet and dry alternate, deep will
have a higher average number of offspring. Suppose, for
example, that the expected numbers of offspring for deep
are 1.5 and 1.7 in wet and dry environments, respectively,
and the corresponding numbers for shallow are 1.2 and 0.9.
No matter what environmental state occurs, deep should
usually have a greater number of offspring on average than
shallow.

Such cases can be represented by treating fitness of a trait
A as a pair of numbers representing the minimum w(A) and
maximum w(A) precise fitnesses, understood as expecta-
tions over per-trait number of offspring in each environment
that organisms erratically encounter. (The symbol w is a
traditional, widely used notation for fitness, as in e.g. [21].)
Here the lower fitness w and upper fitness w functions are
lower prevision and upper prevision operators, respectively
[69, 65, 8].8 If organisms in the population always found
themselves in just one of the two environments, then the
expected number of offspring for trait A would be either
w(A) or w(A) Otherwise, the result would be a weighted
average of these values, but this average would depend
on what environments were actually encountered (errati-
cally) by organisms in the population. I’ll refer to such a
pair of minimum and maximum fitnesses—the values of
particular lower prevision and upper prevision operators
applied to a trait—as a “fitness interval", represented by
the notation [w(A),w(A)]. In the wet/dry example, it’s rea-
sonable to model the pair of fitness values for a trait as an
interval when the population is large, since what happens
in the world will involve some combination of the two en-
vironmental states. In a large population that is distributed
erratically among wet and dry environments at one time,
the different ways in which these can be combined will
approximate a convex set between the two extremes.

Interval Dominance The example above in which the
fitness of deep is [1.5,1.7] and that of shallow is [0.9,1.2]
illustrates a general claim that can expressed in terms of

8. So defined, the w and w functions are coherent lower and upper
previsions, by the lower envelope theorem [65, Theorem 4.38, p. 71].
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the interval dominance relation, 7 [64, 37, 13]:9
Ay JA, iff M(Al) > W(Az). (1)

That is, Aj J Ay iff A’s lower fitness w(A1) is greater than
Ay’s upper fitness W(Az). In the sense of interval domi-
nance,

Ay is fitter;; than A, if A} T A».
Ay is fittest;y if A 3 A; for all competing traits
A

-

(Here id stands for “interval dominance".) The fitness;;
relation provides only a partial ordering of traits, since it
may be that neither A; or A, is fitter;; than the other.

Dominance Across Population-Wide Environments
There is at least one kind of case in which a trait can be
considered fitter than another though they have overlapping
fitness intervals. Suppose that trait A; dominates trait A,
in the sense that in every environment e, the precise fit-
ness w, (A1) of A relative to that environment is greater
the corresponding precise fitness w,(A;) for A, (cf. [13]).
It’s then probable that the instances of trait A; will have a
higher average number of offspring than instances of A, if
the environmental variation is such that all members of the
population experience the same environment at any given
time, as in the case of population-wide temporal variation
in environments. Suppose that generations don’t overlap,
as when organisms lay eggs and then die, and suppose
that environments change erratically only between genera-
tions. In such cases we can say that A| dominates Ay across
population-wide environments. Then,

If environments e vary erratically in such a way
that any time, the entire population experiences
the same environment, then:

Aqis ﬁtterdp than A, if (Ve)we (A]) > We (Az).
Ay is fittesty, if (Ve)w.(A1) > w.(A;) for all
competing traits A;.!

(Here dp stands for “dominates across population-wide
environments".) Note that if we change the strict strict in-
equality to >, we can replace “fittery," and “fittesty," with
“is at least as fity, as" and “is among the fittesty,", respec-
tively. (An analogous generalization of interval dominance
is not so straightforward.)

For other kinds of environmental variation, that trait A
dominates trait A, in every environment need not imply
that A will probably increase in frequency. For example,
suppose that the environment of A; and A, is composed
of two spatially varying environments e and e;, and that

9. The interval dominance relation is used in [64, 37] to define a some-
what different rule for choosing gambles, also called “interval domi-
nance".

