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Abstract

We consider the framework of competitive prediction when one provides guarantees com-
pared to other predictive models that are called experts. We propose the algorithm that
combines point predictions of an infinite pool of linear experts and outputs probability
forecasts in the form of cumulative distribution functions. We evaluate the quality of prob-
abilistic prediction by the continuous ranked probability score (CRPS), which is a widely
used proper scoring rule. We provide a strategy that allows us to ‘track the best expert’ and
derive the theoretical bound on the discounted loss of the strategy. Experimental results
on synthetic data and solar power data show that the theoretical bounds of our algorithm
are not violated. Also the algorithm performs close to and sometimes outperforms the
retrospectively best quantile regression.

Keywords: prediction with expert advice, online learning, competitive prediction, Aggre-
gating Algorithm, continuous ranked probability score (CRPS), probabilistic forecasting

1. Introduction

Probabilistic forecasts serve to quantify an uncertain future and provide a way to make
optimal decisions. While an initial focus has been on deterministic forecasting, probabilis-
tic forecasting found its niche in several fields including sports, finance, meteorology and
energy. An overview of the state of the art methods and scoring rules in probabilistic fore-
casting can be found in Gneiting and Katzfuss (2014). One of the frequently used proper
scoring rules that evaluates the quality of probabilistic predictions is the continuous ranked
probability score (CRPS). The CRPS provides a direct way of comparing point forecasts
and probabilistic forecasts. Weighted versions of the CRPS were introduced in Matheson
and Winkler (1976).

In this paper we work in the framework of competitive prediction and look for perfor-
mance guarantees relative to other predictive models called experts. We propose an algo-

c© 2019 R. Dzhamtyrova & Y. Kalnishkan.



Competitive Online Regression under Continuous Ranked Probability Score

rithm that combines point forecasts of an infinite pool of linear regressions and provides
probabilistic predictions in the form of cumulative distribution functions. The proposed
strategy allows us to ‘track the best expert’, and the theoretical bound on the discounted
loss of the strategy is derived.

Our approach uses the Aggregating Algorithm (AA), which was first introduced in
Vovk (1990). In case of mixable loss functions and a finitely many experts, AA gives a
guarantee ensuring that the learner’s loss is as small as best expert’s loss plus a constant.
An interesting application of the method of prediction with expert advice for the Brier loss
function in forecasting of football outcomes can be found in Vovk and Zhdanov (2009); it
is shown that the proposed strategy that follows AA is as good as any bookmaker.

In a recent paper V’yugin and Trunov (2019) it is shown that the CRPS is a mixable loss
function, and the theoretical bound for the case of a finite number of experts is derived. In
this paper we consider the same problem setting, but we choose a pool of linear regressions
to be our experts. We consider the case of discounted loss along the lines of Chernov and
Zhdanov (2010). Discounting allows us to give less importance to older losses, which is
an important property for practical applications. In Freund and Hsu (2008) the authors
noticed that in the context of prediction with expert advice, the discounted loss provides
an alternative to ‘tracking the best expert’ framework of Herbster and Warmuth (1998).
Indeed, if the best expert changes after some steps, an algorithm that competes under
discounted loss will not take into account small losses of the old best expert because they
are strongly discounted, and will switch to track the new best expert.

Our prediction strategy mixes an infinite pool of linear experts in a way which is similar
to Aggregating Algorithm for Regression which is proposed in Vovk (2001) for the case of
linear experts under the square loss. The generalisation for the case of discounted square loss
for linear regression was proposed in Chernov and Zhdanov (2010). The case of generalised
linear regression experts under log-loss was introduced in Kakade and Ng (2005), and the
case of the square loss was considered in Zhdanov and Vovk (2010).

We perform experiments on a synthetic data set and apply our algorithm for the predic-
tion of solar power. We compare the performance of our algorithm with linear regression and
quantile regression. Quantile regression is one of the methods which models a quantile of
the response variable conditional on the explanatory variables (Koenker (2005)). Quantile
regression has been extensively used to produce renewable energy power quantile forecasts
(Koenker and Bassett (1978)) and in probabilistic energy forecasting competitions (Nagya
et al. (2016)). Our prediction algorithm uses Markov chain Monte Carlo (MCMC) method
in a way which is similar to the algorithm introduced in Zhdanov and Vovk (2010), where
AAR was applied to the generalised linear regression class of functions for making a predic-
tion in a fixed interval. With the experiments provided we show that by tuning parameters
online, our algorithm moves fast to the area of high values of the probability function and
gives a good approximation of the prediction, and theoretical bounds are not violated. In
the proposed experiments our algorithm requires some time for training, however by the
end of the period the performance of our algorithm becomes close to the performance of
the retrospectively best quantile regression.
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2. Framework

In the framework of prediction with expert advice we need to specify a game G which
contains three components: a space of outcomes Ω, a decision space Γ, and a loss function
λ : Ω× Γ→ R.

