
Load-Balanced Parallel Causal Structure Learning

Load-Balanced Parallel Constraint-Based Causal Structure
Learning on Multi-Core Systems for High-Dimensional Data

Christopher Schmidt christopher.schmidt@hpi.de

Johannes Huegle johannes.huegle@hpi.de

Philipp Bode philipp.bode@student.hpi.de

Matthias Uflacker matthias.uflacker@hpi.de

Enterprise Platform and Integration Concepts

Hasso Plattner Institute, University of Potsdam

Potsdam, Germany

Editor: Thuc Duy Le, Jiuyong Li, Kun Zhang, Emre Kıcıman, Peng Cui, and Aapo Hyvärinen

Abstract

In the context of high-dimensional data state-of-the-art methods for constraint-based causal
structure learning, such as the PC algorithm, are limited in their application through their
worst case exponential computational complexity. To address the resulting long execution
time, several parallel extensions have been developed to exploit modern multi-core systems.
These extensions apply a static distribution of tasks to the execution units to achieve paral-
lelism, which introduces the problem of load imbalance. In our work, we propose a parallel
implementation that follows a dynamic task distribution in order to avoid situations of load
imbalance and improve the execution time. On the basis of an experimental evaluation on
real-world high dimensional datasets, we show that our implementation has a better load
balancing compared to an existing parallel implementation in the context of multivariate
normal distributed data. For datasets that introduce load imbalance, our dynamic task
distribution approach outperforms existing static approaches by factors up to 2.4. Overall,
we increase the speed up from factors of up to 27, for the static approach, to factors of
up to 39 for the dynamic approach, when scaling to 80 cores compared to a non-parallel
execution.

Keywords: Causal Structure Learning, Parallel computing, Constraint-based methods,
High-Dimensional data, PC Algorithm

1. Introduction

Discovering causal structures from observational data is an active field of research in statis-
tics and data mining. Understanding the causal relationships between observed variables
in complex systems enables new insights and is of particular interest in the context of high-
dimensional settings such as in personalized medicine or the Internet of Things. Further-
more, randomized controlled experiments, the standard method for discovering causality,
oftentimes becomes infeasible due to costs and ethical concerns in these settings.

Causal graphical modeling is a recognized method for causal discovery (Pearl, 2009;
Heckerman et al., 1995; Spirtes et al., 2000). In this context, causal relationships are
encoded in a Directed Acyclic Graph (DAG). Two common approaches for learning these
causal structures from data to derive the DAG are search and score-based and constraint-

1



Schmidt, Huegle, Bode and Uflacker

based. The search and score-based approach evaluates a score function on all possible
DAGs, which raises an NP-hard (Chickering et al., 2004). The constraint-based approach
utilizes conditional independence (CI) tests to find the underlying, undirected structure of
the DAG, which is also known as the adjacency search. In the worst case, this procedure is
exponential to the number of variables. In a second step, the undirected edges are oriented
through the repeated application of deterministic rules. Spirtes et al. proposed the PC
algorithm (Spirtes et al., 2000), which runs in polynomial time for sparse graphs. Still,
the algorithm’s long runtime hinders its application in practice, especially in the context of
high-dimensional data (Le et al., 2015a).

With recent advances in hardware technology, such as, the increasing number of cores
per Central Processing Unit (CPU), multi-core and many-core systems or the adaption of
Graphics Processing Units (GPUs), the relevance of parallel processing is ubiquitous. Sev-
eral adaptations to constraint-based approaches, such as the PC algorithm, enabling parallel
processing have been proposed (Madsen et al., 2015, 2017; Le et al., 2015a; Schmidt et al.,
2018) and have shown the potential to reduce the algorithm’s runtime. The approaches fo-
cus on parallel execution of the time-consuming adjacency search, phase 2 according to the
template for constraint-based structure learning (Scutari, 2017) and the first required step
of the PC algorithm. Some of these extensions are available in different causal graphical
model learning packages, such as pcalg (Kalisch et al., 2012), bnlearn (Scutari, 2010) or
parallelPC (Le et al., 2018).

Parallel processing requires a mapping of tasks onto execution units, e.g., CPU cores,
to distribute the work. In general, the mapping techniques are classified into two categories
namely static or dynamic. A naive static mapping distributes the same amount of tasks
to each core. It introduces low overhead and is well suited under the assumption that the
runtime of tasks is similar. Yet, load imbalances for non-uniform tasks can reduce speed-up,
as the overall runtime is determined by the longest-running core.

Core 1

Core 2

Core 3

Core 4

Runtime
Parallel Section Parallel Section

T1

T2

T1

T3

T4

T5

T6

T7

T8

T2

T3

T4

T5

T6

T7

T8

Figure 1: The impact of a naive static mapping, for the distribution of 8 non-uniform tasks
Ti, i = 1, . . . , 8, to 4 cores on the total runtime. Note, the total runtime depends
on the longest-running cores Core 1 and 3.

2



Load-Balanced Parallel Causal Structure Learning

This issue is visualized in Figure 1. Two subsequent parallel sections are executed with
4 cores. The naive static mapping distributes the 8 non-uniform tasks Ti, i = 1, . . . , 8,in
each parallel section, in a round robin fashion. This results in idle times for 3 cores while
waiting on Core 1 to finish in the first parallel section and waiting on Core 3 to finish in
the second parallel section. Hence, the overall runtime is the sum of the runtime of Core 1
in the first parallel section and the runtime of Core 3 in the second parallel section.

The parallel implementations of the PC algorithm, e.g., in the R-Package pcalg (Kalisch
et al., 2012), make use of a similar naive static mapping. Given the definition of tasks for
parallel execution, the number of CI tests per task is non-uniform and may lead to load
imbalance and poor utilization of hardware resources in multi-core systems.

To substantiate this shortcoming, Table 1 presents the load imbalance of a naive static
mapping measured on a series of real-world gene expression datasets (Marbach et al., 2012;
Le et al., 2015b; H Maathuis et al., 2010). The ideal amount of CI tests per core is calculated
based on the total number of CI tests divided by the number of available cores, in our
experimental setup 80 and represents the perfect load balancing. The minimum, median
and maximum amount of CI tests per core result from the measured distribution of tasks.
Considering the maximum amount of CI tests per core, an increase of up to 70% compared
to the ideal amount of CI tests per core becomes visible.

