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Abstract

Learning Under Privileged Information (LUPI) enables the inclusion of additional (privi-
leged) information when training machine learning models, data that is not available when
making predictions. The methodology has been successfully applied to a diverse set of
problems from various fields. SVM+ was the first realization of the LUPI paradigm which
showed fast convergence but did not scale well. To address the scalability issue, knowl-
edge transfer approaches were proposed to estimate privileged information from standard
features in order to construct improved decision rules. Most available knowledge transfer
methods use regression techniques and the same data for approximating the privileged fea-
tures as for learning the transfer function. Inspired by the cross-validation approach, we
propose to partition the training data into K folds and use each fold for learning a trans-
fer function and the remaining folds for approximations of privileged features - we refer
to this as split knowledge transfer. We evaluate the method using four different experi-
mental setups comprising one synthetic and three real datasets. The results indicate that
our approach leads to improved accuracy as compared to LUPI with standard knowledge
transfer.
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1. Introduction

A classical supervised machine learning paradigm is: given a set of training examples in the
form of Independent and Identically Distributed (IID) pairs
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seek a function, in a given set of functions f(z, ), € A, that minimizes a loss function.
Training examples are represented as features x; and the same feature space is required
for predicting future observations. In the Learning Using Privileged Information (LUPI)
paradigm (Vapnik and Vashist, 2009), training examples instead come in the form of IID
triplets
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where z* denotes Privileged Information (PI). The objective is the same as in classical
machine learning, with the extension that privileged information is available in the training
stage.

The LUPI framework has been successfully applied to a diverse set of problems from
various fields such as in computer vision (Sharmanska et al., 2013), image classification
problems (Lambert et al., 2018) and in drug discovery (Gauraha et al., 2018). SVM+ was
the first realization of the LUPI paradigm that has been shown to have limited scalabil-
ity (Pechyony et al., 2010). To address the scalability problem, the LUPI framework was
extended and various knowledge transfer approaches were proposed to transfer knowledge
from the space of privileged information to the space where the decision rule is constructed,
for example see Vapnik and Izmailov (2015), Vapnik and Izmailov (2016a) and Vapnik
and Izmailov (2017). The privileged space represents information that is unavailable at
prediction time, for example it could be expensive to generate, time consuming to capture,
or restricted due to regulatory or privacy issues. In the knowledge transfer LUPI, these
privileged features are commonly approximated using regression methods constructed on
standard features, and the same data is used for learning the regression function and for
approximating the privileged features used for learning the decision rules.

Inspired by the cross-validation approach, we propose to partition the training data
into K folds and use each fold for learning the regression function and the remaining (K-1)
folds for approximating the corresponding privileged features which is used for learning the
decision rule. Then we use the synergy method (Vapnik and Izmailov, 2016b) to combine
the results from K decision rules. We refer to this method as split knowledge transfer, and
we compare it with standard knowledge transfer in LUPI, using synthetic and real datasets
for classification problems.

The paper is organized in the following way. In section 2, we outline the background
concepts and notations used throughout the paper. In Section 3 we introduce split knowl-
edge transfer in LUPIL In section 4 we perform numerical analysis on a set of real data
sets. In Section 5, we summarize our results and in Section 6 we conclude and discuss
implications and future outlook.

2. Background and Notations

In this section, we fix notations and assumptions used throughout the paper and we provide
a brief background on the LUPI framework.

2.1. Notations and Assumptions

In this paper we focus on binary classification problems. The object space is denoted by
X € RP, where p is the number of standard features and the label space is denoted by
Y € {—1,1}. The privileged feature space is denoted by X* € R™, where m is the number
of privileged features. We assume that each training example consists of corresponding
objects in decision space (z; € X), privileged space (z; € X*) and its label (y; € ), and a
training set consists of ¢ training examples, {(x;, =}, ;) }_,. However, a test object consists
of only an object in the decision space, x € X.

