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Abstract

A major driver in the success of predictive machine learning has been the “common task
framework,” where community-wide benchmarks are shared for evaluating new algorithms.
This pattern, however, is difficult to implement for causal learning tasks because the ground
truth in these tasks is in general unobservable. Instead, causal inference methods are often
evaluated on synthetic or semi-synthetic datasets that incorporate idiosyncratic assump-
tions about the underlying data-generating process. These evaluations are often proposed
in conjunction with new causal inference methods—as a result, many methods are eval-
uated on incomparable benchmarks. To address this issue, we establish an API for gen-
eralized causal inference model assessment, with the goal of developing a platform that
lets researchers deploy and evaluate new model classes in instances where treatments are
explicitly known. The API uses a common interface for each of its components, and it
allows for new methods and datasets to be evaluated and saved for future benchmarking.

Keywords: Causal Inference, Software Engineering, Machine Learning

1. Introduction

In this paper, we present an API and preliminary implementation for comparatively evaluat-
ing causal inference models. Causal inference is used to help identify the effects of particular
treatments on populations, and the application of machine learning methods to causal in-
ference is a growing body of research (Hill, 2011; Hahn et al., 2017; Louizos et al., 2017;
Nie and Wager, 2017; Shalit et al., 2017; Oprescu et al., 2018; Wager and Athey, 2018; and
numerous others). Centralized methods for evaluating these models across dataset types
are currently limited to pipelines not explicitly designed for extensibility, with the most
common example being causal inference competitions (e.g. Dorie et al., 2019). Therefore,
many papers focus on models which improve individual metrics on select datasets, instead
of focusing on model generalizability, or comparing performance across a range of tasks.

∗. Equal Contribution
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The predictive machine learning community has established a common task framework
for model evaluation in many problem domains (Donoho, 2017), which has allowed re-
searchers to develop models across a common set of benchmarks. Our work seeks to build
a centralized resource for evaluating and contributing causal inference models, datasets,
and evaluation metrics. We design an API that allows new contributions to be introduced
and evaluated, allowing researchers to spend less time developing infrastructure as they
introduce new models. In contrast to existing unified evaluation frameworks like Kaggle
competitions, which often evaluate submitted models across a single task, our API allows re-
searchers to run common evaluation metrics across numerous models, datasets, and metrics.
Furthermore, since the “ground truth” in causal inference datasets is often parameterized,
our model also allows for evaluations that sweep across parameters rather than being eval-
uated on one fixed dataset instantiation. We add extensibility by allowing researchers to
submit new models, datasets, metrics, and parameterizations. Our goal is to scale this
platform to a persistent service and encourage the causal inference community to use a
centralized resource for evaluating and sharing information about its research.1

1.1 Preliminaries

We base our initial system on the potential outcomes framework (Rubin, 2005) for deter-
mining the effects of treatments of individuals. Suppose there are n examples (Xi, Yi, Ti),
for i = 1, . . . , n, where Xi ∈ X denotes the covariate values for individual i, Yi ∈ R is
the observed outcome, and Ti ∈ {0, 1} is the assigned treatment to individual i. Let Yi(0)
and Yi(1) correspond to the outcome that would have been observed if Ti = 0 or Ti = 1,
respectively. Let µ(0)(x) = E[Y (0)|X = x] and µ(1)(x) = E[Y (1)|X = x]. The Conditional
Average Treatment Effect (CATE) τ(x) is defined as

τ(x) = E[Y (1)− Y (0)|X = x] = µ(1)(x)− µ(0)(x). (1)

Although the CATE is often the target of estimation in causal inference problems, as
it approximates subgroup-specific effects, it is generally unobservable because only Yi(0) or
Yi(1) is present for each i in real-world datasets. This “fundamental problem of causal infer-
ence” (Holland, 1986) makes model evaluation especially difficult, which is why researchers
often develop their own synthetic or semi-synthetic datasets.

1.2 Paper Organization

In Section 2, we outline the structure of our API, and describe how new models and datasets
can be added and evaluated. Section 3 presents sample evaluations from our API and
evaluates models across datasets. Finally, Section 4 concludes the paper with our plans to
scale the API.

