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Abstract

In real-world scenarios, interpretable models are often required to explain predictions, and
to allow for inspection and analysis of the model. The overall purpose of oracle coaching is to
produce highly accurate, but interpretable, models optimized for a specific test set. Oracle
coaching is applicable to the very common scenario where explanations and insights are
needed for a specific batch of predictions, and the input vectors for this test set are available
when building the predictive model. In this paper, oracle coaching is used for generating
underlying classifiers for conformal prediction. The resulting conformal classifiers output
valid label sets, i.e., the error rate on the test data is bounded by a preset significance
level, as long as the labeled data used for calibration is exchangeable with the test set.
Since validity is guaranteed for all conformal predictors, the key performance metric is
efficiency, i.e., the size of the label sets, where smaller sets are more informative. The main
contribution of this paper is the design of setups making sure that when oracle-coached
decision trees, that per definition utilize knowledge about test data, are used as underlying
models for conformal classifiers, the exchangeability between calibration and test data is
maintained. Consequently, the resulting conformal classifiers retain the validity guarantees.
In the experimentation, using a large number of publicly available data sets, the validity of
the suggested setups is empirically demonstrated. Furthermore, the results show that the
more accurate underlying models produced by oracle coaching also improved the efficiency
of the corresponding conformal classifiers.

Keywords: Interpretability, Decision trees, Classification, Oracle coaching, Conformal
prediction

1. Introduction

As Al is increasingly used not only for decision support, but also automated decision mak-
ing, trust in the resulting decisions or recommendations becomes vital. Consequently, how
to make AI solutions trustworthy is today a key question addressed by researchers from
many disciplines. Al trustworthiness is also strongly manifested in the two vibrant areas
Explainable AT (XAI) and Fairness, Accountability and Transparency (FAT). Professional
associations such as the ACM (2017), FAT /ML (Diakopoulos et al., 2017) and IEEE (2017)
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have proposed guidelines and frameworks for FAT /XAI, incorporating demands to be placed
on AT solutions, as well as evaluation criteria for explainability and FAT. Specifically, hu-
mans interacting with, or affected by, Al must be able to make informed judgments about
when to trust the system.

Consequently, interpretability is currently recognized as a key property of trustworthy
predictive models. Only interpretable models make it possible to understand individual
predictions, without the usage of specialized, and often very complex, explanation modules.
In addition, with interpretable models, inspection and analysis of the model itself becomes
straightforward. The importance of interpretable models is, of course, not new. In fact, it
has been present in the AI discourse since the era of expert systems, and it is also the focus
of recent high-impact publications within machine learning, such as the LIME framework
(Ribeiro et al., 2016).

The DARPA Research Programme on Explainable AI (2016), targets the development
of new Al solutions that produce “more explainable models, while maintaining a high level
of learning performance (e.g., prediction accuracy)”. Similarly, The FAT/ML Principles
for Accountable Algorithms and a Social Impact Statement for Algorithms (Diakopoulos
et al., 2017), include both ezplainability and accuracy as vital components of accountable
algorithms. It is also interesting to note that one guiding question from the FAT /ML
Principles for Accountable Algorithms is: “How confident are the decisions output by your
system?” Thus, accountability puts demands on not only explainability and accuracy, but
also requires an ability to, at the very least, report uncertainty. In fact, the ability for
an algorithm to somehow reason about its own competence, specifically about confidence
in individual recommendations, is deemed to be extremely valuable. So, the goal becomes
algorithms producing explainable and accurate models, that are able to assess and clearly
communicate a confidence measure for each prediction or recommendation. In our opinion,
the prediction with confidence framework is uniquely well positioned to meet these demands.

While the potential benefits of prediction with confidence, i.e., conformal prediction
and Venn predictors, are huge, these techniques have been slowly adopted by the machine
learning community. This is despite the very solid theoretical foundation, and a fairly large
number of papers published in top-tier machine learning venues. One potential explanation
for this is that the techniques remain somewhat inaccessible; published papers are often
theoretical in nature, typically lacking recommendations and best practices for usage in
real-world data analytics projects. In addition, published case-studies and applications
often focus on safety-critical scenarios, thus limiting the impact. In reality, the guarantees
provided by conformal and Venn prediction would be extremely valuable also in many
other situations. Finally, it must be noted that conformal and Venn predictors are not
algorithms that can be used off-the-shelf, in a plug-and-play fashion. Instead, they contain
a large number of parameters, and often some modifications are necessary based on, for
instance, the kind of underlying model used and other constraints. Consequently, it becomes
important to identify and analyze common situations where prediction with confidence could
provide an advantage, in order to not only demonstrate the potential, but also provide
recommendations for the usage.

