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Abstract

Sets of Markov operators can serve as generalised
models for imprecise probabilities. They act on gam-
bles as transformations preserving desirability. Often
imprecise probabilistic models and also sets of op-
erators need to be extended to larger domains. Such
extensions are especially interesting when some kind
of independence requirements have to be taken into
account. The goal of this paper is to propose extension
methods for sets of Markov operators that are consis-
tent with the existing extension methods for imprecise
probabilistic models. The main focus is on extensions
satisfying epistemic irrelevance. We propose a new
general approach to extending sets of desirable gam-
bles, called additive independent extension, which sub-
sumes important types of extensions, such as epistemic
irrelevance and marginal extension. This approach is
then extended to sets of Markov operators, so that the
extensions are consistent with those of sets of desirable
gambles.

Keywords: epistemic irrelevance, Markov operator,
desirable gamble, additive independent extension

1. Introduction

Imprecise probabilistic models [1, 13] can be approached
from three related ways. These are coherent lower previ-
sions, credal sets and sets of desirable gambles. The benefit
over classical models is that instead of having to specify
the model precisely, the specification of the model can be
partial and thus only represents the available information.
The inferences obtained from the imprecise models are
then considered more robust and reliable. Yet, in compar-
ison with classical models, the specification of imprecise
models is much more complex, in the best case it requires
specification of convex sets of probabilities based on some
constraints.

In [12] another even more general approach to modelling
imprecise probabilities has been proposed. It uses sets of
Markov operators that are in the role of desirability pre-
serving operators. An example is conditional expectation,
since a conditional expectation of a random gain is usually
preferred to the original gain. Markov operators can also
express other general judgements, such as symmetries be-
tween states. The main objective of this paper is finding
extensions of sets of Markov operators to larger spaces
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that are consistent with independence concepts, especially
epistemic irrelevance.

In the following two sections, the concepts of imprecise
probabilities and the role of sets of Markov operators are
briefly reviewed, with a special emphasis on their exten-
sions. In Section 3.4 the concept of additive independent
extension is proposed and then explored for the case of
separately specified probabilistic models on a partition. In
the last section, extensions of Markov operators are ex-
plored that lead to epistemically independent extensions of
imprecise probabilistic models.

2. Imprecise Probabilities

2.1. Imprecise Probability Models

An imprecise probabilistic model denotes any probabilistic
model which is not completely specified. This in general
means that instead, a collection of judgements is given, to
which possibly multiple probabilistic models correspond.
The most natural way to describe an imprecise probabilistic
model is therefore using a credal set, which is a set of
precise or classical probabilistic models that correspond to
given judgements. The formal introduction goes as follows.
First, a sample space 2" is given together with an algebra
o/ of its subsets. From now on, the set 2" will be finite
and .o/ will be its power set. Further, we consider the set
of gambles 4 (Z"), which consists of all real valued maps
f: Z — R. In the general case of possibly infinite Z~, the
gambles are additionally required to be .«#-measurable. In
our case, this requirement is automatically fulfilled.

A precise probabilistic model is now described in terms
of a linear prevision P, which maps every gamble f €
G (Z) into P(f) = Y,ca p(x)f(x), where p: & — R is
a probability mass function on £ . That is p(x) > 0 and
Y ca p(x) = 1. Now, a credal set .# is just any closed
and convex, thus compact, set of linear previsions. Once a
credal set is given, it allows the construction of coherent
lower and upper prevision pair P and P:

P(f) = min P(f), P(f) = max P(f). (1)

Pe# pPen

The third equivalent way to introduce an imprecise proba-
bilistic model is via a set of desirable gambles

D ={fe9(2): P(f)>O0VP e .M} )
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={fe9(2): P(f) = 0}. 3

Essentially, an imprecise probabilistic model can be de-
scribed using any of the above models, yet there are some
subtleties which make the three approaches not entirely
equivalent ([10]). As in this paper we will be specifically
concerned with the aspects of sets of desirable gambles, we
additionally list their properties. A set 2(%") is a subset
of 4(Z") satisfying ([10]):

D1 if f>0then f € 2(Z);

D2 if fe 2(Z)and A >0, then Af € 2(2);
D3 if f,ge P(Z ) then f+g€ D(X);

D4 if f<Oand f#Othen f & Z(Z).

The above properties, however, are not universally accepted
(see e.g [3, 4]). The main differences between different ap-
proaches concern borderline gambles, such as the constant
zero gamble. To achieve equivalence between sets of de-
sirable gambles and credal sets, which are assumed to be
closed, closures of the sets of desirable gambles are often
considered. The gambles in the closure are then referred as
almost desirable gambles. For our approach it is beneficial
to have closed sets of desirable gambles, and therefore we
will slightly abuse the terminology by referring to sets of
desirable gambles, even if they are in fact sets of almost
desirable gambles. Thus, from now on, a set of desirable
gambles denotes any closed set satisfying D1-D4. More-
over, to every set of desirable gambles 2, a credal set .#
and the corresponding lower prevision P can be associated,
so that (2) and (3) hold.

Another convenient property of sets of desirable gambles
is that, there always exists the obvious most conservative
such set, that is the set of all non-negative gambles. This
notion can be transferred to coherent lower previsions and
credal sets, yet it is the most straightforward and intuitive
in the case of gambles.