Dataset CI Tests Per Core Deviation Ideal
Ideal Minimum Median Maximum to Maximum

NCI-60 50,218 20,531 49,955 74,145 47.65 %
MCC 274,378 41,526 280,310 418,179 52.41 %
BR51 371,203 97,388 368,701 632,104 70.29 %

S.aureus 2,130,386 1,713,241 2,136,229 2,502,899 17.49 %
S.cerevisiae 866,523 747,453 862,822 1,019,208 17.62 %

DREAM5-Insilico 7,384,382 4,423,809 7,376,986 10,704,566 44.96 %

Table 1: The number of CI tests executed per core, using pcalg with OpenMP enabled for
parallel execution, running on 80 cores given a tuning parameter α = 0.01.

To mitigate this load imbalance, we present a parallel implementation that uses a dy-
namic mapping. The implementation utilizes a centralized task queue and a number of
workers, each running on a separate core, which polls tasks from the queue. We experi-
mentally evaluate the implementation comparing the load balance with varying numbers
of workers to the parallel version from the pcalg package. Furthermore, we investigate
if a better load balance with a dynamic mapping leads to a speeds-up, despite additional
overhead during runtime.

The remainder of this paper is organized as follows. Section 2 provides the necessary
background on constraint-based causal structure learning algorithms, in particular, the
PC algorithm. In Section 3, we discuss related work on parallel constraint-based causal
structure learning. Afterward in Section 4, we present our queue-based implementation,
following a dynamic mapping technique. The evaluation of the implementation is provided
in Section 5, before we conclude our work in Section 6.

3



Schmidt, Huegle, Bode and Uflacker

2. Background

In this section, we introduce some necessary terminology in the context of causal struc-
ture learning and background information about the PC algorithm, in particular on the
adjacency search used for the skeleton estimation.

2.1 Graphical Model

Let a graph G be defined as a pair G = (V,E) consisting of a finite set of N vertices
V = (V1, . . . , VN ), each representing the observed variables Vi, i = 1, . . . , N , and a set of
edges E ⊆ V×V. An edge (Vi, Vj) ∈ E is called directed, i.e., Vi → Vj , if (Vi, Vj) ∈ E but
(Vj , Vi) /∈ E. If both (Vi, Vj) ∈ E and (Vj , Vi) ∈ E the edge is called undirected, i.e., Vi−Vj .
In this context, the skeleton C of a graph G is the result of replacing all directed edges by
undirected edges.

Further, if there exists an edge (Vi, Vj) within the skeleton C of G, then the two vertices
Vi and Vj , are called adjacent. The adjacency set adj(G, Vi) of the vertex Vi ∈ V in G are
all vertices Vj ∈ V that are directly connected to Vi by an edge in the skeleton of G.

If all edges E of G are directed and G does not contain any cycle, then the graph G is a
DAG. In the framework of causal inference, a directed edge Vi → Vj of a DAG represents a
direct causal relationship of Vi to Vj (Pearl, 2009; Spirtes et al., 2000). Moreover, a DAG
entails information about the conditional independencies of the vertices based on the d-
separation criterion (Pearl, 2009). Using the d-separation criterion, two variables Vi, Vj ∈ V
are conditionally independent given a set S ⊂ V \{Vi, Vj} if and only if the vertices Vi and
Vj are d-separated by the set S. A distribution P of the variable set V1, . . . , VN that satisfies
the above condition is called faithful. The same CI information can be described by multiple
DAGs that form a Markov equivalent class (Andersson et al., 1997). Two Markov equivalent
DAGs share the same skeleton C and the same v-structures. A v-structure is defined as a
triple (Vi, Vj , Vk) with directed edges Vi → Vj and Vk → Vj for non-adjacent vertices Vi and
Vk. Moreover, the corresponding Markov equivalent class can be described uniquely by a
Complete Partially Directed Acyclic Graph (CPDAG) (Chickering, 2002). A CPDAG is a
partially directed acyclic graph for which all DAGs in the represented Markov equivalence
class share the same directed edges and there exist two DAGs in the Markov equivalence
class, one which contains the directed edge Vi → Vj and the other contains Vj → Vi, for
every undirected edge Vi − Vj . Thus, the goal is to estimate the equivalence class of the
DAG G based on the corresponding probability distribution P . In particular, if P is faithful
with respect to G, we have the case that

there is an edge Vi − Vj in the skeleton of G
⇔ Vi, Vj are dependent given all S ⊂ V \{Vi, Vj},

(1)

see (Spirtes et al., 2000). Therefore, the examination of the information about the con-
ditional independencies of the observed variables V1, . . . , VN enables the estimation of the
skeleton C of the corresponding DAG G. The estimation of the skeleton C by an adjacency
search of the involved variables is a common first step in constraint-based algorithms for
causal structure learning. Through the repeated application of deterministic orientation
rules, the skeleton C is extended to the equivalence class of the DAG G, e.g., see (Colombo
and Maathuis, 2014; Spirtes, 2010; Kalisch and Bühlmann, 2007).

4



Load-Balanced Parallel Causal Structure Learning

2.2 PC Algorithm

A well-known algorithm for constraint-based causal structure learning is the PC algorithm
introduced by Spirtes et al. (2000). It first determines the skeleton C by an adjacency
search and orientates the edges in a subsequent step, by orienting unshielded triples in C
based on the examined separation set S and applying deterministic orientation rules. The
original version of the PC algorithm depends on the order of the variable set V1, . . . , VN .
With the extension by Colombo and Maathuis (2014) an order-independent version, the
PC-stable was introduced and is the basis of our work. In particular, we focus on the
parallel processing of the adjacency search to determine the skeleton C. An outline of the
adjacency search is given in Algorithm 1. Starting with a complete undirected skeleton C the
PC-stable algorithm uses CI tests with an increasing separation set S of adjacent vertices in
order to subsequently remove edges from the skeleton C for which variables are determined
as being independent. Hence, the algorithm only needs to query CI tests of vertices Vi and
Vj given separation sets S with size l = 0 up to the maximum size of the adjacency sets
of the vertices in the underlying DAG G, i.e., up to maxVi∈V |adj(G, Vi) \ {Vj}| (see lines
8-16 in Algorithm 1). This makes the algorithm computationally feasible even for a large
number of variables and enables its application in high-dimensional settings (Kalisch and
Bühlmann, 2007).

