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Abstract

This paper investigates the use of the Conformal Prediction (CP) framework for providing
confidence measures to assist a Brain Machine Interface (BMI) in the task of controlling
an exoskeleton using electroencephalogram (EEG) and electrooculogram (EOG) clips. Re-
liable and accurate control of assistive robotics is still an important challenge because of
the noisy nature of EEG’s and EOG’s and the fact that any misclassification can lead to
unwanted actions and serious safety risks. Therefore a technique that will compliment pre-
dictions with a well-calibrated indication of how correct they are, should be very beneficial
for the particular application as it can significantly enhance safety. Our approach consists
of an Inductive Conformal Predictor (ICP) built on top of a Bidirectional Long Short Term
Memory (BiLSTM) Neural Network. We conduct experiments on a dataset consisting of
EEG and EOG data collected from one subject with a high spinal cord lesion.

Keywords: EEG, EOG, Confidence, Credibility, Brain Machine Interface(BMI), Safety

1. Introduction

Many diseases such as stroke, spinal cord injuries, multiple sclerosis and weaknesses of the
skeletal muscles have a negative impact on the daily activities and quality of life of the
affected individuals. Hence, there is a demand to develop new therapeutic techniques and
assistive methods that will enable patients to boost their day to day activity performance
and recover the lost or impaired motion control. In addition, a successful technique or
device (exoskeleton) will release the therapists from the intensive labor of rehabilitation
training (Brown-Triolo et al., 2002).

By the term exoskeleton we mean a mechanical wearable device that is designed to
mimic body parts such as ankle joints; when the device is worn, the torque produced by
the actuators is transferred to the body (He and Kiguchi, 2007). Exoskeleton robotics can
efficiently incorporate the cognitive ability of a human being and can assist users in per-
forming heavy activities. Such devices have been developed into full-limb exoskeletons, that
is, upper and lower limb exoskeletons and other exoskeleton robots, to support shoulders,
elbows, wrists, and ankle joints. This kind of devices can be controlled by physiological sig-
nals, like Electromyography (EMG), or brain signals, i.e. electro-encephalography (EEG).
To decode these signals into decisions brain computer interfaces (BCI) or brain-machine
interfaces (BMI) are used (Al-Quraishi et al., 2018).

BMI translates EEG into control signals enhancing human machine interaction, e.g.
allowing impaired individuals to operate assistive systems such as hand prostheses or ex-
oskeletons. The challenge in these systems is to correctly classify the specific brain signals,
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as a misclassification may lead to unwanted actions and dangerous safety risks (Witkowski
et al., 2014). Consequently a technique which can provide a reliable indication of how likely
individual predictions are of being correct is very desirable. The use of such a technique
can enable control of the frequency of unwanted actions, by performing only the actions
that are certain at a predefined level of confidence while postponing all uncertain actions
until enough evidence for the desired action is observed i.e. additional signals for the same
action.

Here we propose a CP which can address the problem described above by controlling the
error rate of the underlying technique. In particular CP is able to produce prediction sets
that are guaranteed to contain the true class with respect to a confidence level. Therefore
in practice if for the desirable confidence level the prediction set contains more than one
labels the system can wait for more evidence before performing any action, thus avoiding
unwanted actions and ensuring safety.

Our approach consists of the following steps. Discrete Fourier Transformation is applied
in each EEG. Then we feed a Bidirectional Long Short Term Memory (BiLSTM) Neural
Network with the amplitudes of the EEG clip or the amplitudes of the EEG clip together
with an EOG clip which will provide us with class probabilities. Finally we apply CP on
top of these probabilities to produce prediction sets and confidence measures.

The rest of the paper starts with an overview of related work on BMI for controlling
exoskeletons. Section 3 gives a brief overview of the inductive version of the CP framework.
Section 4 describes the proposed approach and defines the Non-conformity Measure (NCM)
used for our ICP. Section 5 presents the experimental setting and performance measures
used in our evaluation and reports the obtained experimental results. Finally, Section 6
gives our conclusions and plans for future work.