Suppose that F is the distribution function F = FX of some random variable X. Then

(a) F : R→ [0, 1], F is non-decreasing (that is x ≤ y ⇒ F (x) ≤ F (y)),

(b) limx→+∞ F (x) = 1, limx→−∞ F (x) = 0,

(c) F is right-continuous.

(See Section 3.10 in Williams (1991)).
Let us restrict these functions to a finite interval [A,B], |A|, |B| < ∞, that is consider

the class of functions F : [A,B] → [0, 1] satisfying conditions (a) and (c). It is easy to
see that these functions can be extended to the whole R so that they satisfy condition (b).
We take this class of functions to be our decision space Γ and take the space of outcomes
Ω = [A,B] ⊂ R. We measure loss by the CRPS loss function:

λ(y, F ) =

∫ B

A
(F (u)− 1u≥y)

2 du. (1)

CRPS loss function generalizes the absolute error; it reduces to the absolute error if F is a
point forecast. Indeed, if Fz(u) = 1u≥z, then λ(y, Fz) = |y − z|.

Learner and experts work according to the following protocol:

Protocol 1

L0 := 0
Lθ0 := 0
for t = 1, 2, . . .

Accountant announces αt−1 ∈ (0, 1]
Nature announces xt ∈ X ⊆ Rn
Experts output ξt(θ), θ ∈ Θ
Learner outputs γt ∈ Γ ⊆ Rd
Nature announces yt ∈ Ω ⊆ Rd
Lθt := αt−1L

θ
t−1 + λ(yt, ξt(θ)), θ ∈ Θ

Lt := αt−1Lt−1 + λ(yt, γt)
end for

The learner in the game of prediction plays against experts θ from some pool Θ, and also
accountant and nature. The aim of the learner is to keep his total loss Lt small as compared
to the total losses Lθt of all experts θ ∈ Θ.

We want to find a strategy which is capable of competing with all prediction strategies
θ ∈ Rn that at step t outputs:

ξt(θ) = F θt (u) = 1u≥x′tθ, (2)
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and the loss of the strategy θ is:

λ(y, ξt(θ)) = |y − x′tθ|. (3)

Even though the outcome space is an interval, we do not restrict the space of prediction
strategies. Note that in the case of the absolute loss the capabilities of prediction with
expert advice are restricted. The absolute loss is not mixable and the regret term should
have the order of

√
T (see Kalnishkan and Vyugin (2008)).

In the standard framework of online learning the performance of learners is evaluated by
means of cumulative loss. In this paper, we consider the generalisation where we discount
the previous losses with the discount factor which is announced at each time step.

The cumulative losses of the learner are discounted with a factor αt ∈ (0, 1] at each step.
If LT−1 is the discounted cumulative loss of the learner at step T − 1, then the discounted
cumulative loss of the learner at step T is defined by

LT := αT−1LT−1 + λT (yT , γT ) =

T−1∑
t=1

T−1∏
j=t

αj

λt(yt, γt) + λT (yT , γT ). (4)

If LθT−1 is the discounted cumulative loss of the prediction strategy θ at the step T − 1,
then the discounted cumulative loss of the prediction strategy θ at the step T is defined by

LθT := αT−1L
θ
T−1 + λT (yT , ξT (θ)) =

T−1∑
t=1

T−1∏
j=t

αj

λt(yt, ξt(θ)) + λT (yT , ξT (θ)). (5)

In the beginning the losses L0, Lθ0 are initialized to zero. If all the discount factors are the
same, i.e. α1 = · · · = αT = α, then we have a case of exponential smoothing. At each step
the dependence on the loss at the previous steps exponentially decreases: the initial loss is
discounted by αT−1 at the step T .

Note that if αt = 1 at each time step t then we have the standard framework of undis-
counted loss.