Algorithm 1 Adjacency search of PC-stable algorithm (Colombo and Maathuis, 2014)
Input: Vertex set V , tuning parameter α
Output: Estimated skeleton C, separation sets Sepset

1: Start with fully connected skeleton C and l = −1
2: repeat
3: l = l + 1
4: for all Variables Vi in C do
5: Let a(Vi) = adj(C, Vi);
6: end for
7: repeat
8: Select pairs (Vi, Vj) adjacent in C with |a(Vi) \ {Vj}| ≥ l
9: repeat

10: Choose separation set S ⊆ a(Vi) \ {Vj} with |S | = l.
11: if p(Vi, Vj |S) ≤ α then
12: Delete edge Vi − Vj from C;
13: Save S in Sepset;
14: end if
15: until edge Vi − Vj is deleted in C
16: or all S ⊆ a(Vi) \ {Vj} with |S | = l have been chosen
17: until all adjacent vertices Vi, and Vj in C such that
18: |a(Vi) \ {Vj}| ≥ l have been considered
19: until each adjacent pair Vi, Vj in C satisfy |a(Vi) \ {Vj}| ≤ l
20: return C, Sepset

For every level l = 0, . . . ,maxVi∈V |adj(G, Vi)\{Vj}| the adjacency sets a(Vi) = adj(C, Vi)
of variables Vi with respect to the current skeleton C are computed and stored (see lines

5



Schmidt, Huegle, Bode and Uflacker

4-6). Hence, at each level l, the algorithm records the edges that need to be removed
but deletes these edges only when entering the next level l + 1. Note, this allows for an
order-independent implementation of the original PC algorithm as proven by Colombo et al.
(Colombo and Maathuis, 2014), and remains true for parallel versions of the PC algorithm,
e.g., see (Le et al., 2015a).

First, for l = 0 all pairs of vertices Vi, Vj ∈ V are tested for conditional independence
given an empty separation set S = ∅. Given an overall tuning parameter α, an independence
test suitable for the data distribution of the variables is applied and it is examined whether
p(Vi, Vj |S) = p(Vi, Vj |∅) ≤ α, or not. If the two variables Vi, Vj are determined to be
independent, the edge Vi − Vj is deleted from C and the empty set ∅ is stored in Sepset
(see lines 11-13 in Algorithm 1). Once, all pairs of vertices have been tested, the algorithm
proceeds to the next step with l = 1.

When l = 1, the algorithm applies the CI tests for vertices Vi and Vj that are still
adjacent in the skeleton C. Therefore, it is now examined whether p(Vi, Vj |S) ≤ α given
the separation set S ⊂ adj(C, Vi) \ Vj for subsets of size l = 1. Hence, if the variables Vi
and Vj are found to be conditionally independent given the corresponding separation set S,
the edge Vi−Vj is removed, and S is stored in Sepset. The algorithm increments l by one,
once all pairs of adjacent vertices Vi and Vj of the current skeleton C are tested.

This step is repeated until l reaches the maximum size of the adjacency sets of the
vertices in the underlying DAG G. The resulting skeleton C and the separation sets Sepset
provide the basis for the application of deterministic orientation rules in order to extend
C to the corresponding CPDAG, e.g., see Colombo and Maathuis (2014); Spirtes (2010);
Kalisch and Bühlmann (2007).

2.3 Parallel Adjacency Search

A parallel version of the adjacency search, outlined in Algorithm 1, requires the definition
of tasks, and mapping for the distribution of tasks to the executing cores. High parallel
efficiency is achieved by defining tasks that are independent of each other requiring no
synchronization and communication. A mapping for the tasks either occurs statically or
dynamically during runtime. A static mapping incurs little overhead, yet is prone to load
imbalance. It is well suited for uniform tasks with the same amount of work. A dynamic
mapping introduces overhead at runtime but achieves better load balance for non-uniform
tasks with an unknown amount of work.

For the parallel execution of the adjacency search, suitable tasks are defined as the
calculation of the CI information for each pair of vertices Vi, Vj ∈ V within a single level
l (Le et al., 2015a; Scutari, 2017), (see lines 7 - 17 in Algorithm 1). Under the assumption
that the adjacency sets for all variables are calculated prior to the parallel execution (see
lines 4 - 6 in Algorithm 1), the tasks are independent of each other within a single level l.

For level l = 0 this definition of a task implies uniform tasks, under the assumption
that the runtime of the applied test for conditional independence is the same for all pairs
of vertices Vi, Vj ∈ V. For example, this assumption holds true for multivariate normal
distributed data where CI tests may be based on the sample correlation coefficient. In
contrast, this assumption does not necessarily hold for categorical data where χ2 tests are

6



Load-Balanced Parallel Causal Structure Learning

applied. In this context, the calculation time of a single χ2 test varies with the number of
categories and category combinations of the variables Vi, Vj ∈ V.

In subsequent levels l ≥ 1, vertices Vi and Vj adjacent in the skeleton C, in the current
level l, are tested for conditional independence given a separation set S. The separation set
S is drawn from the set of adjacent vertices adj(C, Vi), until either the edge between the
vertices Vi and Vj is deleted or all separation sets have been considered. Hence, the tasks
are no longer uniform, as a varying number of separation sets S may be considered for each
pair of vertices Vi and Vj .

3. Related Work

A critical obstacle for the application of constraint-based causal structure learning in high-
dimensional data settings, in particular for the PC algorithm, is the algorithm’s long run-
time. In the worst case, it is exponential to the number of variables for a given dataset.
Therefore, optimizations have been proposed to reduce the number of CI tests, for example
by ranking the edges (Cano et al., 2008) or replacing the CI tests with Bayesian statisti-
cal tests (J. Abellán and M. Gómez-Olmedo and S. Moral, 2006). Furthermore, parallel
implementations have been introduced to efficiently utilize modern multi-core hardware or
accelerators (Madsen et al., 2015, 2017; Le et al., 2015a; Schmidt et al., 2018). The majority
of parallel implementations focus on the order-independent extension of the PC algorithm,
called PC-stable (Colombo and Maathuis, 2014).

In particular, a parallel version of the PC algorithm is introduced by Le et al. (2015a)
and implemented in the R-package ParallelPC. Using real-world gene expression datasets
they show that their parallel implementation achieves a performance improvement compared
to the non-parallel PC-stable algorithm from the R-package pcalg. The implementation
utilizes the CPU cores to process the CI tests within level l in parallel. It uses the R-package
parallel to statically distribute all edges, keeping the CI tests for a single edge on the same
core. According to the authors, distributing CI tests for the same edge to different cores is
not efficient. Depending on the dataset, the chosen approach may lead to an unbalanced
workload distribution among the processing units, as shown in Figure 1.