10. Cf. [17, chapter 2] and [5] on “selective environments", Joyce’s
[2010] choice function 41, and Rinard’s [2015] Moderate choice
function.

whether a given organism ends up in one environment or the
other is merely erratic. Assume that A; has precise fitness
We, (A1) = 1.5 in environment ey, and fitness we, (A1) =2.5
in environment e,, while corresponding fitnesses for A, are
We, (A2) =1 and w, (A2) = 2. Thus A; dominates A in
every environment. However, since it’s erratic which tokens
of A; or A; are to be found in either environment, it may
turn out that most of the A;’s end up in e, where they have
a fitness of 2, while most of the A;’s end up in e;, where
their fitness is 1.5. Given that actual distribution of A;’s
and A,’s it would be probable that A, would increase in
frequency, even though A dominated A,.

We can summarize the implications of the two kinds of
fitness relation described above as: A is fitter than A, iff
either Ay is fitter;y than A3, or Ay is fittery, than A;. That
is:

A\ is fitter than A; iff either A; T Ay, or all or-
ganisms experience the same environment e at
the same time and (Ve)w, (A1) > w,(A2).

This generalizes traditional meaning of “fitter than" for
fitnesses that are expected numbers of offspring. Note that
it may be that there is a set .7 of traits A; such that each A;
is fitter than all traits not in in .27, but that no trait in <7 is
fitter than any other in <.

If A1 is not fitter than A, in either of the preceding senses,
it would be misleading to say that they are equal in impre-
cise fitness, since that would suggests that the traits’ evolu-
tionary successes would usually be similar, at least in the
short run when there are many organisms with those traits.
I would prefer to say that when neither Aj nor A, is (impre-
cisely) fitter than the other, the two traits are incomparable
(cf. Rinard’s [51] “indeterminate").

Choice Functions The literature on decision making
with imprecise probabilities often focuses on choice func-
tions that specify sets of gambles (or actions) from which
it might be rational to choose one gamble (e.g. [41, 64,
37,51, 44, 15]). Some of the commonly discussed choice
functions, which may be prudent guides for decision mak-
ers who want avoid certain kinds of losses, turn out to be
irrelevant to understanding biological fitness and natural
selection. I'll give a very brief argument for this point,
considering three prominent choice functions expressed in
terms of expectation operators E., E ; for numbers of off-
spring in environments e, f. Each of these choice functions
specifies a set of traits A; for which no traits have higher pre-
cise fitnesses in certain environments. The choice functions
differ in how the environments are specified in relation to
the alternative traits.'!

E-Admissibility: {A;: (3e)(VA;) E.(A;) > E.(A))}
This specifies the traits such that there is some partic-

11. See [37] for this way of formulating these choice functions. One
might think of them as ways of specifying traits on whose prolifera-
tion it would not be irrational to bet.
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ular environment that makes all of them at least as fit
as all other traits.!?

Maximality: {A,‘ : (VA])(HE) Ee(Al') Z EE(AJ)}
This specifies the traits such that for each, there is
some environment in which the trait is at least as fit as
all other traits.

Interval Dominance:
{Ai: (3e)(VA))(3/) Eo(A) > Ef(4)))
This specifies the traits such that there is some envi-
ronment that makes all of them at least as fit as other
traits are in some (perhaps different) environment. '3

None of these ways of specifying the “fittest” traits im-
plies that the chosen traits A; are likely to be more success-
ful in terms of survival and reproduction than those not
chosen. In each case, in order for the A;’s to be more likely
to be successful, environments would have to vary in ways
that were probabilistic, but we are assuming that environ-
ments vary erratically. For example, consider the claim that
the E-admissible traits should be treated as fittest. Certainly,
if organisms with E-admissible traits A;, and organisms
non-E-admissible traits all experience an environment in
which A;’s precise fitness is greater, it’s likely that those
with A; will have more offspring, on average, than the oth-
ers. The problem is that if the environments encountered
by organisms are determined erratically, there’s no reason
that organisms of both kinds would encounter such an envi-
ronment often—or ever. Thus the E-admissibility of traits
provides no information about evolutionary success. A sim-
ilar point can be made about the Maximal traits and those
that are Interval dominant in the immediately preceding
sense.

It’s not clear to me that much more can be said about
fitness inequalities for imprecise fitness, at least for the
simple model of fitness as expected number of offspring.