2. API

The major contribution of this work is to create a centralized API that is able to exhaustively
test new causal models, datasets, and metrics. In this section, we explain the different

1. A (pre-alpha) implementation of the API can be found at https://github.com/amerch/causal_

inference_evaluation.
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Figure 1: Schematic Diagram of the API

components of the API and how the system is built to flexibly scale to new experiments.
Figure 1 schematically diagrams the API—a researcher using this software can easily submit
a new dataset and/or a new model to the program. The API will then evaluate and produce
a summary of relevant metrics. Our API standardizes data and evaluation metrics, leading
to easily reproducible results.

2.1 Models

Our framework adopts an scikit-learn (Pedregosa et al., 2011) style approach to developing
new models. We define an abstract superclass so that any newly proposed model can be
defined by implementing the .fit(X, Y, T) and .predict(X, T) functions. This sim-
ple structure allows for rapid model prototyping and testing on a range of the benchmark
datasets. The provided framework also allows the model to be tuned for the specific pre-
diction tasks. For example, a binary tag is provided to allow for models to switch between
classification and regression. Also, k-fold and leave-one-out cross validation are both im-
plemented to allow for model hyperparameters to be tuned on any given problem.

A number of these models are already included in the software implementation of this
API. These benchmarks include fairly simple implementations including k-nearest neigh-
bors, a naive average of treatment and control groups, Ordinary Least Squares with treat-
ment as a feature, Ordinary Least Squares separated by treatment, and random forests.
More sophisticated methods include the S-learner, R-learner, and T-learner, all discussed
in Nie and Wager (2017). The diversity of these methods has allowed for initial evaluation
and analysis on some standard causal inference tasks, as discussed in Section 3.1. As new
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models are completed and published, they can be added to the set of benchmark models
for future API evaluation and comparisons.

2.2 Data

All datasets within the API reflect the standard form of causal inference problems. Each
task is defined by at least a X,T, Y , which are required in training and to create predictions.
Additional variables such as the true values of µ(1)(X) and µ(0)(X) can be included if known
in order to properly evaluate the appropriate predictions. These variables are stored in zip
archive files available in the Data folder of the software. Specifically, we use the .npz

file format available through the numpy library to create a common method for storing
and loading datasets. Additionally, it is worth mentioning that each tensor for X,T, Y, . . .
contains a final axis that corresponds to a new realization of the complete dataset. This
will allow us to produce confidence intervals on the calculated metrics, further described in
Section 2.3.

The API is initialized with a number of benchmark datasets that can be used for eval-
uation. These represent a sample of the common datasets used in causal inference papers,
including synthetic and semi-synthetic data, and reflect varying levels of confounding. As
this API is further developed, new datasets can be added to this benchmarking procedure
for a more comprehensive selection of causal problems. In the mean time, the currently
available datasets are detailed below:

1. IHDP
The IHDP dataset contains records from the Infant Health and Development Program.
From 1985, the randomized experiment evaluated the effect of high-quality child care
on the cognitive test scores at the end of the intervention. Hill (2011) first applied this
data to causal inference by systematically removing children with non-white mothers
from the treated set. The data was obtained from Shalit et al. (2017) and contains
100 replications.

2. Jobs
The Jobs dataset originally comes from LaLonde (1986) and is a commonly used
benchmark within the causal inference community. The features include 8 covari-
ates, such as race, age, education, and previous earnings. The treatment involved
participation in a job training program, and the predictor is a binary outcome of
unemployment. We follow Dehejia and Wahba (2002) in the creation of this dataset
and specific samples used.

3. Voting
The Voting dataset was first proposed by Arceneaux et al. (2006) to study the effect
of get-out-the-vote calls on turnout in elections. We follow the use of the dataset
by Nie and Wager (2017). These authors injected a synthetic treatment effect into
the data—allowing for measurements of how effective the proposed causal inference
methods were. The features include state, county, age, gender. The treatment is the
binary get-out-the-vote call, and the outcome is participation in the election.
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4. Twins
The Twins dataset comes from a study by Almond et al. (2005) on the effects of low
birth weight on twins between 1989 and 1991. Louizos et al. (2017) created a semi-
synthetic dataset based on this twins data, using gestational time as a confounder for
the mortality outcome. Features included maternal risk factors, race, and quality of
care.

Of the included datasets, Jobs, Voting, and Twins are all thought to have confounding
variables that are not directly observable by the models. This is important for model
evaluation, as many techniques for causal inference make unconfoundedness assumptions
that may not always hold.