2.2. Extensions of Imprecise Probabilistic Models

Suppose that an imprecise probabilistic model is only de-
fined on a subset .#” of gambles and the goal is to extend
it to a larger set ¢4. An extension of the given model is
an imprecise probabilistic model that coincides with the
original model on J#". In general, multiple extensions exist,
yet it is always possible to find the most conservative one,
called the natural extension. The most conservative means
that it allows the least gambles as desirable. Suppose that
we have a set of desirable gambles Z(.¢). Then its natu-
ral extension to ¢ is the set 2(¥) = posi (Z(¢ ) U%>y),
where posi denotes the positive hull and ¥~ denotes the
set of all non-negative gambles in ¥.

In the sequel, the set J#" will most often be a (linear)
subspace! of ¢. In that case, the natural extension of a set

1. The term subspace will always denote a linear subspace.
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of desirable gambles in 7" restricted to .%” equals the orig-
inal set: 2(9)NE =posi(Z(H )UGso)NH = D(KX).
To see this, take some f € Z(¥4)N.%#. We can write
f=fx+fg, where f,r € D(X) and fy € %>p. By the
fact that % is a subspace, we then have that fiy € Z also
holds, which implies that f is a sum of two desirable gam-
bles in ", which must belong to Z(¢). This proves that
29N C Z(x). The reverse inclusion is an immedi-
ate consequence of the definition.

Sets of desirable gambles on a subset .2 can be defined
in two, in principle different ways. The first one is to have
a closed set of gambles in 7" satisfying D1-D4, and the
second one is to restrict a set of desirable gambles on the
entire set ¢ to J#". The above discussion implies that in the
case where 7" is a subspace, both ways are equivalent.

Often, additional requirements are posed for extensions,
such as independence or irrelevance of one variable with
respect to another (see [5, 7, 9]). Let 27, % and £ be three
distinct sets. An imprecise probabilistic model on the space
of gambles ¥ (2" x ¥ x &) is said to satisfy epistemic
irrelevance % — 4 if learning the value of % does not
change our beliefs about values in Z". In [4] it has been
shown that a set of desirable gambles Z satisfies epistemic
irrelevance % — 2 exactly if for every 2 -measurable f,
the equivalence f € Z < I,f € Z for every y € % holds.
The set 2 can thus be considered as an extension of 2(2")
oY (X XY xZ).

Epistemic irrelevance denotes the situation where the
unconditional imprecise probabilistic model on 2" is the
same as the conditional models given the values y € % In

[4], the conditional models are denoted by
Dy={8€9(X x%): Lgc P}. 4)

In this paper, we will additionally define the subspace of
gambles that is only non-zero for single values in %'

G2 X LY = €XL XU X L) Lf = f} ()
and
DX xZy)=9NG (L x Zy). (6)

Similarly we can define 4 (2 |y) and Z( % |y) if the model
does not contain a set .2, or equivalently, if 2 is a single-
ton. Similar constructions have also been used in [5].

3. Sets of Markov Operators

3.1. Consistency of Imprecise Probability Models with
Sets of Markov Operators

We start with the definition.

Definition 1 Let 57 and % be linear spaces of gambles
on a set X', containing all constant gambles.

A linear operator T : 7 — ¥ is called a Markov oper-
ator or stochastic operator if
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(i) it is monotone: if f < gthenTf <Tg;

(ii) Tly =14

In the current framework of finite sample spaces Markov
operators can be represented in terms of stochastic matrices,
i.e. positive matrices with row sums equal to ones. How-
ever, the notion of a Markov operator can be extended to
infinite spaces as well. One such example are conditional
expectations in general spaces considered in [11], which
in fact motivated the use of Markov operators in the way
presented here.

In [12] Markov operators are considered in the role of
transformations preserving desirability, such as conditional
expectation or permutation operators. The basic idea is
very simple. Take, for instance, any desirable gamble f.
Desirability is equivalent to the fact that the values P(f)
are non negative for every linear prevision P in some credal
set, which can be interpreted as an operator mapping the
gamble into a constant gamble. The credal set can then
be interpreted as a set of expectation operators mapping
general gambles to constant gambles: P: f — P(f)1 4. A
more general set of Markov operators is obtained if con-
ditional expectation operators are allowed. Such operators
occur naturally in many cases, such as stochastic processes
or risk modelling. Some interesting general results for this
case have been proposed in [11, 12]. Another interesting
case is where some kind of symmetry between states holds.
Saying, for instance, that the available information about
the likelihood of occurrence of x is the same as for y, can be
modelled by requiring that for every gamble f which is de-
sirable, so must be T f, where T f(x) = f(y), Tf(y) = f(x)
and T f(z) = f(z) for every other element z in 2. It is easy
to see that so defined operator 7 is a Markov operator.