Madsen et al. (2017) propose an implementation for a parallel PC algorithm, which
targets a shared memory computer, as well as, a computer cluster with distributed memory.
Their approach utilizes the concept of Balanced Incomplete Block Designs (Madsen et al.,
2014) to distribute the computations of CI tests to cores in a shared memory system and
to assign computations to worker nodes in a distributed system. The work focuses on
multinomial distributions and handles higher-order CI tests through ranking edges according
to a test score with the goal to perform the most promising CI tests first.

With the goal to exploit parallel compute capabilities of a GPU, Schmidt et al. (2018)
ported the skeleton discovery of the PC-Stable to the accelerator. In their implementation,
they rely on the static parallel execution strategy proposed by Le et al. (2015a) and adapt
it to utilize GPU specific hardware characteristics, such as shared memory and the Single
Instruction Multiple Threads (SIMT) execution model. While they show significant speed-
up compared to existing parallel versions, their approach is limited in several ways. First, it
focuses only on CI tests with low order, given that only a small number of higher-order CI
tests are required for the given datasets. Second, they only consider data with a Gaussian

7



Schmidt, Huegle, Bode and Uflacker

distribution and do not provide implementation or parallelization strategies for other data
distributions, such as multinomial or mixed distributions. Further, load imbalance is not
considered for their GPU-accelerated implementation.

The R-package bnlearn implements several constraint-based causal structure learning
algorithms. The implementations follow a general framework for parallel constraint-based
learning presented by Scutari (2017). Similar to other approaches tasks are statically dis-
tributed to the parallel execution units, potentially leading to load imbalance. It is argued
that under the assumption of a sparse Bayesian network the impact of the load imbalance
is small. Further, the author shows that the implementation scales well for up to 8 parallel
execution units.

The R-package pcalg (Kalisch et al., 2012) provides a parallel implementation for the
adjacency search given a multivariate normal distribution. The parallel version is imple-
mented in C++ using openMP (Dagum and Menon, 1998). By using openMP it enables
the use of pragmas in the source code, e.g., #pragma omp parallel for, to define loops
that are executed in parallel. While openMP allows defining different mappings for tasks to
cores, these are not specified in the implementation. Therefore the default static mapping
is used, following a block distribution. In this case, the tasks are grouped into evenly sized
blocks distributing the same amount of tasks to each core.

All of the mentioned parallel approaches follow a naive static mapping accepting the
potential load imbalance. In contrast, we propose a dynamic distribution of tasks to workers,
each running on a separate core, in order to address the load imbalance. Ideally, this
improves the execution time of constraint-based causal structure learning algorithms, in
particular, the PC-Stable.

4. A Load-Balanced Parallel Adjacency Search for the PC Algorithm

In the following, we describe our parallel implementation of the adjacency search utilizing
a centralized task queue to achieve better load balancing. Our implementation follows the
outline of the PC-stable algorithm but splits the algorithm into three separate parts. In
the first part, all CI tests for level l = 0 are conducted. Given that no separation set S is
required in level l = 0, the tasks may be uniform. In that case, dynamic mapping yields
no benefit. Therefore, in the case of multivariate normal distributed data, we follow the
existing parallel implementation of the pcalg and distribute the tasks in level l = 0 in the
same static manner using OpenMP. For the remaining levels, l ≥ 1 we implement one part
executed by the producer outlined in Algorithm 2 and a second part, which is executed by
multiple worker instances sketched in Algorithm 3.

The producer is responsible for the centralized queue utilized to implement the dynamic
mapping of tasks to cores. In our implementation, we utilize a lock-free, high-throughput
queue 1 in order to accommodate a large number of tasks, given many vertices or a dense
skeleton C. At first, the producer fills the queue with tasks, meaning all pairs of vertices
(Vi, Vj), which have to be tested for conditional independence in the current level l, (see line
8 in Algorithm 2). Once the queue is filled, the producer creates a working copy Ccopy of
the skeleton C. This ensures that removing any edges in the skeleton by one worker has no
impact on any subsequent tasks within the current level l. Workers, processing the tasks in

1. https://github.com/cameron314/concurrentqueue

8



Load-Balanced Parallel Causal Structure Learning

Algorithm 2 Producer
Input: Vertex set V , number of worker NWorker, tuning parameter α
Output: Estimated skeleton C, separation sets Sepset

1: Start with fully connected skeleton C and l = 0
2: repeat
3: l = l + 1
4: for all Variables Vi in C do
5: Let a(Vi) = adj(C, Vi);
6: end for
7: repeat
8: Fill Queue with pairs (Vi, Vj) adjacent in C with |a(Vi) \ {Vj}| ≥ l
9: until all adjacent Vi, and Vj in C with |a(Vi) \ {Vj}| ≥ l have been considered

10: Create working copy Ccopy of skeleton C;
11: Start NWorker Worker with (V, C, Ccopy,Sepset, l, α);
12: Wait until Queue is empty;
13: C = Ccopy;
14: until each adjacent pair Vi, Vj in C satisfy |a(Vi) \ {Vj}| ≤ l
15: return C, Sepset

the queue, are started according to the number of workers NWorker provided. Each worker
is mapped onto a separate core. After all the tasks in the queue have been processed, the
results are merged. Under the assumption of a shared memory system and the independence
of tasks, all workers have been working on the same shared working copy Ccopy. Therefore,
the merge is a pointer redirection from Ccopy to C. This ensures that the correct skeleton is
used in the subsequent level. The producer continues with the next level l, until a level l
is reached for which all pairs of vertices (Vi, Vj) satisfy |a(Vi) \ {Vj}| ≤ l. Analogous to the
PC-stable, the resulting skeleton C is used as the basis for the application of deterministic
orientation rules to extend C to the corresponding CPDAG.