3. Theoretical Bounds

Theorem 1 Let a > 0, y ∈ Ω = [A,B], γ ∈ Γ. There exists a prediction strategy for
Learner such that for every positive integer T , every sequence of outcomes of length T ,
every sequence αt ∈ (0, 1], t = 1, . . . , T , and every θ ∈ Rn the discounted cumulative losses
LT of Learner and LθT of expert θ satisfy

LT ≤ LθT + a‖θ‖1 +
n(B −A)

2
ln

(
1 +

∑T
t=1wt,T
a

max
t=1,...,T

‖xt‖∞

)
, (6)

where wt,T =
∏T−1
j=t αj.

Note that for the undiscounted losses we have:
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Corollary 2 Let a > 0, y ∈ Ω = [A,B] and γ ∈ Γ. There exists a prediction strategy for
Learner such that for every positive integer T , every sequence of outcomes of length T , and
every θ ∈ Rn the cumulative losses LT of Learner and LθT of expert θ satisfy

LT ≤ LθT + a‖θ‖1 +
n(B −A)

2
ln

(
1 +

T

a
max

t=1,...,T
‖xt‖∞

)
. (7)

4. Aggregating Algorithm

We use prediction with expert advice to create our strategy. In the framework of prediction
with expert advice we have access to experts’ predictions at each time step and the learner
has to make a prediction based on experts’ past performances. We use an approach based
on the AA. The AA is given a parameter η and an initial distribution on experts P0(dθ).
After each step t it updates the experts’ weights according to their losses:

Pt(dθ) = e−ηλ(yt,ξt(θ))Pt−1(dθ). (8)

The weights of experts which suffer large loss at some step will have a smaller importance
for making further predictions.

First, we introduce the Aggregating Pseudo-Algorithm (APA) which at step t outputs
generalised prediction

gt(y) = −1

η
ln

∫
Θ
e−ηλ(y,ξt(θ))P ∗t−1(dθ), (9)

where P ∗t−1(dθ) are normalized weights:

P ∗t−1(dθ) =
Pt−1(dθ)

Pt−1(Θ)
,

where Θ is a parameter space, i.e. experts θ ∈ Θ can output prediction ξt(θ) ∈ Γ at time t.
The generalised prediction can be seen as a weighted average of the experts’ predictions

in a way which is similar to the Bayesian method.
The AA is obtained from the APA by replacing each generalised prediction gt by a per-

mitted prediction Σ(gt), where the substitution function Σ maps every generalised prediction
g : Ω→ [0,∞] into a permitted prediction Σ(g) ∈ Γ satisfying

∀y : λ(y,Σ(g)) ≤ g(y). (10)

Let us define P (Θ) as the set of all probability measures over Θ. If a substitution
function satisfying (10) for any distribution P ∗t−1(dθ) ∈ P (Θ) exists, we say that the loss
function is η-mixable. The loss function is mixable if it is η-mixable for some η > 0. The
game is called mixable if the loss function of it is mixable in the setting of the game.

5. Aggregating Algorithm with Discounting

We formulate AA for the case of discounted loss. It is essentially an equivalent to the
method in Chernov and Zhdanov (2010). The Aggregating Algorithm with Discounting
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(AAD) differs from AA only by the use of the weights in the computation of generalised
prediction gt and the weights update.

For the AAD we denote the discounted weight of expert θ as P̃ (θ). We initialize a prior
distribution on experts P0(dθ), θ ∈ Θ and initial discounted weights of experts P̃0(θ) = 1.

Instead of (8) the AAD updates weights according to

P̃t(θ) =
(
P̃t−1(θ)

)αt−1

e−ηλ(yt,ξt(θ)). (11)

The generalised prediction of the AAD is

gt(y) = −1

η
ln

∫
θ∈Θ

P0(dθ)
(
P̃ ∗t−1(θ)

)αt−1

e−ηλ(y,ξt(θ)), (12)

where

P̃ ∗t−1(θ) =
P̃t−1(θ)∫

θ∈Θ P0(dθ)P̃t−1(θ)
. (13)

Lemma 3 For any learning rate η > 0, initial prior P0 and T = 1, 2, . . . ,

LT (AAD(η, P0)) ≤ −1

η
ln

∫
Θ
e−ηL

θ
TP0(dθ). (14)

Proof The weights update for AAD is

P̃t(θ) =
(
P̃t−1(θ)

)αt−1

e−ηλ(yt,ξt(θ)) = e−ηL
θ
t . (15)

We will prove (14) by induction. At step t+ 1 we can re-write inequality (10) as follows

e−ηλ(yt+1,γt+1) ≥
∫

Θ
P0(dθ)

(
P̃ ∗t (θ)

)αt
e−ηλ(yt+1,ξt+1(θ))

=

∫
Θ
P0(dθ)

e−ηαtL
θ
t(∫

Θ P0(dθ)e−ηL
θ
t

)αt e−ηλ(yt+1,ξt+1(θ)). (16)

Suppose that (14) is true for the step t. By putting the inequality (14) for step t in the
power 0 < αt ≤ 1 we obtain

e−ηαtLt ≥
(∫

Θ
P0(dθ)e−ηL

θ
t

)αt
.