We denote the design matrix by Xy, = (z1,...,2¢)" and the design matrix in the
privileged space by X7, = (z7,... ,xZ)T. We use super-scripts to denote the columns of
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X, i.e. X ) denotes the 4t column, and sub-scripts to denote the rows of the matrix, i.e.
X(;) denotes the ith row. Let k C {1,...,¢}, then X_j, denotes the design matrix X with
all the rows omitted from the set k.

2.2. LUPI with Knowledge Transfer (KT-LUPI)

Privileged information, i.e. information that is available at time of training but unavailable
at prediction time, is not covered in the traditional machine learning paradigm. Originally
introduced in Vapnik and Vashist (2009), the LUPI framework allows learning algorithms to
use privileged information. The earliest implementation SVM+ (Pechyony et al., 2010) was
an extension of the Support Vector Machine (SVM) algorithm, and had limited scalability to
larger sample sizes. Consequent work in Vapnik and Izmailov (2015), Vapnik and Izmailov
(2016a) and Vapnik and Izmailov (2017) introduced knowledge transfer, addressing the
scalability problem in the LUPI framework by transferring the privileged information from
privileged feature space X* to the object space X. The knowledge transfer method allows
the learning problem to be solved by using standard SVM solvers. Below we define LUPI
with knowledge transfer (KT-LUPI).

Given ¢ IID triplets (X, X*,Y) = {(z;, x}, yi)}le for each privileged feature, a regression
function is learned by using p standard features in X as explanatory variables and privileged
feature vectors X*®, for i = 1,...,m, as response variables. In total m regression functions
¢j(x),j =1,...,marelearned. Various regression techniques can be used for approximating
privileged features.

The design matrix is augmented with the predicted values from the m regressions,
yielding a modfied dataset

1 $1(z1) g2(w1) ... dm(m1)
% _ |22 ¢1(z2) ¢2(x2) ... Sm(x2) 3)

Finally we train an SVM on the modified dataset (Y,X), and learn a decision rule F
in (m + p)-dimension decision space. Given a new object in the decision space z € X,
we compute the m-regression estimates Z* using m-regression functions learned previously,
then inference is made in the m + p dimension space using the decision rule F.

3. LUPI with Split Knowledge Transfer (SKT-LUPI)

As mentioned previously, in LUPI with knowledge transfer approach the same data is used to
learn the m-regression functions ® = ¢;(x),j = 1,...,m, and to approximate the privileged
features using standard features which can be given as

p1(z1) d2(z1) ... Pm(w1)
B(X) = o1(x2) P2(z2) .. Pm(w2) (4)
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Inspired by the cross-validation approach, we propose LUPI with Split Knowledge Transfer,
SKT-LUPI, where the training set is split into K folds of equal (or almost equal) size; in our
experiments we use K =5 or K = 10. For each k = 1,..., K, we use the k" fold (X, X})
for learning the m transfer function ®; = (P, . .. @km)T and the rest of the training set is
augmented with its predicted values from m regressions resulting in a modified design matrix
X = (X_j ®1(X_%). Using this augmented design matrix X and the corresponding labels,
a decision rule, F} is constructed. Similarly, K modified design matrices are computed for
each fold using the corresponding regression functions, and K decision rules Fi, ..., F} are
constructed.

For a new test object x € X', we compute £7, ..., 27 regression estimates using regression
functions learned previously, then inference is made for each combination (z,z}), for k =
1,..., K in the m + p dimension space using the corresponding decision rule Fj. Finally,
its label is predicted by combining results obtained from K decision rules. We use the
synergy method (Vapnik and Izmailov, 2016b) to combine the results from K decision rules.
The estimated conditional probability, using Platt’s scaling (Platt et al., 1999), of an SVM
is a monotonically increasing function of its score. The average of monotone estimated
conditional probabilities across various models are monotone, and has been shown to be
more accurate than the individual scores in Vapnik and Izmailov (2016b). The SKT-LUPI
method is summarized in Algorithm 1.