Algorithm 3 Worker
Input: Vertex set V , current version of C, working copy of Ccopy, separation sets Sepset,
level l, tuning parameter α
1: repeat
2: Take task with pair (Vi, Vj) from Queue;
3: Let a(Vi) = adj(C, Vi);
4: repeat
5: Choose separation set S ⊆ a(Vi) \ {Vj} with |S | = l.
6: if p(Vi, Vj |S) ≤ α then
7: Delete edge Vi − Vj from Ccopy;
8: Set Sepset(i, j) = Sepset(j, i) = S;
9: end if

10: until edge Vi − Vj is deleted in Ccopy or all S ⊆ a(Vi) \ {Vj} with |S | = l have been
chosen

11: until Queue is empty

9



Schmidt, Huegle, Bode and Uflacker

The workers are responsible to process the tasks available in the centralized queue. In
order to achieve load balancing, each worker itself is responsible to poll a new task, once
it has finished its current task. The worker polls new tasks from the central queue until
there are no more tasks available. While processing a task, the worker follows the same
steps as described in Subsection 2.2 for the PC-stable, with one exception. In the case that
the pair of vertices (Vi, Vj) is found to be independent, the worker deletes the edge in the
working copy Ccopy of the skeleton. Our C++ implementation of the worker utilizes the
standard library function std::next_permutation to choose the separation set Sepset for
level l ≥ 2. At the core, it uses the same CI test implementation for a multivariate normal
distribution that is used in the Rcpp (Eddelbuettel and Balamuta, 2017) extension of the
R-Package pcalg.

5. Evaluation

Within the following experiments, we compare the use of a naive static mapping to the
use of a dynamic mapping when executing the adjacency search of the PC-stable algo-
rithm (Colombo and Maathuis, 2014) in parallel. In particular, we measure the difference
in the work that is done per core for each level l, varying the number of cores. We assume
that a dynamic mapping is better suited for the parallel tasks of the PC-algorithm because
it improves the load balance. Hence, the maximum number of tasks per core should be
closer to the ideal distribution, i.e., the equal distribution of CI tests. Yet, the dynamic
mapping introduces overhead at runtime. To ensure that the overhead does not outweigh
the performance gain, we also measure and compare the runtime of both approaches.

Experimental Setup The experiments are executed on an enterprise-grade server with
2 Intel R© Xeon R© Gold 6148 CPU with 20 cores each, leading to 80 cores including hyper-
threading. The server is equipped with 1.5 TB of RAM, allowing to keep all data in memory
during the execution of the experiments. The operating system is an Ubuntu 18.04 with
GCC version 6.5 supporting OpenMP version 4.5 and R version 3.4.4. In order to focus
the experiments on a comparison of a static mapping to a dynamic mapping, we try to
eliminate any influencing factors, e.g., different programming languages, i.e., if comparing
to ParallelPC (Le et al., 2015a) or Tetrad (Scheines et al., 1998) or different hardware, i.e.,
if comparing to a GPU-accelerated implementation (Schmidt et al., 2018). Hence, in the
experiments, we use the implementation of the pcalg 2 version 2.6, built with OpenMP
enabled representing a naive static mapping and our implementation of a dynamic map-
ping based on a centralized task queue 3 described in Section 4. Both implementations use
the same implementation of the CI test for Gaussian data. Other data distributions are
supported neither in the C++ extension of the pcalg nor in our implementation. For mea-
surements of the runtime, we utilize the high_resolution_clock from the C++ standard
library chrono. In particular, we measure the runtime for each level l separately. When
reporting numbers regarding the balance of work per core, we added counters per worker to
the parallel sections in both implementations. During all experiments, there is no additional

2. https://github.com/cran/pcalg/
3. https://github.com/philipp-bode/lock-free-pc/tree/measurements

10



Load-Balanced Parallel Causal Structure Learning

Dataset |V | Obser- |E | Number of CI tests per level
vations l = 1 l = 2 l >= 3

NCI-60 1,190 47 530 2,760,231 56,347 286
MCC 1,380 88 643 11,155,607 3,560,149 2,212
BR51 1,592 50 478 22,495,684 246,919 491

S.aureus 2,810 160 2,058 113,106,125 22,843,938 13,386
S.cerevisiae 5,361 63 2,086 54,598,391 355,867 117

DREAM5-Insilico 1,643 805 5,929 105,082,379 336,939,542 129,125,057

Table 2: Characteristics of gene expression datasets used in the experiments. Note |E | and
the number of CI tests per level are determined with a tuning parameter α = 0.01.

load on the system. If not stated differently we report the median value of 10 measured
executions.

Datasets Our experimental evaluation is based on gene expression datasets (Marbach
et al., 2012; Le et al., 2015b; H Maathuis et al., 2010), which are the foundation in the
evaluation of the Parallel-PC algorithm by Le et al. (2015a).

The characteristics of the high-dimensional datasets are described in Table 2. The
number of variables in the datasets ranges from 1,190 to 5,361. Note that the number of
observations for the datasets is small. Given its impact on the acceptance of CI tests and our
chosen value for the tuning parameter α = 0.01 (Kalisch and Bühlmann, 2007), no higher
level l with large separation sets S is reached. Hence, for all datasets, with the exception of
the DREAM5-Insilico dataset, most CI tests are conducted in level l = 1 and the maximum
level is between l = 4 and l = 5. For the DREAM5-Insilico dataset, the majority of CI tests
are conducted in level l = 2 followed by level l = 3 and l = 1. The maximum level that is
reached during the adjacency search is level l = 13. The number of CI tests for level l = 0
are not reported. For level l = 0 both implementations use the same static mapping with
a naive block-based distribution, which is beneficial for the uniform tasks in the Gaussian
case. Therefore level l = 0 is also not considered in any of the following measurements.

5.1 Experiments on Load Balance

With the following experiments, we examine the load balance of our implemented parallel
adjacency search based on a centralized queue. As mentioned in the Introduction 1, the
overall runtime of the algorithm is the result of the longest-running core within each level
l. Therefore, we focus on the cores that conducted the maximum number of CI tests within
each level l. We calculate the sum of these maxima and report the percentage compared
to an ideal distribution of CI tests. The ideal distribution is calculated as the quotient
of the total number of CI tests divided by the number of cores. In Figure 2, we compare
these percentages for the adjacency search of the centralized queue implementation with
the ones for the adjacency search of the pcalg package with a naive static task distribution
on several gene expression datasets. During the experiment, all cores available on our test
system were utilized. Note, for the naive static distribution no differences can be measured
as the same mapping of tasks to cores occurs in each execution.