By putting the last inequality in the denominator of (16) we obtain

e−ηλ(yt+1,γt+1) ≥
∫

Θ e
−ηλ(yt+1,ξt+1(θ))−ηαtLθtP0(dθ)

e−ηLtαt
.

By multiplying by the denominator we have

e−ηLt+1 ≥
∫

Θ
e−ηL

θ
t+1P0(dθ).

By taking a natural logarithm of both parts and multiplying by − 1
η we obtain (14).
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6. Prediction Strategy

Let G̃ be the square-loss game with the outcome space Ω̃ = {0, 1}, prediction space Γ̃ = [0, 1],
and the square loss function λ̃(ω, γ) = (ω − γ)2. We consider the game G as the ‘limit’
of a sequence of games G̃ with the vector-valued forecasts. For d ∈ N we take points
zi = A+ iB−Ad , i = 0, 1, . . . , d and approximate any function F ∈ Γ by a piecewise-constant
function Fd defined by Fd(u) = F (zi) for any u ∈ [zi, zi+1), i = 0, 1, . . . , d−1. For the game
G̃ the learner’s prediction is defined by (Section 2.3.2 in Zhdanov (2011)):

γt =
1

2
− gt(1)− gt(0)

2
, t = 1, . . . , T. (17)

Let F θt ∈ Γ be a set of predictions parameterised by θ ∈ Θ at time t. Since the game G̃
is 2-mixable (Lemma 2.5 in Zhdanov (2011)), we obtain the learner’s prediction by putting
the expression for generalised prediction of AAD (12):

Ft(zi) =
1

2
− 1

4
ln

∫
θ∈Θ P0(dθ)

(
P̃t−1(θ)

)αt−1

e−2(F θt (zi))
2

∫
θ∈Θ P0(dθ)

(
P̃t−1(θ)

)αt−1

e−2(1−F θt (zi))2
, i = 0, 1, . . . , d− 1. (18)

By letting d → +∞ in (18), we obtain the expression for computing the learner’s
forecast:

γt = Ft(u) =
1

2
− 1

4
ln

∫
θ∈Θ P0(dθ)

(
P̃t−1(θ)

)αt−1

e−2(F θt (u))2∫
θ∈Θ P0(dθ)

(
P̃t−1(θ)

)αt−1

e−2(1−F θt (u))2
, u ∈ [A,B]. (19)

We choose the initial distribution of the parameters for some a > 0:

P0(dθ) =
(aη

2

)n
e−aη‖θ‖1dθ, (20)

where θ ∈ Rn.
Then the learner’s prediction (19) can be re-written as follows:

γt = Ft(u) =
1

2
− 1

4
ln

∫
θ∈Θ q

∗
t (θ)e

−2(F θt (u))2dθ∫
θ∈Θ q

∗
t (θ)e

−2(1−F θt (u))2dθ
, (21)

where

q∗T (θ) = CqT (θ) = C exp

− T−1∑
t=1

T−1∏
j=t

αj

 |yt − x′tθ| − a‖θ‖2
 , (22)

and C is the normalising constant ensuring that
∫

Θ q
∗
T (θ)dθ = 1.

Since

e−2 ≤
∫
θ∈Θ

e−2(F θ(u))2q∗(θ)dθ,

∫
θ∈Θ

e−2(1−F θ(u))2q∗(θ)dθ ≤ 1 (23)
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we get 0 ≤ F (u) ≤ 1. Since F θ(u) is non-decreasing in u, our F (u) is non-decreasing too.
By the Monotone Convergence Theorem (Theorem 5.3 in Williams (1991)) if u ↓ u0 then∫

θ∈Θ
e−2(F θ(u))2q∗(θ)dθ ↓

∫
θ∈Θ

e−2(F θ(u0))2q∗(θ)dθ∫
θ∈Θ

e−2(1−F θ(u))2q∗(θ)dθ ↑
∫
θ∈Θ

e−2(1−F θt (u0))2q∗(θ)dθ.