5.2. An Imprecise Probability Wright-Fisher Model

Fitness is usually supposed to provide a way of summariz-
ing the probable future evolution of a population. However,
if the fact that A is fitter than B is supposed to imply that
it’s probable that over a large number of generations, the
relative frequency of A in the population will increase at the
expense of B’s relative frequency, then definitions of fitness
other than expected number of offspring can be more accu-
rate (e.g. [42, 25, 47, 30]). For example, in some contexts, a
trait with a higher arithmetic mean number of offspring will
have more descendants. Some authors (e.g. [10, 17, 46])
have sought a single general measure of fitness; I argue
elsewhere that no one measure of fitness is suitable for all

12. [44] calls this rule “permissive"; [72] and [51] call it “Liberal".
13. The interval dominance choice function is so called because it can
be expressed using the interval dominance ordering relation.

evolutionary studies [2]. On this view, any attempt to sum-
marize multigenerational objective imprecise probabilities
of outcomes faces an additional challenge of determining
the appropriateness of different independence relations (cf.
[36]). I won’t attempt to construct a general conception of
fitness using objective imprecise probabilities. It may be
better to simply model the evolution of a population over
time based on empirical conditions that motivate a choice
of independence relations. I illustrate that possibility here
using Hartfiel’s [34] set-chain framework.

It will be easier to understand how set-chain framework
can be used to model imprecise evolution if we start by
looking at a standard evolutionary model that assumes pre-
cise probabilities. A (precise) diploid Wright-Fisher model
with random mating is a Markov chain model determining
probabilities of changes in frequencies over time of two
competing alleles (genes) at the same genetic locus on two
chromosomes per organism (e.g. [21]). The alleles in the
next generation are distributed binomially, conditional on
frequencies in the current generation. Elements of the tran-
sition matrix for a Wright-Fisher model have the following
form; each element is a probability for the shift from a pop-
ulation state with allele A having frequency i to it having
frequency j:

2N ; .
pij = < j )"f’ (1—m)2N )

where p;; is the probability that the population will con-
tain exactly j A alleles in the next generation given that
there are i A alleles in the current generation. If there is
no natural selection, 1; = i/2N is the probability that an
A allele will be included in one of the N organisms in the
next generation.'* With natural selection, organisms differ
in their probability of contributing to the next generation
depending on which alleles they have. In this case,

B wani> +wapi(2N — i)
 waal? +2wapi(2N — i) +wpp(2N —i)2

i 3)
Here waa, wap, wpp are constants representing the fitnesses
of organisms with, respectively, two A alleles (one on each
chromosome), an A allele and a B allele, and two B alleles,
respectively.

Figures 1 and 2 illustrate how the probability distribu-
tion over the frequency of the A allele changes over eight
generations for a (standard, precise) Wright-Fisher model.
(Note that the vertical axis scale changes.) The data for
these plots is generated from an initial vector of possible
frequencies for A in which a single element has probability
1. This vector is multiplied by the transition matrix defined
by (2) and (3) to produce a vector of probabilities of relative
frequencies for generation 1. This vector is multiplied by

14. The standard Wright-Fisher model idealizes by assuming a large
pool of offspring, so the the process of “choosing" alleles for the next
generation will be approximated by sampling with replacement.
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Figure 1: Precise Wright-Fisher model, generations 1
through 4. See text for details.
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Figure 2: Precise Wright-Fisher model, generations 5
through 8. See text for details.

the same matrix to produce the generation 2 data, and so on.
The fitness values used to define 1); in equation (3) for fig-
ures 1 and 2 were: wgy = 1.0, wap = 0.95, and wpg = 0.7;
the population size N was 1000, and the initial frequency
of A was 500. We can see in 1 and 2 that because the AA
genotype is fitter than the other two genotypes, and the
AB genotype is fitter than the BB genotype, the probability
distribution over possible frequencies of the A allele shifts
to the right—i.e. toward higher frequencies.

An objective imprecise probability Wright-Fisher model
would be one in which there were multiple transition ma-
trices representing different allowed transition probability

distributions corresponding, perhaps, to different erratically
determined environments. Suppose that future states of
the population are determined by a convex set of environ-
mental conditions that vary erratically over time, and that
all organisms experience the same environment at ¢. Then
the objective imprecise probabilities can be represented
by convex intervals of transition matrices with separately
specifiable rows [36]."> Such an “interval" can be specified
by a pair of (non-stochastic) matrices. Each element in the
“upper" matrix represents the supremum of values for cor-
responding elements in all of the transition matrices in the
interval; each element in the “lower" matrix is the infimum
for corresponding elements in the same set of matrices.
Similarly, at each time ¢, we upper and lower vectors will
represent suprema and infima for each element in a set of
vectors of probabilities of frequencies of the A allele. This
is a Markov set-chain model [34].