With this in mind, we study one quite specific, but also very common scenario, in this
paper. First of all, the predictive model must, for some reason, be interpretable, i.e., it
should be possible to both follow the logic behind individual predictions, and to manually
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inspect the model in order to obtain insights by analyzing overall relationships. In addition,
in the targeted situation, we assume that the predictive model is explicitly built for a certain
set of test instances, and that these input vectors are available when generating the model.
While this initially may appear to be a very specialized scenario, it is in fact extremely
common. One example is when recipients of a marketing campaign are found from analyzing
historical data of customers. Here, the company would of course have access to the profiles
of the potential recipients when generating the model. Another example is when using
predictive analytics for in silico modeling in drug discovery, i.e., when using a data-driven
approach to finding molecules with certain properties, e.g., non-toxic. In this scenario, the
model would be built using a labeled data set consisting of molecule descriptions and a
target variable showing if the molecule is toxic or not. However, the intended usage is of
course to predict the toxicity of molecules not used when generating the model, and a set
of such signatures would often be available already when the model is built, simply because
the purpose of the modeling in the first place was to predict the toxicity of these specific
substances.

2. Background

2.1. Decision trees

Decision trees are relatively accurate and comprehensible models with learning algorithms
requiring a minimum of parameter tuning. The two most notable decision tree algorithms
are C4.5/C5.0 (Quinlan, 1993) and CART (Breiman et al., 1984). Decision trees are inher-
ently capable of reporting class membership probabilities; in which case they are referred
to as Probability Estimation Trees (PETs) (Provost and Domingos, 2003). For PETSs, the
most straightforward way to obtain a class probability is to use the relative frequencies,

?j — .g(lv]) 1
TS gk W

where ¢(i, j) is the number of instances belonging to class j that falls in the same leaf as
instance 4, and C' is the number of classes.

Intuitively, though, a leaf containing many training instances is a better estimator of
class membership probabilities, so often, a Laplace estimate is used instead,
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It should be noted that the usage of a Laplace estimator also will lead to more fine-grained
probability estimates since the number of instances is considered.

2.2. Oracle coaching

In predictive modeling, the available labeled data is normally split into different parts,
where each part is used for a different purpose.

e The training set, Zy = {(x1,91), ..., (X, y1)} is the part of the data set used to build
one or more models.
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e The test set, Zie = {(Xi4+1,Y1+1)s - - - » (Xt Y1) } 18 used to evaluate the model(s).

In real-world scenarios, once the model building is finished, it would be applied to yet
another data set, where correct target values are not known, for the actual predictions.
This data set is sometimes referred to as the production set. So, the main usage of the test
set is actually to estimate the performance on the production set. In order to make these
estimations unbiased, the test set can not be used in any way when building the model.

Oracle coaching, introduced by Johansson and Niklasson (2009) is a methodology aimed
at producing highly accurate interpretable models, with a specific set of production instances
in mind. When empirically evaluating oracle coaching, a test set will normally be used to
emulate the production set in the usual manner, i.e., using the correct target values to
evaluate predictive performance. Oracle coaching utilizes the input vectors of the test
set Zie = {Xi41,- .., X144}, during model construction, but of course not the corresponding
targets. This will produce a model that is specialized on the test set at hand. Consequently,
oracle coaching requires that the test input vectors are available at the model building stage,
as is often the case when performing batch predictions. Thus, oracle coaching is applicable
to many but not all predictive tasks. Specifically, it can not be used in streaming scenarios
where test instances arrive one by one.

The key idea of oracle coaching is to utilize a very accurate but opaque model, called the
oracle, in the model building process. The simplest procedure for building an interpretable
model using oracle coaching is:

1. the oracle is constructed, using the training set Z;, = {(x1,91), ..., (x;,y1)}

2. the oracle is applied to the test set Zie = {(X141, Yi+1)s - - - » (Xi4r, Yi+r) }, to produce the
oracle test set, ZQ = {(X141,141), - - - » (Xi4rs D14r) }, Where ; is the oracle prediction
for input vector x;

3. a transparent model is constructed, using Z< as training data

Oracle coaching resembles semi-supervised and transductive learning schemes, but explic-
itly focuses on situations where the final model must be interpretable. While the process
where a weaker transparent model is built using a stronger opaque model is similar to rule
extraction, the purpose is different. In oracle coaching, the intended result is a very accu-
rate interpretable model, customized for predicting a specific set of instances. The way to
achieve this is by utilizing knowledge about the corresponding input vectors, and having a
stronger model coaching a weaker, but interpretable, model.