Therefore, F is right-continuous. We have shown that F ∈ Γ.
For completeness, we include the following lemma from V’yugin and Trunov (2019) and

go through the details of the proof.

Lemma 4 Game G where the space of outcomes Ω = [A,B] and decision space Γ contains
probability distribution functions F : [A,B] → [0, 1], and CRPS loss function (1) is 2

B−A -
mixable.

Proof We need to show that prediction (21) satisfies (10), that is

λ(y, F ) ≤ −1

η
ln

∫
Θ
e−ηλ(y,F θ)P (dθ) (24)

for all y ∈ [A,B].
The CRPS loss function can be represented as:

λ(y, Fd) =

j−1∑
i=0

∫ zi+1

zi

F 2
d (u)du+

∫ y

zj

F 2
d (u)du+

∫ zj+1

y
(1− Fd(u))2 du

+
d−1∑
i=j+1

∫ zi+1

zi

(1− Fd(u))2 du =
B −A
d

j−1∑
i=0

F 2(zi) + (y − zj)F 2(zj)

+ (zj+1 − y) (1− F (zj))
2 +

B −A
d

d−1∑
i=j+1

(1− F (zi))
2 , (25)

where y ∈ [zj , zj+1).
An outcome y can be identified with a vector ω = (ωy0 , ω

y
1 , . . . , ω

y
d−1), where ωyi =

1zi+1≥y ∈ {0, 1} for i = 0, 1, . . . , d− 1. Let us define the loss function λ̂(y, Fd) by

λ̂(y, Fd) =
B −A
d

d−1∑
i=0

(ωyi − F (zi))
2

=
B −A
d

j−1∑
i=0

F 2(zi) +

d−1∑
i=j

(1− F (zi))
2

 , (26)

where y ∈ [zj , zj+1). We get:

|λ(y, Fd)− λ̂(y, Fd)| = (y−zj)|F 2(zj)− (1−F (zj))
2| = (y−zj)|2F (zj)−1| ≤ B −A

d
, (27)

where y ∈ [zj , zj+1), j = 0, 1, . . . , d− 1.
Consider the game Ĝ with the outcome and prediction spaces given by the Cartesian

products Ω̃d and Γ̃d and the loss function 1
d

∑d
i=1 λ̃(ωi, γi). By Lemma 1 in Adamskiy
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et al. (2019), the game Ĝ is 2-mixable. For the experts’ predictions (γθ0 , . . . , γ
θ
d−1) =

(F θ(z0), . . . , F θ(zd−1)), θ ∈ Θ, the learner’s predictions (F (z0), . . . , F (zd−1)) satisfy

1

d

d−1∑
i=0

(ωi − F (zi))
2 ≤ −1

2
ln

∫
Θ
e
− 2
d

(∑d−1
i=0 (ωi−F θ(zi))

2
)
P (dθ)

for all ωi ∈ [0, 1], i = 0, 1, . . . , d− 1 including ωyi , y ∈ [A,B]. In other terms, we get

1

B −A
λ̂(y, Fd) ≤ −

1

2
ln

∫
Θ
e−

2
B−A λ̂(y,F θd )P (dθ).

By using inequality (27), we have:

λ(y, Fd) ≤ −
B −A

2
ln

∫
Θ
e−

2
B−Aλ(y,F θd )P (dθ) + 2

B −A
d

. (28)

Now it remains to show that losses λ(y, Fd) and λ(y, F ) do not differ much. Since, by
construction, F (u) ≤ Fd(u), we get

|λ(y, F )− λ(y, Fd)| ≤
∫ y

A

(
F 2(u)− F 2

d (u)
)
du+

∫ B

y

(
(1− Fd(u))2 − (1− F (u))2

)
du.

The first integral can be upper bounded as

∫ y

A

(
F 2(u)− F 2

d (u)
)
du =

j−1∑
i=0

∫ zi+1

zi

(
F 2(u)− F 2

d (u)
)
du+

∫ y

zj

(
F 2(u)− F 2

d (u)
)
du

≤ B −A
d

j∑
i=0

(
F 2(zi+1)− F 2(zi)

)
=
B −A
d

(
F 2(zj+1)− F 2(A)

)
≤ B −A

d

(
F 2(B)− F 2(A)

)
≤ B −A

d
.