Computing the interval of vectors of probabilities of pos-
sible allele frequencies at ¢ + 1 requires multiplying every
vector in the interval at ¢ with every matrix in the transi-
tion matrix interval. It’s possible to compute only a set of
extreme points of the vector intervals, but the number of
points involved grows very quickly [34]. Fortunately, Hart-
fiel’s [34] hi-lo algorithm can be used to compute close
upper and lower bounds for these vector intervals in con-
stant time. That is, at each step, it estimates bounds for the
suprema and infima of probabilities of possible frequencies
of the A allele, using an analog of matrix multiplication,
for intervals of transition matrices. Note that this is not an
imprecise version of a Monte Carlo simulation. The model
represents erratically determined environments as a set of
possible transition matrices, and the computations using
them are purely mathematical.

Figures 3-5'¢ show the upper and lower bounds of pos-
sible probabilities of allele frequencies for a population
of size 1000, with an initial frequency of allele A of ten,
and with the interval containing the smallest set of transi-
tion matrices including those defined by these two sets of
fitnesses:!”

WaAA — 1.0, WAB — 0.9, WBB — 0.3
WAA = 1.0, WAB = 0.3, wWBBp = 0.2

Iterating the hi-lo algorithm on the initial population state
(probability of 1 for a frequency of 500 for A) generates
the data for the upper and lower curves shown in figures
3-5. Each point on the upper curve (outlined lightly in
red) of the gray region in a plot represents an estimate
of the supremum probability for a particular frequency
(x-axis) across all of the vectors of probabilities at that
generation. There is a lower curve too, representing infima

15. This means that the resulting imprecise Markov chain is based on
strong independence [8, 67].

16. The software is available at https://github.com/mars0i/
imprecise—evolution.

17. T apply Hartfiel’s [34] tight interval algorithm in the process.
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Figure 3: Upper, lower bounds of probabilities for A allele
frequencies, generations 1 through 4. See text.
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of probabilities across all of the state vectors, but it is
near zero at most frequencies. (You may be able to see
the narrow, blue outline of this lower curve in the plot
for generation 1.) These upper and lower curves are not
probability distributions. The point on the upper curve over
a given allele frequency x is an estimate of the supremum
probability, over all probability distributions allowed by
the model at a specified generation, for allele A having
frequency x. This curve cannot be a probability distribution,
as long there are multiple distributions in the interval of
vectors, since each point of the curve is greater than the
corresponding elements of other vectors of probabilities.
The integral under the upper curve is greater than 1.

Notice that although in middle generations, the range of
possible probabilities for most frequencies is very large, by
generation 12, all of the possible probability distributions
assign high probabilities to states in which the A allele has
a very high frequency. This shows that despite probabilities
being imprecise, it may be possible to predict that evolution
by natural selection will take place in some circumstances.
(This is extremely rapid evolution; it results from the small
population size and the large fitness differences I assumed.
However, similar effects over longer times can be produced
with larger populations and broader ranges of fitness as-
signments.)

6. Conclusion

I argued that some outcomes are determined erratically,
i.e. according to no objective probabilities. When a com-
plex setup consists of erratically determined alternative
chance setups with different objective probability distribu-
tions over the same set of outcomes, these outcome have
objective imprecise probabilities. I argued that environmen-
tal conditions are, probably, often imprecisely probabilistic
because natural selection is likely to make some behaviors
of organisms that are part of an environment to be impre-
cisely probabilistic. Thus evolution by natural selection
probably depends on imprecise objective probability. I also
illustrated some simple ways to model fitness as dependent
on objective imprecise probabilities, and a ways to model
evolution of a population in an imprecisely probabilistic
environment.

Acknowledgments

I’'m grateful for feedback on this and related presentations
and discussions by, among others, Alex Meehan, Andrea
Scarantino, Bill Wimsatt, Bryce Huebner, Carl Bergstrom,
Conor Mayo-Wilson, Greg Johnson, Jennifer Mundale,
John Bickle, Krzysztof Burdzy, Lane Desautels, Marica
Bernstein, Michael Bruno, Michael Nair-Collins, Persi Di-
aconis, Steve Elliott, Teddy Seidenfeld, William Bausman,
Yoichi Ishida, and some very helpful anonymous reviewers.