Algorithm 1 LUPI with split knowledge transfer (SKT-LUPI)
Input: training data: X, privileged data: X*,

a training algorithm for a regression model: A, number of folds: K
Output: regression functions ®(z) and Fi(z), for k=1,..., K
Steps:

Partition the training set into K folds, {X;} and {X;},k=1,..., K
for k =1...K do

for j = 1...m do

‘ Train regression function: ¢; = A(X_, Xi(,z))
end
®p = k1, - - - k)" )
Construct the augmented design matrix: Xj = (X Pp(X_g)
Learn the k" decision rule F} using the modified dataset (X, Y_z)
end
return Py (z) and Fi(x), k=1,.... K

4. Experiments

We compared SKT-LUPI with KT-LUPI on a simulated dataset, two classification datasets
(Parkinsons and Ionoshpere) from the UCI machine learning repository (Lichman et al.,
2013) and a classification dataset (kc2) from Shirabad and Menzies (2005). In the first
experiment, we simulate the training and test dataset independently as suggested in Vapnik
and Izmailov (2016a). Experiments 2, 3 and 4 are performed using the real world datasets,
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the specific properties of the corresponding training (80%) and test (20%) sets are given in
Table 1. The selection of privileged features for datasets Ionosphare and kc2 were done as
suggested in Izmailov et al. (2017) and for the dataset Parkinsons as suggested in Vapnik
and Izmailov (2017).

In all the experiments, the SVM algorithm is used to create decision rule with RBF
kernel. The SVM regularization parameter C' and the RBF kernel parameter v were selected
using the 6-fold cross-validated error rate over a two-dimensional grid, where logs(C') ranged
of from —5 to +5 with step 0.5, and logs(7y) ranged —6 to +6 with step 0.5. In the first
three experiments the following four types of classification scenarios are considered:

1. SVM on standard features: an SVM algorithm is used to create a decision rule using
an RBF kernel on standard features.

2. Knowledge transfer LUPI (KT-LUPI): knowledge transfer from privileged feature to
the space of standard features is realized using multiple linear regression or kernel
ridge regression with RBF kernel. After augmenting standard features with regressed
values of privileged features, an SVM algorithm is used to create a decision rule with
RBF kernel on the augmented decision space.

3. Split Knowledge transfer LUPI (SKT-LUPI): knowledge transfer from privileged fea-
ture to the space of standard features is realized using SKT-LUPI (Algorithm 1) with
multiple linear regression or kernel ridge regression with RBF kernel. After augment-
ing standard features with regressed values of privileged features, an SVM algorithm
is used to create a decision rule with RBF kernel on the augmented decision space.

4. SVM on all features (standard and privileged features): an SVM algorithm is used to
create a decision rule with RBF kernel on all features.

Table 1: Description of the datasets used in the evaluation.

Dataset Training Test Standard Features Privileged Features
Parkinsons 156 39 12 10
Tonosphere 280 71 30 4
kc2 303 152 114 30

Experiment 1: Synthetic Dataset

We first consider the simple synthetic example as given in Vapnik and Izmailov (2016a),
where two-dimensional random points (z(), 2(?)) as standard features are generated as
uniformly distributed in the square [—1,1] x [—1,1], a privileged feature is computed as
2B = 20 4 2@ 4+ 01 %« W, where W ~ Normal(0,1), and the label is computed as y =
sign(z(M + (). We considered all the four classification scenarios mentioned above, where
knowledge transfer from privileged feature to the space of standard features is performed
using multiple linear regression in KT-LUPI and SKT-LUPI. The average error rate for
training sizes (25, 35, 45 55) and a test data of size 10000, over 20 runs are reported in
Table 2.
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Table 2: Comparison of error rates (in %) on the synthetic dataset between four types of
classification scenarios considered: SVM on standard features, LUPI with knowl-
edge transfer (KT-LUPI), LUPI with split knowledge transfer (SKT-LUPI) with
5-folds, and SVM on privileged features. Multiple linear regression is used for
knowledge transfer.