2. Related Work

EEG is a technique used to capture and record brain activity by measuring voltage fluctu-
ations on different scalp areas according to the international electrode placement system.
EEG captures the amplitude and the frequency of the electrical signal. The amplitude
ranges from 5µV to 200µV and the frequency ranges from 0-100Hz (American-EEG-Society,
1994). It is the most common technique that has been utilized in BMI. It’s popularity is
due to several advantages: EEG signals are non-invasive, low cost, compatible, portable
and have a high temporal resolution in comparison with other brainwave measurements
such as electrocorticograms (ECoGs), magnetoencephalograms (MEGs), functional mag-
netic resonance imaging (fMRI) and near-infrared spectroscopy (fNIRS) (Al-Quraishi et al.,
2018).

EEG’s have several characteristic sub bands called brain waves. Brain waves are indi-
cated by Greek letters: Delta 0 to 4 Hz, Theta 4 to 8 Hz, Alpha 8 to 12 Hz, Beta 12 to 32
Hz and Gamma 32 to 64 Hz.

Delta: Delta waves have a frequency range below 4Hz. They can be observed during
sleep state and in infants, or in serious organic brain diseases. Irregular delta wave activ-
ity with a frontal emphasis is related to destructive or compressive lesions involving the
diencephalon and upper midbrain, to deep frontal lesions, and to acute metabolite and
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electrolyte disturbances. Animals are known to have more activity in this range (Thakor
and Sherman, 2013).

Theta: Theta waves have a frequency range of 4-8Hz. In a child’s brain they occur
mainly in parietal and temporal regions. In healthy and alert adults, such theta wave
activity is generally inconspicuous or absent, but it does appear during periods of disap-
pointment, frustration, stress and certain stages of sleep as mentioned above (Gómez-Gil
et al., 2014). It should be noted that theta activity appears after a generalized seizure, in
patients with metabolic disorders, white matter encephalopathy, or extensive lesions of the
upper brainstem (Thakor and Sherman, 2013).

Alpha: Alpha waves have a frequency range of 8-12Hz. These waves can be recorded
from the occipital region (and sometimes from parietal and frontal regions as well) during
consciousness, and is weakened by visual and other sensory stimulus. Alpha waves can be
observed in a relaxed person and when eyes are closed. As mentioned above Alpha waves
tend to disappear in sleeping subjects (Thakor and Sherman, 2013).

Beta: Beta waves have a frequency range of 12-32Hz. Beta waves can be recorded from
the frontal and parietal lobes. Beta waves can be observed during intense mental activity
and tension (American-EEG-Society, 1994).

Gamma: Gamma waves have a frequency range of 32-64Hz. Gamma waves are asso-
ciated with brain processing. Studies using intra cranial electrodes showed that Gamma
activity is related with states of high attention, conscious perception, information processing
and motor activity. Note than when we record EEG’s there exist three sources of artifacts
that affect the Gamma Band :the 1st one is the power source noise 50/60Hz depending
on the country, the 2nd one is EMG (Electromiograph) from the scalp and neck muscles
and the 3rd one is electrical potentials produced by eye muscle contraction at the start of
saccades (saccades are quick, simultaneous movements of both eyes in the same direction).
This results to the need of developing effective filters to handle these artifacts (Nottage,
2009).

EOG is a technique that can be used to estimate eye orientation, it is based on the
voltage amplitude modulation between two electrodes placed around the eyes. This voltage
is depended by the angle of the eye. In humans the EOG signal ranges from 0.05 to 3.5
mV, with a typical bandwidth of DC to 50 Hz (López et al., 2016).