By doing the same for the second integral, we get

|λ(y, F )− λ(y, Fd)| ≤ 2
B −A
d

. (29)

Now inequality (24) follows from (28) by letting d→ +∞.

Integrals in (21) is a Bayesian mixture, where predictions γT needs to be integrated
with respect to the normalized distribution q∗T (θ). It is possible to avoid the calculation
of normalization constant C as it is a computationally inefficient operation, and integrate
function γT from the unnormalized distribution qT (θ). In order to calculate the integral
(21), it is possible to use MCMC algorithms. MCMC techniques are often applied to solve
integration and optimisation problems in large dimensional spaces. MCMC is a strategy
for generating samples while exploring the state space using a Markov chain mechanism.
This mechanism is constructed so that the chain spends more time in the most important
regions. The good introduction of MCMC for Machine Learning is in Andrieu et al. (2003).
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We will use Metropolis-Hastings algorithm for sampling parameters θ from the posterior
distribution P. As a proposal distribution we chose Gaussian distribution N (0, σ2) with
some parameter σ. We start with some initial parameter θ0 and at each step m we update:

θm = θm−1 +N (0, σ2), m = 1, . . . ,M,

where M is a maximum number of iterations in MCMC method.
The update parameter θm at step m is accepted with probability min

(
1, fP (θm)

fP (θm−1)

)
,

where fP(θ) is the density function for the distribution P at point θ. At each step by
accepting and rejecting the updates of parameters θ we move closer to the maximum of the
density function. At the beginning it is common to use ‘burn-in’ stage when the integral is
not calculated till we will not reach the area of high values of density function fP . Thus,
we perform integration only from the area with high density of P. Some values of θ are
accepted even when the calculated probability is less than 1, it allows the algorithm to move
away from local minimum of the density function. Because we are interested only in the
ratio of density functions of generated parameters, we can generate new parameters θ from
the unnormalized posterior distribution qT (θ) and avoid the weights normalization at each
step which is more computationally efficient.

At time t = 0 the algorithm starts with the initial estimate of the parameters θ0 = 0.
At each iteration t > 0 we start with parameter θM calculated at the previous step t − 1.
It allows the algorithm to converge faster to the correct location of the main mass of the
distribution.

Algorithm

Parameters: number M > 0 of MCMC iterations,
standard deviation σ > 0,
regularization coefficient a > 0,
prediction interval [A,B].

η := 2
B−A

initialize θM0 := 0 ∈ Θ
define q0(θ) := exp(−aη‖θ‖1)
for t = 1, 2, . . . do

γ0
t := 0, γ1

t := 0
read xt ∈ Rn
initialize θ0

t = θMt−1

for m = 1, 2, . . . ,M do
θ∗ := θm−1

t +N (0, σ2I)
flip a coin with success probability

min
(
1, qt−1(θ∗)/qt−1(θm−1

t )
)

if success then
θmt := θ∗

else
θmt := θmt−1

end if

10
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γ0
t := γ0

t + exp

(
−2
(
F
θmt
t (u)

)2
)

γ1
t := γ1

t + exp

(
−2
(

1− F θ
m
t
t (u)

)2
)

end for
output predictions γt = 1

2 −
1
4 ln

γ0t
γ1t

end for

7. Proof of Theoretical Bounds

In this section we provide the proof of Theorem 1. Applying Lemma 3 for initial distribution
(20) we obtain

LT ≤ −
1

η
ln

((aη
2

)n ∫
Θ
e−ηJ(θ)dθ

)
, (30)

where

J(θ) :=
T∑
t=1

wt,T |x′tθ − yt|+ a‖θ‖1

and

wt,T =
T−1∏
j=t

αj , wT,T = 1.

For all θ, θ0 ∈ Rn we have:

T∑
t=1

wt,T |x′tθ − yt| ≤
T∑
t=1

wt,T |x′tθ0 − yt|+
T∑
t=1

wt,T |x′tθ − x′tθ0|

≤
T∑
t=1

wt,T |x′tθ0 − yt|+
T∑
t=1

wt,T max
t=1,...,T

‖xt‖∞‖θ − θ0‖1. (31)

Then, we have:

J(θ) ≤ J(θ0) +

T∑
t=1

wt,T max
t=1,...,T

‖xt‖∞|θ − θ0|+ a(‖θ‖1 − ‖θ0‖1)

≤ J(θ0) + max
t=1,...,T

‖xt‖∞
T∑
t=1

wt,T ‖θ − θ0‖1 + a‖θ − θ0‖1

= J(θ0) +

(
max

t=1,...,T
‖xt‖∞

T∑
t=1

wt,T + a

)
‖θ − θ0‖1. (32)

11
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Let us denote bT = max
t=1,...,T

‖xt‖∞
∑T

t=1wt,T + a. We evaluate the integral∫
Θ
e−ηJ(θ)dθ ≥

∫
Rn
e−η(J(θ0)+bT ‖θ−θ0‖1)dθ

= e−ηJ(θ0)

∫
R
. . .