In [12] three distinct notions of consistency of imprecise
probabilistic models with Markov operators are proposed.
All of them can be equivalently described using any of
the forms of imprecise probabilistic models, credal sets,
coherent lower prevision or sets of desirable gambles. Here
we repeat the consistency notions for the sets of desirable
gambles. Thus, let Z(Z") be a set of desirable gambles
and .7 a closed set of Markov operators defined on the
entire set of gambles ¥(Z2"). (We will sometimes write
T H — K ,todenote thatevery T € 7 is a map S —
) Then (") is said to be consistent with .7 if f €
(X)) implies that T f € 2(Z") forevery T € 7. That is,
every desirable gamble remains desirable after applying a
desirability preserving operator to it. We will sometimes
write

Tf={Tf:TeT} 7

and

T9={Tf:TeT,feD} 8)
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and therefore, we can say that & is consistent with .7 if
T9C9.

The set 2(Z") is called dominated by .7 if for f €
G(X): Tfe(Z) forevery T € 7 implies that f €
2(Z). This is equivalent to saying that for every unde-
sirable gamble, there is at least one operator that leaves it
undesirable. If a set of desirable gambles Z(.2") is both
consistent with and dominated by .7 then it is said to be
generated by .7. This is the far most important notion
because when applied to the special case of expectation op-
erators, it corresponds to the usual relations between credal
sets and the corresponding sets of desirable gambles.

A Markov operator T can also act from the right hand
side on an expectation functional or linear prevision P, mak-
ing PT again a linear prevision. Now we give the formal
definition of the notion of imprecise probabilistic model, in
any of the three forms, being generated by a set of Markov
operators.

Definition 2 Let .7 be a closed set of Markov operators
defined on Y, M a credal set, P the corresponding lower
prevision and 9 the corresponding set of desirable gam-
bles. Then we say that the imprecise model, equivalently
represented by M ,P or 9, is generated by 7 if the follow-
ing equivalent conditions are fulfilled:

(i) Forevery f €9 :fe Difandonly if Tf € D for
everyT € 7.

(ii) For every linear prevision P : P € ./ if and only if
PT € A foreveryT € .

(iii) minge o P(T f) = Pf for every gamble f € 4.

The proof for equivalence of the above conditions can be
found in [12]. In general, multiple imprecise probabilistic
models may be generated by the same set of Markov opera-
tors, which makes sets of Markov operators more flexible
and more general than the ordinary imprecise probabilistic
models. An evidence for this fact is given, for instance, in
the Section 3.3 where it is shown that the natural exten-
sion and various marginal extensions are generated by the
same set of Markov operators. This is not a coincidence,
though, as it can be found in the above reference that the
least committal generated model always exists.

3.2. Extension of Sets of Markov Operators

The problem that we analyse in this paper is how to extend
sets of Markov operators defined on some particular sub-
spaces of gambles. This question has already been partially
addressed in [12]. Here we further investigate it, especially
in the sense of how to extend sets of Markov operators
to be in a meaningful relationship with extensions of the
corresponding generated imprecise probabilistic models.
In [12] the following general theorem has been shown.
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Theorem 3 Let & C F7 be linear spaces of gambles and
T A — X a set of Markov operators and T : 7 —
J its arbitrary extension. Then for every coherent lower
prevision P on ', generated by 7, there exists a coherent
extension P to A that is generated by T .

In the same paper, a version of the marginal extension the-
orem for sets of Markov operators has also been proved,
and special attention has been given to the extensions to
product spaces. Thus, if .7 and . are respectively sets
of operators on the sets of gambles 4 (2") and 4 (%), the
extensions to 4 (2" x %) are studied whose marginals are
generated by .7 and . respectively. In this direction, the
results have been obtained for the case of the so-called
strong independent product. The strong independent prod-
uct of credal sets .# and .4 corresponding to ¢ (.2") and
G (%) respectively is the credal set

MXN ={PxQ:PeM,Qec N}, ©)
where P x Q denotes the product of linear previsions P and
Q. It has been thus shown that every credal set of the form
(9) satisfies the properties required above if it is generated
by the tensor product

T ={TeS: TecT,5c.s}. (10)

In general it is not true that a set generated by a tensor
product of sets of Markov operators would automatically
be in the form of an independent product. The reason is
that credal sets or sets of desirable gambles, which are just
convex sets, have a much richer set of extensions than sets
of linear operators.

In a similar way we will extend sets of operators in this
paper, where the extensions will be in the consistency rela-
tions with imprecise probabilistic models, whose general
form will be in a certain way pre-specified.

We will consider the problem of extension in a somewhat
greater generality than Theorem 3. In general we will have
a collection of linear subspaces % C &, where ¢ is a
linear space of gambles, and collections of sets of Markov
operators J;: J#; — J&;, fori € 1.

Definition 4 A set of desirable gambles 9 C & is gen-
erated by a set of Markov operators { J;: Jt; — i }ier if
9N K is generated by T,

Particularly, we are interested in sets of desirable gambles
that are simultaneously generated by every set 7. This
problem simplifies substantially if the operators 7; € .7;
are first in some meaningful way extended to a common
domain ¢. This is due to the following result.

Proposition 5 Let {T;: 4 — 4G }icr be a collection of sets
of Markov operators. Then if 9 is generated by 7, for every
i €1, then 9 is generated by U;c; ;.
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Proof It is a direct consequence of the assumptions that if
2 is generated by 7 for every i, then for every f € 4 we
have that f € 2 if and only if T; f € & for every T; € .} and
every i € I, which is equivalent to 7' f € & for every T €
Uicr 7, which in turn is equivalent to 2 being generated
by Uies 7. u

The reverse of the above proposition is clearly not true.
That is, if a set & happens to be generated by |J;; 7. then
it is not necessarily generated by each individual .7.