In the remaining of this section we provide some of the related work carried out.
Witkowski et al. (2014) investigated if the use of EEG’s fused with EOG’s can enhance
reliability and safety of continuous brain control of a hand exoskeleton performing grasping
motions. Their results suggest that using different bio signals can increase usability and
safety. Their dataset includes EEG and EOG’s from 12 healthy right handed volunteers of
age ranging from 25 to 32. The EEG’s were recorded from 5 conventional EEG recording
sites at a sampling rate of 200hz bandpass filtered at 0.4-70hz and preprocessed with a
small Laplacian filter. The EOG’s were recorded in accordance to the standard EOG place-
ments at the left and right outer canthus (LOC/ROC). To evaluate brain-neural computer
interaction (BNCI) control and safety, participants follow a visual cue indicating either to
move or not to move the hand exoskeleton in a random order. Movements exceeding 25%
of a full grasping motion when the device was not supposed to be moved were defined
as safety violation. Participants reached comparable control but safety was frequently vi-
olated when using EEG, but not when using both EEG and EOG. Their discrimination
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method was based on calculating the power spectrum of each EEG clip, selecting the fre-
quency that showed largest event-related desynchronization (ERD) during motor imagery
and event-related synchronization (ERS) during rest recorded from a C3 electrode. Based
on the maximum values for ERD and ERS, a discrimination threshold was set. On using
the EOG’s a detection threshold for full left and right eye movements was set to reset the
exoskeleton and enhance safety. When the visual cue was shown either green or red the
true positive rate was 63.59±10.81% and 60.77±9.42% using EEG’s and EEG’s fused with
EOG’s respectively while the false positive rate was 36.11± 10.85% and 12.31± 5.39%.

Gordleeva et al. (2017) proposed the development of a neuro-integrated control system
for a lower-limb robotic exoskeleton (RE) using brain computer interface (BCI) technology
based on recognition of EEG patterns evoked by motor imagery of limb movement. Their
experiment involved 14 subjects (6 males and 8 females aged 18 to 23 years). While perform-
ing the experiment the exoskeleton was near the subject and performed movements with
the right or the left foot depending on the EEG pattern generated by the subject. Their
study consists of three main modules: EEG signal recording, EEG signal classifier and the
software for transmission of commands to RE. On recording the signal 8 electrodes have
been used at a sampling rate of 500 Hz filtered at 6-15hz with Notch filter of 50 Hz. The
procedure of implementing the EEG signal classifier is as follows: The first two consecutive
sessions where used for training and testing. These two sessions were used for initial setup
and for testing the classifier. While recording the EEG’s the subject followed the arrow
orders that appeared on the screen: rest, left and right movement. When EEG recording
ended, a spatial filtering was applied. Afterwards, the power in the frequency range from 6
to 15 Hz with a step of 1 Hz was calculated for each data set corresponding to the stimulus
type in each channel separately. Then the rate of power change relative to the rest of the
corresponding motor imagery was calculated. When spectral power decreased by more than
50% during motor imagery, the operator was considered to have successfully mastered the
motor imagery technique and proceeded to the test session of the classifier. When several
failed attempts occurred the procedure was repeated with the change of motor imagery
type. While testing the classifier the subject was provided with feedback that showed if
there was an agreement between the orders and the recognized task. The classification
was based on discriminant analysis using the features identified by spatial filtering for type
of orders pairwise, then the labels were classified using voting. After training and testing
finished the subject was able to control the RE. The classifier analyzed EEG clips of 4.5
seconds and transmitted the appropriate command to the RE. Finally the authors report
an average accuracy(over all subjects) of 73% 71% 66% for the three sessions.

Soekadar et al. (2014) used a similar approach with Witkowski et al. (2014) introducing
a BNCI system that fuses electroencephalography (EEG) and electrooculography (EOG)
to improve control of assistive robotics in daily life environments. The performance was
evaluated on four men, with average age 26.5 ± 3.8 years and a 34-year-old patient with
complete finger paralysis due to a brachial plexus injury. While recording EEG’s they used
7 electrodes at a sampling rate of 200hz bandpass filtered at 0.4-70hz. When they used
only EEG’s they obtained an accuracy of 70.24 ± 16.71% for the healthy volunteers and
an accuracy of 65.93 ± 24.27% for the patient, while when they incorporate EOG’s they
obtained an accuracy of 80.65± 11.28 and 76.03± 18.32% respectively.
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Liu et al. (2017) implemented an EEG-based brain-controlled lower-limb exoskeleton
for gait training. Their experiment involved six subjects aged from 21 to 26 years. No
neurological or psychiatric disorders were reported among subjects. EEG signals were
recorded from 16 positions using a sampling rate of 512 Hz. EEG signals were power ling
notch filtered and band passed at 0.1 to 100 hz. Each subject performed three recording
sessions the first one for the classifier training, the second one for on-line testing with visual
feedback, and the last one for real-time robot control. Two asynchronous signal modalities
have been used to classify the movement intention detection, sensorimotor rhythms (SMRs)
and movement-related cortical potentials (MRCPs). They have obtained an accuracy of
80.16%±5.44% and 68.62±8.55% using SMR-based and MRCP-based methods respectively.