2.3 Evaluation

As noted in Section 2.2, the datasets contain multiple realizations of each causal inference
problem. In the outer loop of our evaluation metric, for each realization, we initialize a
new version of the model. This model is trained with hyper-parameter optimization using
cross validation. The model is then evaluated on the specific test set realization, and the
results are stored in internal databases. By using this standard procedure for all models,
the resulting metrics are comparable and can be used to analyze the efficacy of the various
methods. As an example, in the next section, we present metrics using the benchmark
models and datasets described above.

3. Model Comparison Examples

A key contribution of the API is the provision of a common process for evaluating models.
In this section, we give examples of sample comparative results that can be gleaned from
our interface. The use of a single module for standardizing traditionally variable factors—
such as training set size, cross-validation splits, and performance metrics—allows for fairer
comparisons than the common approach of comparing numbers found across papers.

3.1 Comparative Evaluation

First, we explore the use of common metrics for evaluating the performance of several models
on a single dataset. In this case, the dataset is IHDP, which is described in the previous
section. The evaluation process is conducted using the method outlined in Section 2.3. Our
metrics of choice are the expected precision in estimation of heterogeneous effect (PEHE)
and the root mean square error of the individual treatment effect (RMSE ITE). Figure 2
displays a sampling of the results across several models. From this graph, we can glean
conclusions about how the different models compare in terms of accuracy and precision.

3.2 Cross-Model, Cross-Dataset Evaluation

Table 1 presents sample results from a cross-model, cross-dataset evaluation of the out-
of-sample average treatment effect (ATE) error. This evaluation is across eight different
models and four different datasets. We envision the API being used to generate types of
results that are similar to this one.
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Figure 2: Examples of comparative evaluations between models for the metrics PEHE (left)
and RMSE ITE (right) on the IHDP dataset. For these metrics, lower values
correspond to higher accuracy. Our results correspond to the available metrics
that appeared in previous papers using these models.

IHDP Twins Jobs Voting

Naive 1.09 ± 0.20 0.0538 ± 0.0018 0.1534 0.0314 ± 0.0011
OLS 0.78 ± 0.11 0.0385 ± 0.0014 0.0414 0.0045 ± 0.0012

OLS-Separate 0.27 ± 0.04 0.0246 ± 0.0015 0.0819 0.0020 ± 0.0009
S-Learner 0.48 ± 0.06 0.0400 ± 0.0021 0.0427 0.0065 ± 0.0010
T-Learner 0.26 ± 0.03 0.0312± 0.0015 0.0706 0.0020 ± 0.0009

KNN 0.66 ± 0.12 0.0440 ± 0.0015 0.1128 0.0038 ± 0.0011
Random Forest 0.80 ± 0.12 0.0317 ± 0.0025 0.0882 0.0131 ± 0.0011

Table 1: Example comparison of out-of-sample average treatment effect absolute error for
various models across various datasets.

3.3 Extensibility of Evaluations

The API also allows for the standardized incorporation of novel evaluations. If a particular
paper introduces a new, creative method of benchmarking models on datasets, this method
can be easily incorporated into the API, which allows it to be quickly accessed by all models
and all (relevant) datasets. For example, Louizos et al. (2017) introduce a way to evaluate
how the absolute ATE error changes as a function of proxy noise level for the TWINS
dataset. They evaluate their particular models in this context. Figure 3 shows how the API
can be utilized to provide similar results for a variety of models in the literature, beyond
the ones initially tested by Louizos et al. (2017).
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Figure 3: Example of an extension evaluation on the API, depicting how absolute ATE
error changes as a function of proxy noise level for selected models fitted to the
Twins dataset.

4. Discussion and Scale Up

In this paper, we introduce an API for the centralized evaluation and dissemination of causal
inference models, datasets, and metrics. Currently, our API is a local service with a standard
interface for adding data and models, with a model interface similar to that of scikit-learn.
Researchers may submit to it via pull request. Our goal is to move the evaluation suite
to a hosted platform, allowing the research community to upload new models using the
API, and share results of training across different datasets. We also seek to gather feedback
on our current design and evaluation pipelines, so the service can better fit the needs of
the community. The goal of our service is to make comprehensive evaluation more readily
available, so researchers can spend more time model-building and less time plumbing. We
seek to develop a centralized platform for publicizing and viewing contributions from the
community, and welcome feedback on our service as it is in development.
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