3.3. Separately Specified Conditional Models

We will first consider the case where the probabilistic mod-
els to be extended are specified on separate probability
spaces. Let % be a partition of 2 and B € %. Then ¥ (B)
will denote the set of gambles with support B, i.e. f € 4(B)
if and only if Iz f = f. Further let ¢ (%) denote the set of
JB-measurable gambles, i.e. gambles that are constant on
every B € A.

Let I5: 9 (B) — ¥ (B) be a set of Markov operators. We
call 73 a conditional model on B. Let 2(B) be a set of de-
sirable gambles with support B that is generated by 75. (We
will always assume that 2 (B) only contains gambles with
support B.) An extension of Z(B) is any set of desirable
gambles & such that 7 N¥(B) = 2(B). By Definition 4,
an extension of Z(B) is generated by 3.

The smallest set of desirable gambles on ¥ (.2") that
extends every Z(B) is well known and is called the natural

extension:
@n:{ }

The natural extension is clearly the minimal extension with
the required properties, which follows from the fact that
it contains exactly the sums of desirable gambles, which
by basic properties must be contained in a set of desirable
gambles.

Yet, the natural extension is not the only possible ex-
tension of the local models to the entire space of gambles.
Actually, it is only a special case of the marginal extension
([9]), which is obtained as follows. Let 2(B) be a set of
desirable gambles for every B € %; and 9(4) a set of %-
measurable desirable gambles. Then the marginal extension
of these models is the set

-@m:{
(12)

= D(B) + D,. (13)

Y fs: fz€ 2(B)

Be#

(1)

fa+ Y fa: f2€ D(B).fsc D(B)VBe %
Be#

The above construction can be found, for instance, in [10],
Section 2.3. The natural extension is therefore the marginal
extension where Z( %) is the set of non-negative gambles,
which is the minimal such set of desirable gambles.
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Being able to extend sets of desirable gamble generated
by sets of operators from subspaces of gambles to the en-
tire space of gambles ¢4 (Z"), we now extend the sets of
operators themselves in such a way to be related with the
corresponding extensions of the sets of desirable gambles.

Given a collection of separately specified conditional
models given by sets of Markov operators, an obvious way
of extending them to the entire set 4(.2") is the following.

Definition 6 Let B be a partition and {Tg: 4 (B) —
Y (B)} e a collection of sets of Markov operators. Then

we define the set
} . (14)

{

Proposition 7 Every T €  is a Markov operator on
G(X), and T | p) = T for every B € B.

T =T:Tf=Y Tp(lgf),Ts € TpgVB € A

Be#

Restricted to ¢ (B), the sets of desirable gambles generated
by 73 and .7 clearly coincide, which however does not im-
ply that the sets of desirable gambles for the entire 4 (.2")
necessarily also coincide. Yet they do coincide in an impor-
tant special case described by the following proposition.

Proposition 8 Let & be a marginal extension of a collec-
tion of local sets of desirable gambles {2 (B)}pcs and
some set of 9B-measurable desirable gambles 9 () (see
(13)). Then 2(B) is generated by Jg for every B € B if
and only if 9 is generated by 7.

We will postpone the proof to the next section.

The set .7 thus generates the same marginal extensions
as the corresponding local models. We can therefore regard
it as an extension of the local models. The family of all
extensions of the local models is of course much richer
than the family of marginal extensions alone. Yet, in the
next section we will show that not only is every marginal
extension generated by the extended sets of operators, but
also that exactly the marginal extensions satisfy a new
minimality property of extended sets of desirable gambles.

3.4. Additive Independent Extension

We now define a general type of extensions of local impre-
cise probabilistic models to a global one which turns out to
be consistent with extensions of sets of Markov operators
in Definition 6.

Definition 9 Let & be a set of desirable gambles that
extends sets of desirable gambles 9; C ¥ for i € I, where
Y, are subspaces of the set of all gambles ¢ and I is a
finite set of indices. Then we will say that & is an additive
independent extension (AIE) of {Z;}ies if for every f € 9
that can be written as a sum f =Y ;c; fi, where f; € 94,
implies that f; € Z; for at least one i € I.
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In other words, & is an additive independent extension of
{Z;}ies if a sum of undesirable gambles from different ¥;
is always undesirable. The main motivation for the above
definition comes from the situation explained in Example 1.

Proposition 10 The natural extension (11) is an AIE of
{2(B)}pes-

The above proposition is a special case of Theorem 13
below.

An AIE does not always exist. The following proposition
tells us that such an extension is only possible if the prob-
abilistic models are linear on the intersections, which is
equivalent to being the maximal coherent sets of desirable
gambles. These have been defined in [4, 5], as sets of desir-
able gambles, to which no further gambles can be added.
More precisely, a coherent set of desirable gambles 2 is
maximal if f ¢ & implies that — f € & for every gamble
fev?.

Proposition 11 Let 7| and ¢, be subspaces of gambles
on . Let 9 be an AIE of 9 C %1 and 9, C 5. Then
DN N, is a maximal coherent set of desirable gam-
bles in the subspace J1 N ;.