Even though the aforementioned studies produced promising results, still the obtained
accuracy is rather low for such a safety critical application. This is the main motivation
for our work, which tries to address this issue with the provision of confidence information
that can be used for controlling the error rate of the technique and thus enhancing safety.

3. Inductive Conformal Prediction

For the needs of this study an ICP is built on top of the underlying model. The reason
we used the Inductive version of CP and not the original Transductive version is because
training deep Artificial Neural Networks is a time intensive task. In the remaining of this
section we give a brief description of the main principles of inductive conformal prediction
(ICP). For more details see Vovk et al. (2005).

Let A = {(xi, yi)|i = 1, . . . , N} denote our training set, where xi is an object given in the
form of an input vector or matrix, R = {t1, . . . , tc} is the set of possible labels and yi ∈ R
is the label of the corresponding input vector or matrix. Let C = {(xl, yl)|l = 1, . . . , L}
denote our calibration set and let B = {Xk|k = 1, . . . ,M} denote our test set, where Xk

is a test instance (vector or matrix). These sets will lead us to assessing predictions with
confidence measures and finding which candidate labels are possible for the test instance
Xk given a desired confidence level.

A nonconformity score (NCS) is a numerical value assigned to each instance that indi-
cates how unusual or strange a pair (xs, ys) is, based on the underlying algorithm, where
s ∈ {1, . . . , L, new} is the index of the sth element in C and new denotes a test example
belonging to B. In particular, the underlying algorithm is trained on the instances belong-
ing to A and the NCM uses the resulting model to assign a NCS denoted as αs̃ to each
element belonging to C and a NCS denoted as αk,lnew for every test instance in B. Using
the calibration set denoted as C we calculate a sequence of NCS denoted as H containing
L elements. For every test example k we use the sequence H to find the p-value of a test
example k with a candidate label tl. Given the sequence H and the NCS of a test example
k we can calculate the p-value of a test instance (Xk, tl) with the function:

pk(tl) =
|{αs̃ ∈ H|αs̃ ≥ αk,lnew}|+ 1

L+ 1
, (1)

where αk,lnew is the NCS of the kth example in the test set with candidate label tl and αs̃ is
the NCS of the sth example in the calibration set.
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Given a pair (Xk, tl) with a p-value of δ this means that this example will be generated
with at most δ frequency, under the assumption that the examples are exchangeable, proven
in Vovk et al. (2005).

After all p-values have been calculated they can be used for producing prediction sets
that satisfy a preset confidence level 1 − δ (δ is called the significance level). Given the
significance level δ, a CP will output the prediction set:

{tl|pk(tl) > δ}.

We would like prediction sets to be as small as possible. The size of prediction sets depends
on the quality of the p-values and consequently on the NCM used.

If we want only a single prediction, or forced prediction, the CP outputs the label tr
with

r = arg max
l=1,...,c

pk(tl),

in other words the tl with the highest p-value. These predictions are complemented with
measures of confidence and credibility. Confidence is defined as one minus the second largest
p-value. Confidence is a measure that indicates the likelihood of a predicted classification
compared to all the other possible classifications. Credibility is defined as the largest p-
value. Low credibility means that either the data violate the exchangeability assumption
or the particular test example is very different from the training set examples.

4. Proposed Approach

In this section we describe the proposed approach in terms of the data transformation
we used as preprocessing, the Bidirectional Long Short Term Memory (BiLSTM) Neural
Network Breiman (1996), which we used as underlying technique, and the NCM we used
for the BiLSTM-ICP.