NATURAL SELECTION WITH OBJECTIVE IMPRECISE PROBABILITY

References

[1] Marshall Abrams. What determines biological fit-
ness? The problem of the reference environment. Syn-
these, 166(1):21-40, 20009.

Marshall Abrams. The unity of fitness. Philosophy of
Science, 76(5):750-761, 2009.

Marshall Abrams. Mechanistic probability. Synthese,
187(2):343-375, 2012.

Marshall Abrams. Mechanistic social probability:
How individual choices and varying circumstances
produce stable social patterns. In Harold Kincaid,
editor, Oxford Handbook of Philosophy of Social Sci-
ence, chapter 9, pages 184-226. Oxford University
Press, Oxford, UK, 2012.

Marshall Abrams. Environmental grain, organism
fitness, and type fitness. In Trevor Pearce, Gillian A.
Barker, and Eric Desjardins, editors, Entangled Life:
Organism and Environment in the Biological and So-
cial Sciences, pages 127-152. Springer, 2014.

Marshall Abrams. Probability and manipulation: Evo-

lution and simulation in applied population genetics.
Erkenntnis, 80(S3):519-549, 2015.

[7] Ted R. Anderson. Biology of the Ubiquitous House
Sparrow. Oxford University Press, Oxford, UK, 2006.

[8] Thomas Augustin, Frank P. A. Coolen, Gert de
Cooman, and Matthias C. M. Troffaes, editors. Intro-
duction to Imprecise Probabilities. Wiley, 2014.

Thomas Augustin, Gero Walter, and Frank P. A.
Coolen. Statistical inference. In Augustin et al. [8],
chapter 8, pages 190-206.

[10] John Beatty and Susan Finsen. Rethinking the propen-
sity interpretation: A peek inside Pandora’s box. In
Michael Ruse, editor, What the Philosophy of Biology

is, pages 17-30. Kluwer Academic Publishers, 1989.

[11] Claus Beisbart. A Humean guide to Spielraum proba-
bilities. Journal of General Philosophy of Science, 47

(1):189-216, 2016.

[12] Joseph Berkovitz. The propensity interpretation of
probability: A re-evaluation. Erkenntnis, 80(S3):629—
711, 2015.

[13] Seamus Bradley. How to choose among choice func-
tions. In ISIPTA ’15: Proceedings of the Ninth Inter-
national Symposium on Imprecise Probability: Theo-
ries and Applications, pages 57-66, 2015.

[14] Seamus Bradley. Vague chance? Ergo, 3(18-21):
524-538, 2016.

11

[15] Seamus Bradley and Katie Steele. Can free evidence
be bad? Value of information for the imprecise proba-
bilist. Philosophy of Science, 83(1):1-28, 2016.

[16] Robert N. Brandon. Adaptation and evolutionary the-
ory. Studies in the History and Philosophy of Science,
9(3):181-206, 1978.

[17] Robert N. Brandon. Adaptation and Environment.
Princeton University, Princeton, New Jersey, 1990.

[18] Thomas Caraco. Risk-sensitivity and foraging groups.
Ecology, 62(3):527-531, 1981.

[19] Marco E. G. V. Cattaneo. Empirical interpretation
of imprecise probabilities. In Alessandro Antonucci,
Giorgio Corani, Inés Couso, and Sébastien Dester-
cke, editors, Proceedings of the Tenth International
Symposium on Imprecise Probability: Theories and
Applications, volume 62, pages 61-72. PMLR, 2017.

[20] Fabio Cozman and Lonnie Chrisman. Learning con-
vex sets of probability from data. Technical Report
CMU-RI-TR-97-25, Robotics Institute, Carnegie Mel-

lon University, 1997.

[21] Warren J. Ewens. Mathematical Population Genetics,
L. Theoretical Introduction. Springer, 2nd edition,

2004.

[22] Luke Fenton-Glynn. Imprecise best system chances.
In Michela Massimi, Jan-Willem Romeijn, and Ger-
hard Schurz, editors, EPSA15 Selected Papers, pages

297-308, 2017.

[23] Pablo 1. Fierens, Leandro Chaves Régo, and Ter-
rence L. Fine. A frequentist understanding of sets
of measures. Journal of Statistical Planning and In-

ference, 139:1879-1892, 2009.

[24] KarlJ. Friston and Klaas E. Stephan. Free-energy and

the brain. Synthese, 159(3):417-458, 2007.