Proof First notice that 1NN = DN N K, =
DN KN A5, because otherwise & could not be considered
an extension of 2, and 2.

Take some f € # N #. Then f+ (—f) =0 € 2.
Whence either f or —f belongs to 2\ N1 N = PhN
JN NI C D110 Dy, which by the above discussion implies
that 2| N 2, is a maximal coherent set. [ |

The following proposition gives a sufficient condition
for the existence of an AIE.

Proposition 12 Let {.%}ic; be a finite collection of lin-
ear spaces of gambles J; C G (Z) for every i € I, such
that Z;NY. i J; C Const, where Const denotes the set of
constant gambles. Further let { Z; }ic; denote a correspond-
ing collection of sets of desirable gambles: 9; C ;. Then
D =AY i1 fi: [; € DVi € I} is an AlE.

Proof To see that Z is an AIE, take any sum Y ;c; g; € .
We need to show that at least one g; is desirable. By the
construction, there exists a collection of f; € Z; for every
i € I'suchthat };c;8i =Y ;s fi- This implies that

Z(gl 7](;) = Oa

icl

5)

and consequently, for every i, the equality g; — f;
Y. ;+i(fj — &) holds. The left hand side of the above equal-
ity lies in %, while the right hand side is in the sum of the
remaining spaces. This, by assumption, implies that both

2. The original definition requires f # 0, which is not needed in our
case where 0 is deemed desirable.
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sides must be constants. Thus (15) is a sum of constants
adding to 0, and therefore, at least one of the constants
gi — f; must be non-negative, and for such i this implies
that g; > f;, and since f; € Z;, g; must be desirable as well,
which completes the proof that Z is an AIE. |

A full characterization of AIE for separately specified con-
ditional models follows.

Theorem 13  Let a collection {2 (B)} pe 2 of sets of desir-
able gambles and 9 a set of desirable gambles in G(Z")
be given. Then 2 is an AIE if and only if there exists a
set of B-measurable desirable gambles 9(9B) such that
forevery f € D, fp € D(PB) and fz € Dp for each B € #
exist, so that

f=rfa+Y, /s

Be %

In other words, any AIE of {Z(B)}pec4 is of the form
D =D (B)+Y.pen Z(B) for some Z(A).
Proof Let us first show the ’if’ part. Thus, assume that
for every f € 2, decomposition (16) exists. We need to
show that in this case, some B € % exists so that Igf €
2(B). Since fg is assumed to be desirable, there must be
some B € A, such that f»(B) > 0. This implies that 15 f =
1pf%(B) + f5, where both terms are clearly desirable, and
therefore their sum is desirable as well.

Now take some f € 2, and let A = max{A: Ipf —A €
2(B)}. Set fu(B) = Ag and fp = Ip(f — Ap) for every
B € %. We then have that f = fz + Y pc /5.

Consider the set 2(B) = {fz: f € 2}. We show that it
is a set of weakly desirable gambles. Clearly it contains all
non-negative gambles, which is equivalent to & containing
the minimal extension.

Further, if f € 2(4) then it must hold that f(B) >0
for at least one B € A. Indeed, if f%(B) < 0 for all B € 4,
then for every B we have that Igf = Ig(lgf — f»(B) +
f#(B)). But as fz(B) is the maximal constant that can
be subtracted from I f to remain desirable, I f therefore
cannot be desirable. This contradicts with 2 being an ad-
ditive independent extension, and therefore proves that
f#(B) > 0 for some B € .

Finally we need to prove that Z(%) is a convex set.
Take f,g € 2 and the corresponding fz and g4. Since
for every B € A, Ip(f — f#(B)) and Iz(g — g»(B)) are
both desirable, that is, belong to Z(B), so must be their
sum I (f +g — (f2(B) + g2(B))). By definition then (f +
8)#(B) = f#(B) +8#(B), and since (f +g)z € Z(%),
somust fg + g5 € 2(B).

It is immediate that (af)s = o f% for o« > 0, which
together with the above proves convexity of Z(9%). More-
over, it is clear that the map f +— fz is continuous and
therefore maps the closed set Z to a closed set Z(4),
which makes it a set of desirable gambles according to our
definition. ]

(16)

Very similarly we can show the following.
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Proposition 14 Let under the assumptions of Theorem 13,
gEY(X) be given. Then g & 2 if and only if there exist
8’y and g for every B € % such that neither of them are
desirable and
g=85+ ), a7
Be#
Proof First we take some g ¢ & and show that the required
decomposition exists. The construction will be similar to
the one in the proof of Theorem 13. In particular, gp are
constructed in the same way as fp before. Now, since all
gp are (marginally) desirable, g can only be undesirable if
g2 is undesirable. By our definition, the set of undesirable
gambles is open, which means that g/, = g + € is unde-
sirable for some € > 0. Now taking g = gp — Ig€ makes
g undesirable, and since g = g, + ¥ pc 5 &5, this proves
our proposition.