Training Size | SVM on standard features | KT-LUPI | SKT-LUPI | SVM on PI

25 9.86 7.68 6.10 3.39
35 7.26 5.42 4.80 3.19
45 7.21 4.69 4.22 2.98
95 6.88 5.04 4.84 2.51

Table 3: Comparison of error rates (in %) on modified real datasets between four types of
classification scenarios considered: SVM on standard features, LUPI with knowl-
edge transfer (KT-LUPI), LUPI with split knowledge transfer (SKT-LUPI) with
10-folds, and SVM on all features (standard features and privileged features).
Multiple linear regression is used for knowledge transfer.

Dataset ‘ SVM on standard features ‘ KT-LUPI ‘ SKT-LUPI ‘ SVM on all features
Parkinsons 10.25 8.58 7.05 6.53
Tonosphere 5.49 4.92 4.29 4.85
ke2 17.28 17.09 16.99 16.80

Experiment 2: Knowledge Transfer using Linear Transformation

In this experiment we then used the three real dataset as given in Table 1. All the four
classification scenarios as in Experiment 1 are considered, here for the fourth case we con-
sidered all the features (standard-+privileged), and multiple linear regression was used for
knowledge transfer in KT-LUPI and SKT-LUPI. The average error rates over 20 runs are
reported in Table 3.

Experiment 3: Knowledge Transfer using non-Linear Transformation

In this experiment we consider three datasets as given in Table 1. All the four classification
scenarios as in Experiment 2 are considered, except that we used kernel ridge regression in
KT-LUPI and SKT-LUPI for knowledge transfer. The average error rate over 20 runs are
reported in Table 4.
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Table 4: Comparison of error rates (in %) on modified real datasets between four types of
classification scenarios considered: SVM on standard features, LUPI with knowl-
edge transfer (KT-LUPI), LUPI with split knowledge transfer (SKT-LUPI) with
10-folds, and SVM on all features (standard features and privileged features).
Kernel ridge regression is used for knowledge transfer.

Dataset ‘ SVM on standard features ‘ KT-LUPI ‘ SKT-LUPI ‘ SVM on all features

Parkinsons 10.25 8.97 7.82 6.53
Tonosphere 5.49 5.07 4.57 4.85
ke2 17.28 17.23 16.95 16.80

Experiment 4: Analysis of Variance on Error rate

This experiment is performed to analyze the variance on error rate for KT-LUPI and SKT-
LUPI. The spread of error rates over 10 runs using the synthetic dataset (with 25 training
examples), Parkinsons, kc2 and Ionoshpere datasets are plotted in Figure 1.

5. Results and Discussion

The aim of this paper was to introduce split knowledge transfer and to explore its perfor-
mance in different settings. Our results indicate that SKT-LUPI yields lower error rates
than KT-LUPI and SVM on standard features when evaluated on a synthetic dataset (see
Experiment 1 and Table 2), and in Experiment 2 and 3 using three real world datasets
for linear regression (Table 3) and non-linear regression (Table 4). We also observed that
SKT-LUPI yields lower error rates than SVM on all features for Ionosphere dataset. Results
from Experiment 4 show indications that SKT-LUPI has lower variance on error rates as
compared to KT-LUPI.

SKT-LUPI is, because of the K folds, more computationally demanding than KT-LUPI,
however the overhead is not large for the datasets in this study and the implementation can
easily be parallelized if applied to larger datasets.

6. Conclusion and Future Scope

In this manuscript we introduced LUPI with split knowledge transfer (SKT-LUPI), where
the training data is divided in K folds and where each fold iteratively is used for learning
the transfer function and the remaining folds for approximations of privileged features. We
demonstrated its advantages compared with standard K'T-LUPI, with SKT-LUPI showing
a lower error rate and reduced variance on synthetic and real data. The methodology is
general and can be directly applied to LUPI settings with knowledge transfer.

Future plans include to extend SKT-LUPI for other machine learning frameworks such
as artificial neural networks, and apply it to regression and unsupervised problems.
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Figure 1: Results comparing the error rates over 10 runs for KT-LUPI and SKT-LUPI
on a synthetic dataset (with 25 training examples) and the Parkinsons, kc2 and
Tonoshpere datasets.
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