In previous studies, see e.g., Johansson and Niklasson (2009), it was shown that using
only the oracle data set to generate the interpretable model could result in an overly specific
model. This problem was, however, overcome by combining the original training data with
the oracle data set. Oracle coaching has been evaluated for classification, using different
combinations of oracle and transparent models, e.g., random forests and RBF neural net-
work ensembles coaching decision trees and ordered rule sets (Johansson et al., 2012). It
has also been demonstrated to work on real-world data sets. As an example, Crielaard and
Papapetrou (2018) successfully used oracle coaching on five real-world data sets constructed
from electronic health records to obtain explainable predictions of adverse drug effects.
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2.3. Conformal prediction

Conformal prediction (Vovk et al., 2005) provides predictions with guarantees. Conformal
predictors are exactly wvalid, which means that given a user-defined significance level € €
(0,1), the predictor is guaranteed to get an error rate equal to € in the long run. In
order to achieve this, a conformal classifier relies on a nonconformity function - a function
f(z,¢) — R that scores instance z = (z,y) based on how well it complies with a sequence
of instances ¢ = z1, ..., zp, in such a way that nonconforming (i.e., uncommon or unlikely)
instances achieve higher values than more conforming instances. The standard approach is
to base the nonconformity function on the predictions made by a regular classifier, often
referred to as the underlying model. Nonconformity then becomes

f(zi,¢) = Alh(wi), yil, 3)

where h is a classifier induced from ¢ and A is a function measuring the prediction errors
of h. Within classification, the hinge error function is commonly used as A,

Alh (i), yil =1 = h(yi | ©), (4)

where h(y; | ;) is the probability estimate for the correct class y; produced by h for input
vector x;.

There are a few different ways to apply conformal prediction and one of the more popular
is inductive conformal prediction (ICP) (Papadopoulos et al., 2002). One of its main benefits
is the low computational cost, since only one underlying model has to be trained. ICP works
in the following way:

1. Divide the training set Z;. into two disjoint sets

o A proper training set Z;.

e A calibration set Z., where |Z| = q.
2. Train a classifier h using the proper training set Z;
3. Let ai,...,aq = f(2i,24) : 2 € Ze.

The conformal predictor is defined and applied to a new test object z; from Z;. in the
following way:

1. Decide which significance level € € (0,1) to use.
2. For each class label §y € Y:

(a) Tentatively label x; as (xj, 7).
(b) Let af = f[(x;,9), Zi]

(c) Calculate pg as

<

’{ZiEZC:Oéi>OA}‘
g+1

HziEZc:ai:a?H—&—l
g+1

e

P =

+0 : (5)

where 0; ~ U|0, 1].
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(d) Let the label set I'; = {gj ey: p? > e} be the conformal prediction.

The probability that the true label y; is not part of F; is €, i.e., an error (meaning that
y; ¢ I'§) occurs with probability e.

3. Method

The overall purpose of this study is to design and evaluate setups combining oracle coaching
with conformal prediction in order to create highly accurate, but interpretable, models. In
the experimentation, random forests (Breiman, 2001) with 300 trees are used as the oracles,
and CART (Breiman et al., 1984) decision trees, as implemented in the MatLab statistics
toolbox, are used as the interpretable models.

Before generating transparent models, the random forest is trained using the proper
training set Z;. The resulting model (the oracle) is then applied to both the calibration
instances and the test instances, thus creating predictions for these two data sets. Conse-
quently, we have access to four different labeled data sets:

e The proper training set, Zy, i.e., original training input vectors with corresponding
true targets.

e The proper calibration set, Z., which is the original calibration data set, i.e., original
calibration input vectors, with the corresponding true targets.

e The oracle calibration set, Z? , consisting of the input vectors from the calibration
set, but with the predictions from the oracle for these instances as the target.

e The oracle test set, Ztoe , consisting of the input vectors of the test instances, with
predictions from the opaque model as target values.

When oracle coaching was originally suggested, different combinations of data were
described using made-up names, combining the terms induction (generating models from
training data), extraction (building models on training data but with oracle outputs as
targets) and explanation (generating models on test data with oracle outputs as targets).
In this study, extraction is not included.