For the reverse implication, suppose that g is of the form
(17). Assume ex-absurdo that g € &, in which case by
Theorem 13, a decomposition g = fz + Y pcp fB €Xists,
where all the terms are desirable. This implies that

gp—fa=Y f3—2gs

Be#

(18)

Since the gamble on the left hand side is Z-measurable, all
the differences fp — gj must be constant on the correspond-
ing B, and since all fp are desirable and g% are not, they
must be positive constants. This would imply that g/, > f2,
and therefore, if f4 is desirable, so must be g(’g/J But this
contradicts our initial requirement, and therefore completes
this part of the proof. |

Theorem 15 Let T3: 9 (B) — ¥ (B) be a collection of
conditional models for each B € 2, where A is a partition
of Z'. Let P be a set of desirable gambles that it is an AIE
of {2(B) = 2NY(B)}pcp. Then each D (B) is generated
by Ty if and only if 2 is generated by 7, from Definition 6.

Proof Suppose first that & is generated by .7. Now we
show that 2 N¥(B) = 2(B) is generated by .75. Take
some f € 4(B). Then we have that f € Z if and only if
J f C 9. By Proposition 7, 7 f = Jf, and we have that
fe€2n9(B)=2(B)ifandonly if 7 f = Tpf C 2 and
since Jp maps f to ¢ (B), we further have that Jpf C
2(B).

Now we prove the reverse implication. Thus suppose that
2 is an AIE of 9(B), where every 2(B) is generated by
T. We have to show that & is then generated by .7 Thus
we need to show that f € 2 holds if and only if T f € & for
every T € 7. Take some f € & first. By Theorem 13, it is
of the form f = fu +Y pc 4 f, Where fz belongs to some
set of Z-measurable desirable gambles and f € Z(B) for
every B € %. Now for arbitrary T € .7 we then have that
Tf = fz+ Ypesn Tafs. because fyz is constant on every
B € #. Since Z(B) are all generated by I3, the inclusions
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Tpfz € Z(B) hold for every B € 4, and therefore T f € 9
holds as well.

For the second part, take some g ¢ 4. By Proposition 14,
we then have that ¢ = g', + Y pc 5 g5, Where neither of
the terms in the sum are desirable. By the definition of a
generated set, for every gg ¢ 2(B) there must exist some
Tp € T, so that Tpgp ¢ Z(B). Now taking T to be the op-
erator such that T|g(3) = Tp, we have that T'g is still a sum
of non-desirable gambles, which again by Proposition 14
implies that Tg & 9. [ |

In Theorem 15 we only extend conditional imprecise prob-
abilistic models to a model that is given up to the marginal
AB-measurable model. This demonstrates the advantage
of sets of operators over imprecise probabilistic models,
as the former may be consistent with multiple imprecise
probabilistic models. In our case, the lack of marginal in-
formation still allows us to build a global set of operators
and construct models consistent with it.

The following proposition now shows how easy it is
to combine the extended local models with the marginal
model.

Proposition 16 Ler % be a partition of ', I condi-
tional model for every B € 2 and Ty a set of Markov op-
erators on the space of %-measurable gambles. Let 9 ()
and 9 (B) be the corresponding generated sets of desirable
gambles. Then the set

2=2(%)+ Y, 2(B)
Be#

19)

is their AIE.

Proof Clearly Z is a set of desirable gambles. We now
show that it is an AIE of the corresponding sets. Thus take
some gamble f = g»+Y pczgp Where g4 € Y(A),gp €
9 (B) for all B € 4, so that f € 2. We must show that
at least one of the gambles in the sum is desirable. Since
f € 2, it can be written in the form f = fz + Y pc# /5,
where all of the gambles in the sum are desirable. Now
we have that fz — g% = Y pc» gp — fp- The left hand side
of the above relation is Z-measurable, and therefore all
gp — fp are constant on B. Now suppose that g4 is not
desirable. In that case fz — g4 must be non-negative on
some B € 4, whence gg — fp > 0 and therefore gg > f3
and since fp is desirable, so must be gp. This completes
the proof. |

Definition 17 Let 9B be a partition of Z and
Tg: 9(B) — 9(B) sets of Markov operators. Then
we call the set . from Definition 6 an additive independent
extension of { I }pc 5.

Definition 18 Ler J;: &; — ¥, for i € I be sets of Markov
operators, where &; are some subspaces of gambles for
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some index set I. Let 9 be a set of desirable gambles that
is an AIE of {2 N %Y, }ic1, where each 9 NY; is generated
by F;. Then we will say that 2 is an additive independent
extension of {7 }icy.

4. Epistemic Irrelevance

In this section we show how AIE fits into the concept of
epistemic irrelevance and how extensions of local proba-
bilistic models given in terms of sets of Markov operators
can be used to construct global probabilistic models that
satisfy epistemic irrelevance. An area where such exten-
sions have been used intensively is the theory of imprecise
stochastic processes [8], and in particular imprecise Markov
chains. De Cooman et al. [6], whose paper has been used
as the basic framework for most of the research activities
in the field of imprecise stochastic processes, build a global
probabilistic model from local one-step transition models
under the assumption of epistemic irrelevance.