11



Schmidt, Huegle, Bode and Uflacker

BR51 MCC NCI-60 Saureus Scerevisiae DREAM5-Insilico
Gene expression dataset

100

110

120

130

140

150

160

170

180

Pe
rc

en
ta

ge
 o

f m
ax

im
um

 m
ea

su
re

d 
CI

 te
st

s p
er

 c
or

e
co

m
pa

re
d 

wi
th

 id
ea

l n
um

be
r o

f C
I t

es
ts

 p
er

 c
or

e

Maximum number of CI tests in adjacency search on 80 cores
with static and dynamic mapping of tasks for gene expression datasets

Method
pcalg OpenMP static
central queue dynamic

Figure 2: The load balance for different gene expression datasets, on 80 cores, comparing
dynamic and static task mapping strategies. Note, values closer to 100 are better.

The results show that the centralized queue implementation has a lower maximum num-
ber of CI tests in the longest-running cores across all level l in the adjacency search. This is
due to an improved load balance, given the dynamic task mapping. With the exception of
the NCI-60 dataset, the maximum number of CI tests is less than 13% off the ideal value,
compared with up to 73% for the static task distribution, e.g., for the dataset BR51. For
NCI-60 we account the smaller improvement for the centralized queue implementation to
the fact that fewer CI tests are conducted within each level and that the tasks are more
balanced.

In the following, we examine the maximum number of CI tests in the longest-running
cores over all level l with a varying number of cores. Thereby we aim to evaluate if the
centralized queue also works in other settings, i.e., with fewer cores. We start with 2 cores
and increase the number of cores as multiples of 2, including numbers that are specific
to the hardware setup, i.e., the number of cores per socket, e.g., 20, 40, 80. We select
two datasets, BR51, and DREAM5-Insilico based on characteristics presented in Table 2.
The dataset BR51 has a small number of conducted CI tests, whereas DREAM5-Insilico

has the largest number of conducted CI tests and reaches the highest level l compared to
the other gene expression datasets. The percentages of the maximum number of CI tests
compared to an ideal distribution per core are shown in Figure 3 for BR51 on the top and
DREAM5-Insilico on the bottom.

For the dataset BR51 the maximum number of CI tests in the longest-running cores
is improved using the centralized queue once tasks are distributed to 4 or more cores.
Using 16 or more cores the maximum number of CI tests in the longest-running cores
increases strongly. Hence, the imbalance in the load increases as well. For the centralized
queue, the value remains steady when the number of cores is increased. Similar behavior of

12



Load-Balanced Parallel Causal Structure Learning

2 4 8 16 20 32 40 80
Number of cores

100

110

120

130

140

150

160

170

180

Pe
rc

en
ta

ge
 o

f m
ax

im
um

 m
ea

su
re

d 
CI

 te
st

s p
er

 c
or

e
co

m
pa

re
d 

wi
th

 id
ea

l n
um

be
r o

f C
I t

es
ts

 p
er

 c
or

e

Maximum number of CI tests in adjacency search for dataset BR51
varying the number of cores with static and dynamic mapping of tasks

Method
pcalg OpenMP static
central queue dynamic

2 4 8 16 20 32 40 80
Number of cores

100

110

120

130

140

150

160

170

180

Pe
rc

en
ta

ge
 o

f m
ax

im
um

 m
ea

su
re

d 
CI

 te
st

s p
er

 c
or

e
co

m
pa

re
d 

wi
th

 id
ea

l n
um

be
r o

f C
I t

es
ts

 p
er

 c
or

e

Maximum number of CI tests in adjacency search for dataset DREAM5-Insilico
varying the number of cores with static and dynamic mapping of tasks

Method
pcalg OpenMP static
central queue dynamic

Figure 3: The load balance for an increasing number of cores, comparing dynamic and static
task mapping strategies on dataset BR51 (top) and DREAM5-Insilico (bottom).

the centralized queue is visible for dataset DREAM5-Insilico. Yet, the reduced maximum
number of CI tests in the longest-running cores for the centralized queue compared to the
naive static mapping is already visible for 2 cores. Further, the imbalance for the naive
static mapping is smaller, compared to the dataset BR51. In general, our centralized queue
approach achieves a better load balancing and thereby reduces the number of CI tests in
the longest-running cores of the adjacency search in multi-core systems, in particular for a
larger number of cores. A setup, in which a naive static task distribution as employed by
default in the pcalg package suffers from load imbalance.

13



Schmidt, Huegle, Bode and Uflacker

5.2 Experiments on Runtime

In order to verify that a better load balance improves the overall performance of the adja-
cency search for high-dimensional datasets, we investigate the runtimes for the two mapping
strategies. We base our measurements on the same gene expression datasets as before.

0 10 20 30 40 50 60 70 80
Number of Cores

10 1

100

No
rm

al
ize

d 
Ru

nt
im

e

Runtimes of adjacency search
for NCI-60 median of 10 runs

pcalg OpenMP static
central queue dynamic

0 10 20 30 40 50 60 70 80
Number of Cores

10 1

100

No
rm

al
ize

d 
Ru

nt
im

e

Runtimes of adjacency search
for MCC median of 10 runs

pcalg OpenMP static
central queue dynamic

0 10 20 30 40 50 60 70 80
Number of Cores

10 1

100

No
rm

al
ize

d 
Ru

nt
im

e

Runtimes of adjacency search
for BR51 median of 10 runs

pcalg OpenMP static
central queue dynamic

0 10 20 30 40 50 60 70 80
Number of Cores

10 1

100

No
rm

al
ize

d 
Ru

nt
im

e

Runtimes of adjacency search
for Saureus median of 10 runs

pcalg OpenMP static
central queue dynamic

0 10 20 30 40 50 60 70 80
Number of Cores

10 1

100

No
rm

al
ize

d 
Ru

nt
im

e

Runtimes of adjacency search
for Scerevisiae median of 10 runs

pcalg OpenMP static
central queue dynamic

0 10 20 30 40 50 60 70 80
Number of Cores

10 1

100

No
rm

al
ize

d 
Ru

nt
im

e

Runtimes of adjacency search
for DREAM5-Insilico median of 10 runs

pcalg OpenMP static
central queue dynamic

Figure 4: Normalized runtimes for the adjacency search on gene expression datasets with a
varying number of cores, comparing pcalg with OpenMP static to the centralized
queue implementation.