In ICP, the calibration data and the test data must be exchangeable, i.e., calibration
and test instances must be treated identically. This would, however, not be the case for
a majority of the setups suggested in the oracle coaching framework. As an example, in
the explanation setup, i.e., where a transparent model is trained on ZZ, the test instances
would have been part of the training set (although with predictions from the oracle as
targets), but the calibration instances would not. Consequently, the nonconformity scores
from the calibration set would not come from the same distribution as the nonconformity
scores from the test set. Using that setup, the nonconformity scores from the test set would
most certainly be lower, since the decision tree was optimized on these instances. This
means that the validity guarantees of the conformal predictor would be lost.

One key contribution of this paper is therefore to suggest modified setups in the oracle
coaching framework, so that when conformal predictors are built on top of these models,
the conformal predictors are valid. For the conformal prediction, the calibration is always
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performed on the proper calibration set Z.. The difference between the three setups eval-
uated is therefore only which data that is used for generating the decision tree. We first
describe the three setups below, before showing how two setups utilizing oracle coaching
can be used as underlying models for valid conformal predictors.

e Induction (I): The decision tree is induced using the proper training set Z;.

e Explanation (X): The decision tree is induced on the union of the oracle calibration
set and the oracle test set, i.e., Z9 U ZZ.

e Indanation (IX): Uses the union of the proper training set, the oracle calibration
set and the oracle test set for induction, i.e., Z; U Z9 U Z2.

We now argue that in the X and IX setups, as defined and described above, calibration
and test instances are treated in an identical way. First of all, both the calibration instances
and the test instances are kept hidden from the oracle. Second, all calibration instances and
test instances are used to induce the final transparent model, but with the outputs from the
oracle as targets. So, in these setups the nonconformity values of the calibration and test
sets, e.g., the hinge errors, must come from the same distribution, as long as the calibration
and test sets are exchangeable to start with. Consequently, these setups will produce valid
conformal predictors.

In the experimentation, we will demonstrate empirically that these setups produce well-
calibrated conformal classifiers. Most importantly, we will compare the efficiency of oracle
coached trees, to trees induced using training data only. For this comparison, we will use
the following two metrics:

e AvgC: The average number of class labels in the prediction sets, i.e., a direct measure
of how good the conformal predictor is at rejecting class labels.

e OneC: The proportion of all predictions that are singletons. The motivation for OneC
is that singleton predictions are the most informative, and often what is sought for.

In addition, we will look at the accuracy of the singleton predictions (OneAcc). Here we
would expect OneAcc to be higher than the accuracy of the underlying model, i.e., showing
that we have reason to trust the singleton predictions more than an arbitrary prediction
from the underlying model.

The study consists of two experiments. In Experiment 1, we use only two-class data sets,
while Experiment 2 uses multi-class data sets. It may be argued that conformal classification
is uniquely suitable for the the multi-class scenario, since label sets can be very valuable in
many situations, e.g., if the main purpose is to rule out certain hypotheses.

In the two-class scenario, the nonconformity measure used is the hinge error, see (4),
i.e., a pattern is considered to be nonconforming when the probability estimate for the true
class is low. In the multi-class scenario, we also evaluate a nonconformity measure based
on the margin error,

A[h(x;),y:] = argmax h(g | x;) — h(y; | zi), (6)
JEY N§#y;
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So, a nonconforming example has a low probability estimate for the true class label
and/or a high probability estimate for an incorrect class label. Johansson et al. (2017)
evaluated these two nonconformity functions for neural networks. The results showed that
the usage of hinge errors as nonconformity function rejected the most labels, while the
margin-based nonconformity function lead to the highest number of singleton predictions.

To be interpretable, we want the conformal trees to be fixed after the calibration step,
thus allowing inspection and analysis. We argue that the resulting models are very infor-
mative, due to the label set predictions and the guaranteed validity. There is, however,
one subtlety that must be considered. In conformal prediction, as seen in Section 2.3, ties
among the nonconformity scores are normally handled by including a random number when
calculating the p-values, see (5). When using trees, all instances in the same leaf will of
course have the same nonconformity value, and if the randomized tie-breaker is used, this
will sometimes lead to different label sets for different test instances falling in the same leaf,
severely hampering the interpretability. At the same time, including all ties will lead to
quite conservative trees, i.e., sacrificing efficiency. Using Laplace estimates, different leaves
will rarely have the same nonconformity values, so in general there will be exactly one leaf,
corresponding to the p-values just around the significance level, that suffers from the prob-
lem with different label sets. We investigate this issue further when showing some sample
trees in Section 4.