4.1. Discrete Fourier Transformation

Before fitting the BiLSTM Neural Network with EEG a Discrete Fourier Transformation
(DFT) is applied to calculate the amplitude which will be the input of our Neural Network.
The DFT is an algorithm which decomposes a sequence of values into components of different
frequencies. It converts a finite list of equally spaced samples of a function into the list of
coefficients of a finite combination of complex sinusoids, ordered by their frequencies, that
have those same sample values:

Xk =

N−1∑
n=0

xne
−i2πkn/N , k = 0, ..., N − 1, (2)

where Xk is a complex number that encodes both amplitude and phase of a sinusoidal
component of function xn. The sinusoid’s frequency is k/N cycles per sample. In our case
Xk is a vector component of a vector produced from DWT. Its amplitude and phase are:

|Xk| = (Re(Xk)
2 + Im(Xk)

2)0.5/N, (3)

Arg(Xk) = −i · ln(Xk/(|Xk|)). (4)
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4.2. Bidirectional Long Short Term Memory Neural Network

A BiLSTM is a combination of Bi-directional Recurrent Networks (Bi-RNN) and Long Short
Term Memory(LSTM). A Recurrent Neural Network (RNN) is a Neural Network that is
able to handle and extract information within the dependencies of sequences and time series
of data. This is due to the fact that its connections form a directed graph along a sequence
or a time series. However RNN can not handle long data sequences because of the vanishing
and exploding problem of the gradient. To overcome the gradient problem and handle long
data sequences the LSTM Neural Network was proposed where the gradient computation
is truncated at certain architecture specific points, without affecting the long term error
flow (Hochreiter and Schmidhuber, 1997). LSTM relies on a structure called a memory cell,
which is composed of four main elements: an input gate, a neuron with a self recurrent
connection, a forget gate and an output gate. On one hand both LSTM and RNN can
get information from the previous context, on the other hand Bi-RNN can get information
from the front and back. Thus a combination of Bi-RNN and LSTM should be beneficial
because it utilizes the advantages of both LSTM and Bi-RNN (Yulita et al., 2017).

To improve accuracy, generalization and training speed the sequence input layer is con-
nected to a fully connected layer of 150 neurons, which is then connected to a Rectified
Linear Unit (ReLU) layer where each negative element of the input is set to zero. This is
followed by a BiLSTM layer consisting of 150 neurons, the output of which is fed to a fully
connected layer with a number of neurons equal to the number of classes. Finally a softmax
layer provides probabilistic class outputs.

The BiLSTM Neural Network outputs class probabilities which are used to compute
NCM’s. All of our Neural Networks have been trained on an Nvidia RTX 2070 using the
Adam optimizer for minimizing cross-entropy loss, with the number of epochs set to 50 and
the learning rate to 0.0001.

4.3. Nonconformity measure

In this section we provide a description of the NCM used in this study. The NCM is based
on the probabilities provided by the BiLSTM described in Section 4.2. Recall from Section
3 that {t1, . . . , tc} are the possible labels (note that we deal with a binary problem thus
in our case c=2), αs̃ is the NCM of the sth instance (xs, ys) belonging to the calibration

set and αk,lnew is the NCM of the kth instance (Xk, tl) in the test set. The nonconformity
measure for a pair (xs, ys) or (Xk, tl) respectively is:

αs = −Ds
ys , αk,lnew = −Dk

tl
, (5)

where Ds
ys is the probability of prediction ys for the calibration instance s and Dk

tl
is the

probability of prediction for candidate label tl for the test instance k. I.e the higher the
probability of class ys and tl the less nonconforming the examples. After calculating the
NCS we calculate p-values and make predictions following the process described in Section
3.
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5. Experiments and Results

5.1. Dataset

5.1.1. Experimental Paradigm

The dataset we used consists of EEG and EOG data collected from one subject with a high
spinal cord lesion. The subject attempted to operate a neuroprosthetic device attached to
his paralyzed right upper limb. The cue base BCI paradigm consisted of two tasks, the
imagination of movement of the right hand and relaxation/no movement.

A visual signal randomly indicated to the user to either move or not move the exoskele-
ton. The two indications were displayed a total of 24 times for 5 seconds and then the
exoskeleton was reset to the open position. Each indication is separated by inter-trial inter-
vals of 4-6 seconds. The above process was repeated three times. Specifically the dataset
consists of three sets each one stored in a Matlab structure. The data file is available at
http://bnci-horizon-2020.eu/database/data-sets.