∫
R
e−ηbT

∑n
i=1 |θi−θi,0|dθi = e−ηJ(θ0)

∫
R
. . .

∫
R

n∏
i=1

e−ηbT |θi−θi,0|dθi

= e−ηJ(θ0)
n∏
i=1

∫
R
e−ηbT |θi−θi,0|dθi = e−ηJ(θ0)

(
2

ηbT

)n
.

By putting this expression in (7) we have

LT ≤ J(θ0)− 1

η
ln

((aη
2

)n( 2

ηbT

)n)
= Lθ0T + a‖θ0‖1 +

n

η
ln

(
1 +

∑T
t=1wt,T
a

max
t
‖xt‖∞

)
.

By putting η = 2
B−A from Lemma 4 we obtain the theoretical bound (6).

8. Experiments

In this section we apply our proposed algorithm on synthetic data and solar power data,
and compare its performance with other predictive models. The solar power data set is
downloaded from Open Power System Data which provides free and open data platform
for power system modelling. The platform contains hourly measurements of geographically
aggregated weather data across Europe and time-series of solar power. Our training data
are measurements in Austria from January to December 2015, test set contains data from
January to April 2016. 1

8.1. Synthetic data

We apply our algorithm on synthetic data sets. The first data set is generated from the
linear model y = 2x− 1 + ε, where ε ∈ N (0, 0.001) and feature x is generated from normal
distribution N (0.75, 0.05). Figure 1 illustrates the generated data set which contains 1000
observations. We divide our data in a way that it has half of its observations in training and
test data sets. First, we will run our algorithm and train the linear regression on training
data set and compare their performance. From Figure 1 we can see that the data set is
almost perfectly linear; and the linear regression model, trained on training data set, has
R2 = 0.9999 on the test data. We run our algorithm for the number of MCMC iterations
M = 1500 and ‘burn-in’ period M0 = 300 for different parameters of regularization a and
standard deviation σ. For this example, we pick our parameters of regularization a = 0.5,
standard deviation σ = 0.1, and we do not discount our losses αt = 1 for t = 1, . . . , T .
Figure 3 shows the difference between cumulative losses of the linear regression and our
algorithm Lθ

∗
T − LT on test data set, where θ∗ was obtained by linear regression model on

training data set. We also plot the theoretical bound for our algorithm. The initial large
gap corresponds to the value −a‖θ∗‖1, which gives the initial start to Learner on expert θ∗.

1. The code written in R is available at https://github.com/RaisaDZ/CRPS.

12
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As time increases, we add an additional value −n(B−A)
2 ln

(
1 + T

a max‖xt‖∞
)

to the bound.
We can see from the graph that initially the loss difference is decreasing fast which means
that loss of our algorithm becomes larger compared to the loss of linear regression model.
The initial start −a‖θ∗‖1 gives us some time for training. After the initial training time
passes, the difference between cumulative losses becomes smoother and behaves in a similar
way with the theoretical bound of our algorithm which is decreasing logarithmically with the
number of steps. Figure 4 illustrates the difference between cumulative losses of the quantile
regression and our algorithm which behaves in a similar way with the previous graph. Total
loss of our algorithm on the test data set is 3.05. It is much larger than the loss of the
best linear regression model which is equal to 0.42, and the loss of the quantile regression
which is equal to 0.30. It is not surprising as the data set is almost perfectly linear, and our
algorithm makes a large loss during the initial training. However, the theoretical bound of
our algorithm is not violated.