14



Load-Balanced Parallel Causal Structure Learning

In Figure 4, we report the normalized runtimes with a varying number of cores. Note,
the leftmost dots in each subfigure correspond to single-threaded execution on one core.
We observe an improved normalized runtime for the centralized queue compared to the
OpenMP static approach in all measured combinations of the number of cores and high-
dimensional datasets. The performance gap between the two strategies increases with an
increasing number of cores for each dataset and is the largest for settings with at least
40 cores. We observed a maximum speed up, by factors between 1.25 for 40 cores on
dataset DREAM5-Insilico to 2.45 for 80 cores on dataset NCI-60. When using a few cores,
i.e., 2 or 4, the difference in performance is marginal. Further, the performance difference
varies across the dataset, which we account for the underlying graphical structure, which
is unique for each dataset. We investigated factors, such as the total number of CI tests
conducted or the number of CI tests per level l, and did not observe a significant influence
on the performance difference for the high-dimensional datasets. Moreover, we observe
that compared to a non-parallel version we achieve speed up, by factors up to 39 with the
centralized queue approach, compared to speed up, by factors up to 27 for the OpenMP
static approach. While we are able to improve the performance, room for improvement
is still possible as the parallel efficiency reaches only up to 50% when scaling to 80 cores.
We observe that the measured runtimes follow the law of diminishing returns stating that
adding more workers to the parallel section leads to decreasing improvements with each
new worker. This result matches previous experimental observations from Scutari (2017).

6. Discussion and Conclusion

In this paper, we proposed a parallel implementation of the adjacency search used for
the derivation of the skeleton of graph G, a substantial part in constraint-based causal
structure learning algorithms, such as the PC-algorithm. The implementation dynamically
distributes tasks to the executing cores in a multi-core system. Thereby, we address the
load imbalance present in existing parallel implementations of the adjacency search, which
employ a naive static task distribution that does not account for non-uniform tasks. We
experimentally evaluate our approach and compare it to an existing solution. Hereby,
we focus on high-dimensional datasets, for which the dynamic distribution is thought to
improve the performance (Scutari, 2017), and on the scalability with the number of cores
available for parallel execution. We observed that the dynamic distribution reduces the
longest-running cores across all levels l within the adjacency search, hence improving the
load balance. This results in a maximum speed-up of up to a factor 2.45 on the evaluated
real-world gene expression datasets compared to a naive static task distribution. When the
tasks are distributed to a small number of cores, the load imbalance is not a strong issue for
the naive static task distribution and speed-up is marginal. Comparing to a non-parallel
version we achieve a speed-up, by factors up to 39, compared to factors up to 27 for a naive
static distribution.

In our work, we have considered CI tests on Gaussian data only. For future work, an
extension to other distributions, i.e., multinomial distributions, or nonparametric tests could
be of interest. Depending on the implementation of the CI test, e.g., using a contingency
table, all observations related to the vertices Vi and Vj may have to be processed. Therefore,
we assume that the amount of work per task increases, leading to higher load imbalance,

15



Schmidt, Huegle, Bode and Uflacker

making a dynamic distribution more relevant. Yet, in that setting data locality has to be
considered, as more data is accessed while processing a single CI test, exceeding hardware
cache sizes of caches shared by multiple cores.

Summarizing, we conclude that the dynamic distribution of tasks is well suited for
parallel execution of the adjacency search on large multi-core, or even many-core systems,
in high-dimensional datasets given a multivariate Gaussian distribution.

Acknowledgments

The authors would like to thank Hendrik Raetz, Frederic Schneider and Nils Thamm for
helping with the implementation of the parallel adjacency search utilizing a centralized
queue.

16



Load-Balanced Parallel Causal Structure Learning

References

Steen A. Andersson, David Madigan, and Michael D. Perlman. A Characterization of
Markov Equivalence Classes for Acyclic Digraphs. The Annals of Statistics, 25(2):505–
541, 1997. ISSN 00905364. URL http://www.jstor.org/stable/2242556.

A. Cano, M. Gómez-Olmedo, and S. Moral. A Score Based Ranking of the Edges for the
PC Algorithm. In Manfred Jaeger and Thomas D. Nielsen, editors, Proceedings of the
Fourth European Workshop on Probabilistic Graphical Models, pages 41–48, 2008.

David Maxwell Chickering. Learning Equivalence Classes of Bayesian-network Struc-
tures. J. Mach. Learn. Res., 2:445–498, March 2002. ISSN 1532-4435. doi: 10.1162/
153244302760200696. URL https://doi.org/10.1162/153244302760200696.

David Maxwell Chickering, David Heckerman, and Christopher Meek. Large-Sample Learn-
ing of Bayesian Networks is NP-Hard. J. Mach. Learn. Res., 5:1287–1330, December 2004.
ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1005332.1044703.

Diego Colombo and Marloes H. Maathuis. Order-independent Constraint-based Causal
Structure Learning. J. Mach. Learn. Res., 15(1):3741–3782, January 2014. ISSN 1532-
4435. URL http://dl.acm.org/citation.cfm?id=2627435.2750365.

Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-Standard API for Shared-
Memory Programming. IEEE Comput. Sci. Eng., 5(1):46–55, January 1998. ISSN 1070-
9924. doi: 10.1109/99.660313. URL https://doi.org/10.1109/99.660313.

Dirk Eddelbuettel and James Joseph Balamuta. Extending R with C++: A Brief Intro-
duction to Rcpp. PeerJ Preprints, 5:e3188v1, aug 2017. ISSN 2167-9843. doi: 10.7287/
peerj.preprints.3188v1. URL https://doi.org/10.7287/peerj.preprints.3188v1.

Marloes H Maathuis, Diego Colombo, Markus Kalisch, and Peter Bühlmann. Predicting
causal effects in large-scale systems from observational data. Nature Methods, 7:247–8,
04 2010. doi: http://dx.doi.org/10.1038/nmeth0410-247.

David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian Networks:
The Combination of Knowledge and Statistical Data. Machine Learning, 20(3):197–243,
Sep 1995. ISSN 1573-0565. doi: 10.1023/A:1022623210503. URL https://doi.org/10.

1023/A:1022623210503.

J. Abellán and M. Gómez-Olmedo and S. Moral. Some Variations on the PC Algorithm. In
Proceedings of the Third European Workshop on Probabilistic Graphical Models (PGM’
06), pages 1–8, 2006.

Markus Kalisch and Peter Bühlmann. Estimating High-Dimensional Directed Acyclic
Graphs with the PC-Algorithm. J. Mach. Learn. Res., 8:613–636, May 2007. ISSN
1532-4435. URL http://dl.acm.org/citation.cfm?id=1248659.1248681.

Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H. Maathuis, and Peter
Bühlmann. Causal Inference Using Graphical Models with the R package pcalg.

17

http://www.jstor.org/stable/2242556
https://doi.org/10.1162/153244302760200696
http://dl.acm.org/citation.cfm?id=1005332.1044703
http://dl.acm.org/citation.cfm?id=2627435.2750365
https://doi.org/10.1109/99.660313
https://doi.org/10.7287/peerj.preprints.3188v1
https://doi.org/10.1023/A:1022623210503
https://doi.org/10.1023/A:1022623210503
http://dl.acm.org/citation.cfm?id=1248659.1248681


Schmidt, Huegle, Bode and Uflacker

Journal of Statistical Software, Articles, 47(11):1–26, 2012. ISSN 1548-7660. doi:
10.18637/jss.v047.i11. URL https://www.jstatsoft.org/v047/i11.

Thuc Le, Tao Hoang, Jiuyong Li, Lin Liu, Huawen Liu, and Shu Hu. A fast PC algorithm
for high dimensional causal discovery with multi-core PCs. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 02 2015a.

Thuc Duy Le, Lin Liu, Junpeng Zhang, Bing Liu, and Jiuyong Li. From miRNA regulation
to miRNA-TF co-regulation: computational approaches and challenges. Briefings in
Bioinformatics, 16(3):475–496, 2015b. doi: 10.1093/bib/bbu023. URL +http://dx.doi.

org/10.1093/bib/bbu023.

Thuc Duy Le, Taosheng Xu, Lin Liu, Hu Shu, Tao Hoang, and Jiuyong Li. ParallelPC:
An R Package for Efficient Causal Exploration in Genomic Data. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pages 207–218, Cham, 2018. Springer
International Publishing. ISBN 978-3-030-04503-6.

Anders L. Madsen, Frank Jensen, Antonio Salmerón, Martin Karlsen, Helge Langseth,
and Thomas D. Nielsen. A New Method for Vertical Parallelisation of TAN Learning
Based on Balanced Incomplete Block Designs. In Linda C. van der Gaag and Ad J.
Feelders, editors, Probabilistic Graphical Models, pages 302–317, Cham, 2014. Springer
International Publishing. ISBN 978-3-319-11433-0.

Anders L. Madsen, Frank Jensen, Antonio Salmerón, Helge Langseth, and Thomas D.
Nielsen. Parallelisation of the PC Algorithm. In Proceedings of the 16th Conference of
the Spanish Association for Artificial Intelligence on Advances in Artificial Intelligence -
Volume 9422, pages 14–24, New York, NY, USA, 2015. Springer-Verlag New York, Inc.
ISBN 978-3-319-24597-3. doi: 10.1007/978-3-319-24598-0 2. URL http://dx.doi.org/

10.1007/978-3-319-24598-0_2.

Anders L. Madsen, Frank Jensen, Antonio Salmerón, Helge Langseth, and Thomas D.
Nielsen. A Parallel Algorithm for Bayesian Network Structure Learning from Large Data
Sets. Know.-Based Syst., 117(C):46–55, February 2017. ISSN 0950-7051. doi: 10.1016/j.
knosys.2016.07.031. URL https://doi.org/10.1016/j.knosys.2016.07.031.

Daniel Marbach, James C. Costello, Robert Küffner, Nicole M. Vega, Robert J. Prill, Diogo
M. Camacho, Kyle R. Allison, Manolis Kellis, James J. Collins, Andrej Aderhold, Gustavo
Stolovitzky, and et al. Wisdom of crowds for robust gene network inference. Nature
Methods, 9(8):796–804, 8 2012. ISSN 1548-7091.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press,
New York, NY, USA, 2nd edition, 2009. ISBN 052189560X, 9780521895606.

Richard Scheines, Peter Spirtes, Clark Glymour, Christopher Meek, and Thomas Richard-
son. The TETRAD Project: Constraint Based Aids to Causal Model Specification. Mul-
tivariate Behavioral Research, 33(1):65–117, 1998. doi: 10.1207/s15327906mbr3301 3.

Christopher Schmidt, Johannes Huegle, and Matthias Uflacker. Order-independent
Constraint-based Causal Structure Learning for Gaussian Distribution Models Using

18

https://www.jstatsoft.org/v047/i11
+ http://dx.doi.org/10.1093/bib/bbu023
+ http://dx.doi.org/10.1093/bib/bbu023
http://dx.doi.org/10.1007/978-3-319-24598-0_2
http://dx.doi.org/10.1007/978-3-319-24598-0_2
https://doi.org/10.1016/j.knosys.2016.07.031


Load-Balanced Parallel Causal Structure Learning

GPUs. In Proceedings of the 30th International Conference on Scientific and Sta-
tistical Database Management, SSDBM ’18, pages 19:1–19:10, New York, NY, USA,
2018. ACM. ISBN 978-1-4503-6505-5. doi: 10.1145/3221269.3221292. URL http:

//doi.acm.org/10.1145/3221269.3221292.

Marco Scutari. Learning Bayesian Networks with the bnlearn R Package. Journal of Sta-
tistical Software, Articles, 35(3):1–22, 2010. ISSN 1548-7660. doi: 10.18637/jss.v035.i03.
URL https://www.jstatsoft.org/v035/i03.

Marco Scutari. Bayesian Network Constraint-Based Structure Learning Algorithms: Par-
allel and Optimized Implementations in the bnlearn R Package. Journal of Statistical
Software, Articles, 77(2):1–20, 2017. ISSN 1548-7660. doi: 10.18637/jss.v077.i02. URL
https://www.jstatsoft.org/v077/i02.

Peter Spirtes. Introduction to Causal Inference. J. Mach. Learn. Res., 11:1643–1662, August
2010. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1756006.1859905.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, Prediction, and Search.
MIT press, 2000.

19

http://doi.acm.org/10.1145/3221269.3221292
http://doi.acm.org/10.1145/3221269.3221292
https://www.jstatsoft.org/v035/i03
https://www.jstatsoft.org/v077/i02
http://dl.acm.org/citation.cfm?id=1756006.1859905

	Introduction
	Background
	Graphical Model
	PC Algorithm
	Parallel Adjacency Search

	Related Work
	A Load-Balanced Parallel Adjacency Search for the PC Algorithm
	Evaluation
	Experiments on Load Balance
	Experiments on Runtime

	Discussion and Conclusion