5.1.2. Data Acquisition

EEG was recorded at a sampling rate of 200Hz using 5 conventional EEG recording sides,
bandpass filtered at 0.4-70Hz, while EOG was recorded at a sampling rate of 200Hz in ac-
cordance to the standard EOG placements at the left and right outer canthus (LOC/ROC).

5.2. Experimental Setting and Performance Measures

Here we detail the experiments and results of the proposed approach. As we mentioned in
Section 1 for the needs of this study we have trained two BiLSTM Neural Networks. The
first one is fitted with the amplitude of the EEG clips while the second one is fitted with
the amplitude of the EEG clips together with the EOG clips. For calculating the amplitude
of the EEG’s we first applied a DFT. Note that the EOG clips when fitted are fitted intact.

We used the three sets as training, calibration and test sets. More specifically we used
each one as test set performed in total six runs to obtain results.

First we report forced prediction results in terms of accuracy and mean confidence and
credibility. Due to the fact that the accuracy itself is not a good indication for measuring
the performance of a CP we used four probabilistic criteria for evaluating p-values proposed
by Vovk et al. (2016). These criteria are divided into two main categories called Basic
Criteria, which do not take into account the true label, and Observed Criteria, which take
into account the true label. The two Basic Criteria we used are:

The S (“sum”) criterion

1

M

c∑
l=1

M∑
k=1

pk(tl), (6)

where pk(tl) is the p-value of the test example Xk with candidate label tl as in equation (1)
In effect the S-criterion is the average sum of all p-values.

The N (“number”) criterion

1

M

M∑
k=1

|{tl|pk(tl) > δ}|, (7)
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which is the average size of the prediction sets with respect to a confidence level 1− δ.
The two Observed Criteria we used are:
The OF (“observed fuzziness”) criterion

1

M

M∑
k=1

∑
l,tl 6=tk

pk(tl), (8)

which uses the average sum of the p-values of the false labels.
The OE (“observed excess”) criterion

1

M

M∑
k=1

|{tl|pk(tl) > δ, tl 6= tk}|, (9)

which represents the average number of false labels included in the prediction sets, with
respect to a confidence level 1− δ.

For all criteria smaller values indicate more informative p-values.

5.3. EEG Classification results

5.3.1. Accuracy

Table 1 presents the maximum accuracy obtained of the conventional BiLSTM techniques
when using as input the EEG amplitude and when using the EEG amplitude together with
the EOG clips. We can observe that when we use only the EEG amplitude the resulting
accuracy is higher than when we use the EEG amplitude together with the EOG clips.
This is due to the fact that the EOG clips are noisy and non stationary thus the BiLSTM
technique could not extract additional useful information for the classification task.

Table 2 reports the accuracy of the corresponding Conformal Prediction technique along
with the average confidence and credibility measures it produced. The accuracies reported
in these tables are quite high for all problems and comparable to that of the related work
presented in Section 2. When comparing the accuracy of the Inductive Conformal Predictor
technique with that of its conventional counterpart, we observe that the first leads to a very
small decrease. However this decrease is not significant especially since our main interest is
on the prediction sets provided by CP.

Table 1: Accuracy of the Underlying models

Accuracy(%)
EEG 74.80
EEG+EOG 72.92

5.3.2. Empirical Validity

Figure 1, presents the percentage of correct region predictions(the percentage of the number
of the sets that contain the correct class) as a function of the significance level for the two
BiLSTM-ICPs. In all cases the accuracy is almost equal to the required confidence level, i.e.
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Table 2: Average accuracy, credibility and confidence of the proposed CP’s

Accuracy EEG 74.31
EEG+EOG 70.14

Average confidence EEG 84.50
EEG+EOG 84.03

Average credibility EEG 63.50
EEG+EOG 63.97

the observations are close to the diagonal. We can observe some decline from the diagonal,
in fact sometimes the accuracy is smaller that the confidence level, this is due to the difficult
nature of correctly classifying EGG’s and EOG’s which is non stationary and noisy data.
Another reason is statistical fluctuations as we used 3 fixed sets as training calibration and
test sets, without performing any form of randomization, each one containing 24 instances.