The second synthetic data set is similar with the previous one, but the slope of the
model slowly changes with time yt = (2 + 0.00005t)xt − 1 + ε, t = 1, . . . , T . Figure 2
illustrates the generated data set. We use the same parameters of our algorithm as in
the previous example, but we add exponential discounting αt = 0.999, t = 1, . . . , T . The
data set still looks linear; and the linear regression model, trained on training data set, has
R2 = 0.9681 on the test data. Figure 5 shows the difference between different competitors
and our algorithm. We can see from the graph that after around 50 iterations the loss
difference starts to increase which means that our algorithm starts to perform better than
other models. At the end of the period total loss of the best linear regression (LM) is
9.32, loss of the quantile regression trained on training set (QR) is 7.75, loss of the quantile
regression trained online (QR online) is 4.66. Total loss of our algorithm is equal 4.55,
which is slightly lower than the total loss of the quantile regression trained online.
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Figure 1: First data set
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Figure 2: Second data set

8.2. Solar power data

We perform similar experiments for prediction of solar power. We choose measurements
of direct and diffuse radiations to be our explanatory variables. Figures 6, 7 show the
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Figure 3: Loss difference between the best
linear regression and our algo-
rithm
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quantile regression and our algo-
rithm
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Figure 5: Loss difference between competitors and our algorithm

dependence of solar power on explanatory variables on the training set. We can see that
there is a linear dependence between predicted and explanatory variables. The correlation
between solar power and direct radiation is equal to 0.88, whereas the correlation between
solar power and diffuse radiation is equal to 0.74. First, similar to the previous experiments,
we fit linear regression on the training set. The linear regression seems to perform well on
this data set; it has R2 = 0.8929 on the test set.

Now we run our algorithm for the number of MCMC iterations M = 1500 and ‘burn-in’
period M0 = 300 for different parameters of regularization a and standard deviation σ.
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Table 1 shows the acceptance ratio of new generated parameters θ for different parameters
a and σ. We can notice from the table that standard deviation σ affects the acceptance ratio
quite a lot, whereas regularization parameter a has a little affect. If no prior knowledge
is available, one can start with some reasonable values of input parameters and keep track
of the acceptance ratio of new generated θ. If the acceptance ratio is too high it might
indicate that the algorithm moves too slowly to the area of high values of the probability
function of θ, and standard deviation σ should be increased. Another option is to take
very large number of steps and larger ‘burn-in’ period. For this example, we pick our
parameters of regularization a = 0.1, standard deviation σ = 0.03, and we do not discount
our losses αt = 1 for t = 1, . . . , t. Figure 8 shows the difference between cumulative losses
of the best linear regression trained on the training set and our algorithm, and Figure 9
shows the difference between cumulative losses of the best quantile regression trained on
the training set and our algorithm. We can see from the graphs that we need a little time
to outperform the linear regression model, but our algorithm performs much worse than
the quantile regression as the difference of cumulative losses decreases fast. However, after
around 2000 steps the difference of cumulative losses stabilizes and becomes more ‘flattened’
which indicates that the performance of our algorithm becomes close to the performance of
the quantile regression.

Figures 10, 11 show predictions of our algorithm and quantile regression (QR) with
[25%, 75%] confidence interval for the first 100 steps and after 1000 steps respectively. We
can see from the graph, that initially predictions of our algorithm are very different from
predictions of QR. However, after the initial training of our algorithm, predictions of both
methods become very close to each other.
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Figure 6: Dependence of solar power on di-
rect radiation
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Table 1: Acceptance ratio of new generated parameters
a \ σ 0.01 0.02 0.03 0.05 0.10

0.1 0.858 0.602 0.410 0.214 0.070
0.5 0.857 0.602 0.410 0.214 0.069
1.0 0.858 0.601 0.409 0.215 0.069
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Figure 8: Loss difference between the best
linear regression and our algo-
rithm
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Figure 9: Loss difference between the best
quantile regression and our algo-
rithm

9. Conclusions

We propose an algorithm that combines deterministic predictions of an infinite pool of
linear regressions and outputs probability forecasts in the form of cumulative distribution
functions. The proposed strategy allows us to ’track the best expert’. The theoretical bound
on the discounted cumulative CRPS loss function of the algorithm is derived.

We perform experiments to evaluate the performance of our algorithm on synthetic
and solar power data sets. The first experiment shows that the theoretical bound of our
algorithm is not violated. The second experiment on the synthetic data set show that the
loss discounting helps in situations when the underlying nature of data changes with time;
and our algorithm can outperform the best online quantile regression. The experiment
with prediction of solar power shows that our algorithm needs some time for training,
however after an initial time passes, the performance of our algorithm becomes close to the
performance of the quantile regression.
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Figure 10: Predictions with [25%, 75%] con-
fidence interval of our Algorithm
and QR, first 100 steps
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