[25] John H. Gillespie. Natural selection for variances
in offspring numbers: A new evolutionary principle.
American Naturalist, 111:1010-1014, 1977.

[26] John H. Gillespie. Population Genetics: A Concise
Guide. The Johns Hopkins University Press, 1998.

[27] Donald A. Gillies. Philosophical Theories of Proba-
bility. Routledge, 2000.

[28] Irving J. Good. Subjective probability as the measure
of a non-measurable set. In Ernest Nagel, Patrick
Suppes, and Alfred Tarski, editors, Logic, Methodol-
ogy and Philosophy of Science: Proceedings of the
1960 International Congress, pages 319-329. Stan-
ford University Press, 1962. Reprinted in [40], pp.
135-146.



NATURAL SELECTION WITH OBJECTIVE IMPRECISE PROBABILITY

[29] Igor I Gorban. The Statistical Stability Phenomenon.
Springer International Publishing AG, 2017.

[30] Jennifer R. Gremer, Elizabeth E. Crone, and Peter
Lesica. Are dormant plants hedging their bets? de-
mographic consequences of prolonged dormancy in
variable environments. The American Naturalist, 179

(3):315-327, 2012.

[31] Ian Hacking. The Logic of Statistical Inference. Cam-

bridge University Press, 1965.

[32] Alan Hajek. What conditional probability could not
be. Synthese, 137:273-323, 2003.

[33] Alan Héjek and Michael Smithson. Rationality and
indeterminate probabilities. Synthese, 187(1):33-48,
2012.

[34] Darald J. Hartfiel. Markov Set-Chains. Springer,

1998.

[35] Stephan Hartmann. Imprecise probabilities in quan-
tum mechanics. In Colleen E. Crangle, Aldofo Garcia
de la Sienra, and Helen Longino, editors, Founda-
tions and Methods from Mathematics to Neuroscience,

chapter 7, pages 77-82. CSLI Publications, 2014.

[36] Filip Hermans and Damjan Skulj. Stochastic pro-
cesses. In Augustin et al. [8], chapter 11, pages 259—

278.

[37] Nathan Huntley, Robert Hable, and Matthias C. M.
Troffaes. Decision making. In Augustin et al. [8],

chapter 8, pages 190-206.

[38] Richard C. Jeffrey. The Logic of Decision. University
of Chicago, 2nd edition, 1983.

[39] James M. Joyce. A defense of imprecise credences
in inference and decision making. Philosophical Per-
spectives, 24(1):281-323, 2010.

[40] Henry E. Kyburg, Jr. and Howard E. Smokler, editors.
Studies in Subjective Probability. Robert E. Krieger,
2nd edition, 1980.

[41] Isaac Levi. The Enterprise of Knowledge. MIT Press,
Cambridge, Massachusetts, 1980.

[42] Richard Levins. Evolution in Changing Environments.
Princeton, 1968.

[43] Susan Mills and John Beatty. The propensity inter-
pretation of fitness. Philosophy of Science, 46(2):
263-286, 1979.

[44] Sarah Moss. Credal dilemmas. Noiis, 49(4):665-683,
2015.

12

[45] Adrianos Papamarcou and Terrence L. Fine. A note
on undominated lower probabilities. The Annals of
Probability, 14(2):710-723, 1986.

[46] Charles H. Pence and Grant Ramsey. A new founda-
tion for the propensity interpretation of fitness. The
British Journal for the Philosophy of Science, 2013.

[47] Tom Philippi and Jon Seger. Hedging one’s evolution-
ary bets, revisited. Trends in Ecology & Evolution, 4
(2):41-44, 1989.

[48] Grant Ramsey. Block fitness. Studies in History and
Philosophy of Biological and Biomedical Sciences, 37
(3):484-498, 2006.

[49] Peter Reichert. On the necessity of using imprecise
probabilities for modelling environmental systems.
Water Science and Technology, 36(5):149-156, 1997.

[50] Michael D. Resnik. Choices: An Introduction to De-

cision Theory. University of Minnesota Press, 1987.

[51] Susanna Rinard. A decision theory for imprecise
probabilities. The Philosophers Imprint, 15(7):1-16,

2015.

[52] Simon L. Rinderknecht, Mark E. Borsuk, and Peter
Reichert. Bridging uncertain and ambiguous knowl-
edge with imprecise probabilities. Environmental

Modelling & Software, 36:122-130, 2012.