4.1. Epistemic Irrelevance Between Two Variables

First we consider two finite sets 2" and ¢ and their Carte-
sian product 2" x #. We will denote the gambles on the
corresponding spaces with 4 (2), 9 (¥ ) and 9 (2 x ¥').
A set of desirable gambles 2 C ¢ (2" x %) is said to sat-
isfy epistemic irrelevance % — 2~ if every 2 -measurable
gamble f belongs to Z if and only if I, f belongs to Z for
every y € ¢ ([4]). This implies that all conditional models
are the same regardless of y € #'. Using sets of Markov
operators we can describe this property as follows. Let &
be a permutation on 2. Then we define the permutation
operator
[P f](x,y) = f(x,0(y)). (20)

As the idea of epistemic irrelevance is that learning y does
not change our beliefs about 27, it would be reasonable to
expect that any gamble f is desirable exactly if P° f is. We
will then say that the model satisfies symmetry with respect
to %. We will denote the set of permutation operators with
respect to % with 2 ().

Let a set of desirable gambles 7 C ¥(.2" x %) be given.
Then for every y € % we define 2, = {f € 9(Z"): I,f €
2} C 2(Z). The following proposition is immediate.

Proposition 19 Let 9 C G (2 X %) be a set of desirable
gambles that is generated by P (#%'). Then 9, = Dy for
every pairy,y € ¥.

Proof Take some f € 4(2Z"). Then f € 2, is equivalent to
L,f € 9. Now since 7 is generated by &?(%/), this implies
that [P°Lyf] = I(y)f € 9, whence f € P(y,). Now since
o (y) takes all values of % this implies that all &, are the
same for every y € ¥ [ ]

Symmetry however is not enough to guarantee epistemic
irrelevance. To see this, consider the following example.
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Example 1 Consider the case where 2" =% = {0,1}
and let f(0,y) = —1 and f(1,y) =1 for y =0, 1. Further
take two probability mass functions:

p1(0,0)=3/16 p1(0,1) =3/16,
p1(1,0) =2/16 pi(1,1) =38/16;
p2(0,0) =3/16 p2(0,1) =3/16,
p2(1,0) =8/16 p2(1,1) =2/16.

Let # = {p1,p2} and the corresponding lower prevision
P(h) = min,c 4 E,(h). We then obtain

P(f) =4/16,P(Iof) = —1/16,P(I f) =

which shows that although both Iy f and I f are not desir-
able, f, their sum, is a desirable gamble. Thus, despite clear
symmetry with respect to %, the corresponding imprecise
probabilistic model does not satisfy epistemic irrelevance.

—1/16,

The reason that the imprecise probabilistic model in the
above example does not satisfy epistemic irrelevance is
in the fact that the sum of undesirable gambles /;,_g} f
and I;,_1} f is desirable. Clearly such a situation can be
prevented if the set of desirable gambles is an additive
independent extension.

Let the conditional models 2(.2"|y) be generated by sets
of Markov operators .7, on (%2 "|y). Since all 4 (2" |y) are
isomorphic with ¢ (.2"), we can additionally require that all
7, are equal for every y € #/. This does not automatically
imply that the conditional models are equal as well, because
there may be multiple sets of desirable gambles generated
by the same set of Markov operators. Thus equality of the
models will be guaranteed by employing the permutation
operators.

Theorem 20 Let 9 C G (2 X ¥) be a set of desirable
gambles that is an AIE of { 2(Z"|y) }yew, which are gen-
erated by the corresponding 7, where T, = Ty for every
y € % Further let 9 be additionally generated by & (¥).
Then it satisfies epistemic irrelevance % — 2 .

Proof We need to prove that for every f € 4(2") and
ve¥,feZifandonlyifI,f € 7 forally € %. The ’if’
part is immediate, because I, f € Z for every y € % implies
that their sum Y, s Iy f, which equals f, is desirable as
well.

Thus, assume now that f € &, and as it is the sum of I, f,
which respectively belong to 4 (2" |y), at least one of them,
say Iy, f is desirable. Further, as & is also generated by
P (%), we have that PC[Iy f] = I5(y,)f must be desirable
as well. But since this holds for every permutation ¢, ' (yo)
can assume any element of %/, implying that I, f is desirable
forevery y € . |

Corollary 21 Let 2 be a set of desirable gambles satis-
fying the conditions of Theorem 20. Then there exist a set
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of desirable gambles D (%) C G (%) that is generated by
P(¥) and a set of desirable gambles (%) so that

21

(22)

fo+ Y Lfy: fw € DY), [« DX )\Nye¥
e

@)+ ) L2(Z)
ye¥

Proof By Theorem 13 there exist some (%) and 2, C
G () foreach y € % so that every f € & can be written
in the form f = fo + Y, co I, fy, Where fo € Z(%') and
1y € 9.

Each individual 2 is equal to Z(£"), which is required
by epistemic irrelevance. Now take some fo + 3 e Iy fy-
Since 7 is generated by (%), we have that P°f =
PC fo +Yyea Is(y) [y is desirable as well. This is only pos-
sible if P° fz belongs to 2(#) as well. |

Definition 22 Let Ty : G9(Z) — G(Z) be a set of
Markov operators and let % be another sample space.
Then the extension T : G (X x %) = G (X x %) defined
by

Y LTf(-y)

i:{T:Tf: ,Tyeﬂngye@}
ye¥

(23)

is called an additive independent extension of Ty from

GV 100G (X xY).

Definition 23 Let .75 be as in Definition 22. Then the
extension 78 = 7 U P (%) is called epistemically irrele-
vant extension of Ty from G (X ) 1o G( X x ¥).