Figure 1: Percentage of correct region predictions with respect to the significance level using
EEG and EEG+EOG as inputs

(a) EEG (b) EEG+EOG

5.3.3. Informational Efficiency

In this study the main objective is to complement the single predictions with probabilistic
measures of confidence and provide prediction sets with respect to a confidence level. Here
we investigate how informative our p-values are and the practical usefulness of our prediction
sets. This is done following the informational efficiency criteria described in Subsection 5.2
and proposed by Vovk et al. (2016).

Table 3 shows the values of the two unobserved criteria for the BiLSTM-ICP classifier
using as inputs EEG’s or EEGs+EOGs. The second column of the table contains the values
of the S criterion, while the rest of the columns present the N criterion for the significance
levels 0.01, 0.05, 0.10 and 0.20. Table 4 presents the values of the two observed criteria.
The second column contains the values of the OF criterion, while the rest of the columns
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Table 3: Unobserved criteria

Classification N criterion (per significance level)
Problem S criterion 0.01 0.05 0.10 0.2

EEG 0.79 2 1.7431 1.5833 1.2083
EEG+EOG 0.7994 2 1.7292 1.6042 1.2014

Table 4: Observed criteria

Classification OE criterion (per significance level)
Problem OF criterion 0.01 0.05 0.10 0.20

EEG 0.27 1 0.78 0.6875 0.4306
EEG+EOG 0.2794 1 0.77 0.6944 0.4306

give the values of the OE criterion for the significance levels 0.01, 0.05, 0.10 and 0.20. The
values of all criteria show how informative our p-values are, furthermore the values of the N
and OE criteria also demonstrate the practical usefulness of the produced prediction sets.

When we set the significance level to 0.1 the prediction sets contain on average approxi-
mately 1.6 labels, while the number of false labels is 0.69. When we increase the significance
level to 0.2 the average size contain approximately 1.2 labels and the number of false labels
is 0.43. Both techniques have similar values of S and OF criterion indicating that there is
no significant difference in the quality of the p-values. A graphical illustration of the size
of the prediction sets and the number of false labels as a function of the significance level
can be seen in figure 2 and figure 3 respectively.

Figure 2: Average size of region predictions with respect to the significance level using EEG
and EEG+EOG as inputs

(a) EEG (b) EEG+EOG
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Figure 3: Average number of wrong labels contained in region predictions with respect to
the significance level using EEG and EEG+EOG as inputs

(a) EEG (b) EEG+EOG

6. Conclusions

We examined the use of Conformal Prediction for providing confidence measures to assist a
BMI in controlling an exoskeleton using EEG and EOG clips. More specifically we developed
an ICP based on a Bidirectional Long Short Term Memory (BiLSTM) Neural Network and
examined it’s performance on a dataset consisting of EEG and EOG data collected from
one subject with a high spinal cord lesion. The main idea behind this study is addressing
the serious safety risks of unwanted actions that can be caused by misclassifications. CP
can be used for controlling the frequency of misclassifications and postponing any actions
for which there is uncertainty until more evidence towards the right action is received and
a confident enough decision can be made.

We evaluated the performance of the proposed ICP approach using EEG’s and the
combination of EEG’s with EOG’s. Our results indicate that the obtained accuracy is
comparable to that of the other techniques existing in the literature for the particular task,
while providing important confidence information that can enhance safety. The produced
prediction sets are well calibrated, which shows that the proposed approach can successfully
control the error rate of its outputs. Furthermore, considering the relatively low accuracy
of existing conventional techniques on the particular task, the quality of the obtained p-
values and the tightness of the corresponding prediction sets are arguably a good result.
We believe that in a real scenario, reinforced signal leading to a certain prediction of the
desired action can be given very fast, therefore uncertainties will only cause minor delays.
We would like to verify this in our future work.

Additionally, the dataset we used in this study is relatively small, so another future plan
is to evaluate the performance of the proposed approach on larger datasets including more
subjects. Finally, we would also like to investigate the use of other deep ANN structures or
ensemble techniques as underlying algorithms, which we believe will result in performance
improvements.
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