[53] John T. Roberts. The range conception of probability
and the input problem. Journal of General Philosophy

of Science, 47(1):171-188, 2016.

[54] Jacob Rosenthal. The natural-range conception of
probability. In Gerhard Ernst and Andreas Hiittemann,
editors, Time, Chance, and Reduction: Philosophical
Aspects of Statistical Mechanics, pages 71-90. Cam-

bridge University Press, Cambridge, UK, 2010.

[55] Jacob Rosenthal. Probabilities as ratios of ranges in
initial-state spaces. Journal of Logic, Language, and

Inference, 21:217-236, 2012.

[56] Jacob Rosenthal. Johannes von Kries’s range concep-
tion, the method of arbitrary functions, and related
modern approches to probability. Journal of General

Philosophy of Science, 47(1):151-170, 2016.

[57] Corey L. Samuels. Markov Set-Chains as Models
of Plant Succession. PhD thesis, University of Ten-

nessee, 2001.

[58] Corey L. Samuels and Julie L. Lockwood. Weeding
out surprises: Incorporating uncertainty into restora-
tion models. Ecological Restoration, 20(4):262-269,

2002.



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

NATURAL SELECTION WITH OBJECTIVE IMPRECISE PROBABILITY

Herbert A. Simon. The Sciences of the Artificial. MIT
Press, 3rd edition, 1996.

Stephen C. Stearns. The Evolution of Life Histories.
Oxford University Press, 1992.

Michael Strevens. Depth: An Account of Scientific
Explanation. Harvard University Press, 2008.

Michael Strevens. Probability out of determinism.
In Claus Beisbart and Stephann Hartmann, editors,
Probabilities in Physics, chapter 13, pages 339-364.
Oxford University Press, Oxford, UK, 2011.

Patrick Suppes and Mario Zanotti. Foundations of
Probability with Applications. Cambridge University
Press, 1996.

Matthias C. M. Troffaes. Decision making under un-
certainty using imprecise probabilities. International
Journal of Approximate Reasoning, 45:17-29, 2007.

Matthias C. M. Troffaes and Gert de Cooman. Lower
Previsions. Wiley, 2014.

Matthias C.M. Troffaes and John Paul Gosling. Ro-
bust detection of exotic infectious diseases in ani-
mal herds: A comparative study of three decision
methodologies under severe uncertainty. Inferna-
tional Journal of Approximate Reasoning, 53(8):1271—
1281, 2012. Imprecise Probability: Theories and Ap-
plications (ISIPTA’11).

Damjan Skulj. Perturbation bounds and degree of im-
precision for uniquely convergent imprecise markov
chains. Linear Algebra and its Applications, 533:
336-356, 2017.

Andreas Wagner. Robustness and Evolvability in Liv-
ing Systems. Princeton, Princeton, New Jersey, 2005.

Peter Walley. Statistical Reasoning with Imprecise
Probabilities. Chapman and Hall, 1991.

Peter Walley and Terrence L. Fine. Towards a fre-
quentist theory of upper and lower probability. The
Annals of Statistics, 10(3):741-761, 1982.

Denis M. Walsh. Descriptions and models: Some
responses to Abrams. Studies in History and Phi-
losophy of Science Part C: Studies in History and
Philosophy of Biological and Biomedical Sciences,
44(3):302-308, 2013.

Roger White. Evidential symmetry and mushy cre-
dence. In Tamar Szabé Gender and John Hawthorne,
editors, Oxford Studies in Epistemology, volume 3,
pages 161-186. Oxford University Press, 2009.

13

[73] William C. Wimsatt. Re-Engineering Philosophy for

Limited Beings: Piecewise Approximations to Reality.
Harvard University Press, 2007.



	Introduction
	Objective Imprecise Probability
	Erraticity
	Objective Imprecise Probability

	Objective Imprecise Probability in Evolution Is Possible
	Fitness and Environmental Variation
	Environmental Erraticity

	Objective Imprecise Probability in Evolution Is Actual
	Behavioral Imprecision
	Behavioral Precision Is Expensive
	Imprecise Behavior as an Environmental Factor
	Where's the Empirical Evidence?

	Modeling Evolution with Imprecise Probability
	Imprecise Fitness Comparisons
	An Imprecise Probability Wright-Fisher Model

	Conclusion