Corollary 24 Let 9 C G (X x %) be a set of desirable
gambles that is an AIE of 29 (Z|y). Then

(i) D is generated by I if and only if 9 is a marginal
extension of some (%) and 2( X' |y) fory € ¥;

(ii) 9 is generated by TE if and only if it satisfies
epistemic irrelevance % — 4 and is therefore a
marginal extension of some D(%), satisfying symme-

try, and D(Z'|y) fory e ¥.

Example 2 Consider the case where 2" = % = {0,1}.
Let (%) =posi({(—1,2),(2,—1)}UR%) and 2(2) =
R2,. Then the natural extension of (%) satisfies epis-
temic irrelevance % — 2.
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4.2. Epistemic Irrelevance with Additional Variables

The more general case where epistemic irrelevance is pos-
sible is where we consider gambles that depend on three
(or more) variables. Thus let 2", % and Z be given and
suppose that the probabilistic model on % is irrelevant to
Z . Thus we have local models on 2" that possibly depend
on Z. In general we thus have sets of Markov operators

Tyt 4(Z(3:2) = 9 (Z|(0,2)), (24)

where 7, ) = 7, for every y € #'. We would like to ex-
tend these models to a global model on 4(2" x % x %)
satisfying epistemic irrelevance of 2" from %/

As before, in addition to sets of operators being indepen-
dent of %, we must also ensure symmetry, which we do
using permutation operators on 2. Thus, for any permuta-
tion o of elements in %" we define

Paf()@y,z) f(x,0(y),2),

for every f € 9(Z x ¥ x %). The set of all permu-
tation operators will be again denoted by Z(%/). First
we use AIE to extend the sets of operators 7, ;) from

{9(Z(0,2) }rez 0 G (2 x Z]y):
jy: G( X xZLy) =Y (X x Zy)

(25)

where

T)f :Iy Z IzT(y,z)f('vyaz)
€
forevery f € 9(2" x Zy), where T}, ;) € 7. With Ty we
denote the set of all operators of the above form. Finally
we use AIE again to extend { },ea to 9(2 x ¥ x %)
to obtain the set .7. Then we additionally require that the
extension is generated by Z(%).

Theorem 25 Let 7, for each z € % be a collection of
sets of Markov operators acting on 4(Z"). Further let
T2y = T respectively act on spaces G (2 |(y,z)). For
eachy € % let 9, C G (X x Zy) be a set of desirable
gambles that is an AIE of{ﬂ(m) }265,. Further, let 9 be

an AIE of {9y} yea and generated by  and (¥ ). Then
9 satisfies epistemic irrelevance % — 2.

Proof Take some f € ¢(.2"). Then we can write f =
Yyeo I, f. The set 7 satisfies epistemic irrelevance if the
following equivalence holds: f € Z if and only if, for all
ye¥,I,f € 2. Note that the ’if” part follows immediately
by the convexity of 2.

Now we prove the "only if” part. Since & is an AIE of
{Zy}yew . f € 2 mustimply that I, f is desirable for at least
one y € #. Now, since ¥ is also generated by the set of
permutation operators, we have that P°[I, f] = I(,) f € Z
as well. Because this holds for every permutation ¢, then
clearly all /, f must be desirable. n
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Corollary 26 Let 9 = D(Z x ¥ x &) satisfy the con-
ditions of Theorem 25. Then there exist sets of desirable
gambles D(¥%), (%) and D,(X) for every z € & so
that (%) is generated by (%) and D,(Z") by respec-
tive 7, so that

&

Proof The existence of sets Z(%/) and 2, (%), that could
in principle depend on y € %/, and %, ;)(2"), that could
also depend on y, follows from the above shown properties
of additive independent extensions. The fact that the sets
of desirable gambles on 2 and 2" do not depend on y
follows from the requirement that Z is also generated by
P (%) which ensures symmetry with respectto . W

S + Z 1y(fy+ Z sz(y,z)):

yeX €Z

fo € DDy € D), iy € %(%)}.

5. Conclusions and Further Work

Sets of Markov operators can in some cases present a more
general alternative to imprecise probability models. This
paper provides extensions of such sets from collections of
subspaces to larger spaces. These extensions are consistent
with a new type of extensions of imprecise probabilistic
models, called additive independent extension. Moreover,
we have applied the new type of extensions to construct
epistemically irrelevant extensions of marginal models to
product spaces.

The types of independence used in this paper are very
common, among others, in the theory of stochastic pro-
cesses [6, 8], especially the model described in Section 4.2.
Specifically, epistemic irrelevance of a variable Y to X may
be used to model irrelevance of the process history to its
future evolution, while Z denotes the current state, which
does influence future behaviour. The question of construct-
ing global models from local ones is of great importance in
the theory of stochastic processes. It is therefore one of the
plans for future work to describe the models of imprecise
stochastic processes using the approaches presented in this
paper.

Furthermore, the notion of epistemic irrelevance used
here is described as epistemic value-irrelevance in [2],
where also a stronger notion of epistemic subset-irrelevance
is used. Another future plan is therefore to explore whether
this stronger property can be described in a similar way
with extensions of sets of Markov operators.
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