To start with accurate decision trees, the trees were optimized using an internal cross-
validation over minleaf values between 1 and 20. The minleaf parameter controls the depth
of the tree, since every leaf node must contain at least minleaf training instances. For the
actual evaluation, 10x4-fold cross-validation was employed. Model sizes are measured using
the total number of nodes. The data sets used are all publicly available from either the
UCI (Bache and Lichman, 2013) or the PROMISE (Sayyad Shirabad and Menzies, 2005)
repositories.

4. Results

4.1. Experiment 1

In Figure 1, two conformal trees induced for the diabetes data set are shown. The first is
induced using ordinary induction (I) and the second using indanation (IX). The significance
level is € = 0.2. As can be seen, some of the leaves predict both classes while other leaves
predict a single class. Both trees have one leaf with one of the class labels in bold (the lowest
leaf for (a) and the second lowest leaf for (b)), which is the label that has been excluded for
some test instances but not for others (see Section 3). In the example, IX results in more
accurate trees (I: 75.5% vs IX: 78.1%), smaller leaves on average (AvgC for I: 1.2 vs IX:
1.1) and more instances being predicted as singleton predictions (OneC for I: 81.3% vs IX:
89.1%).
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Figure 1: (a) Induction and (b) Indanation for the diabetes data set

Table 1 below shows the predictive performance and the model sizes. Starting with the
accuracy, we see that the random forest, as expected, is the most accurate.

Table 1: Predictive performance and tree sizes for two-class data sets

Accuracy AUC Size

RF I IX X RF I IX X I IX X
colic 830 .842 843 .834 | .878 .846 .853 .850 | 5.4 7.4 7.2
creditA 870 .845 .866 .863 | .929 .895 .908 .908 | 8.1 17.9 12.2
diabetes 756 741 751 751 | 818 744 771 755 | 12.8 259 19.1
german .668 .689 .677 .683 | .608 .517 .562 557 | 3.4 32.3 222
haberman 686 .705 .688 .701 | .641 .597 .607 .607 | 5.0 24.2 124
heartC 811 744 802 793 | .896 .783 .839 .821 | 88 19.1 109
heartH 817 .789 803 .807 | .885 779 .820 .812 | 5.0 11.2 7.5
heartS 818 739 796 .792 | .893 .764 838 .827 | 7.0 14.5 11.9
hepati .819 784 817 810 | .817 .566 .644 .622 | 1.9 5.6 4.5
iono 929 879 915 918 | 974 886 .930 .920 | 7.6 153 84
je4042 724 703 714 708 | .802 .737 755 742 | 7.9 173 95
jed243 .661 .638 .656 .657 | .718 .654 .690 .682 | 11.5 33.0 17.6
kel 742 734 737 741 | 671 .600 .617 .606 | 6.2 34.6 19.9
kc2 Srr9 0 778 79 784 | 824 743 755 732 | 5.3 10.6 6.4
ke3 .859 .852 .859 .864 | .755 .5b53 572 530 | 34 54 22
liver 702 .625 .655 .657 | .730 .614 .646 .650 | 11.3 29.9 16.2
pcd .893 871 .886¢ .885 | .918 .849 .806 .738 | 12.4 19.0 12.9
sonar 763 .675 .737 737 | .857 .690 .763 .760 | 4.9 10.5 8.1
spect .881 .887 .885 .890 | .637 .502 .514 .500 | 1.2 29 1.0
spectf .804 77T 792 795 | .832 .657 .635 .565 | 54 6.5 3.3
transfusion 718 748 737 740 | 671 .682 .691 .686 | 8.1 26.2 149
ttt 947 893 929 914 | 992 .949 .974 954 | 47.7 72.7 53.1
wbc 954 906 .938 .935 | 982 .933 951 .946 | 85 12.7 74
vote .864 .837 .853 .857 | 911 .865 .875 .842 | 15.0 20.6 8.2
Mean .804 .778 .796 .797|.818 .725 .751 .734| 8.9 19.8 12.3
Mean Rank 1.73 3.46 2.48 2.33|1.13 3.63 2.13 3.13|1.21 3.00 1.79
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Interestingly enough, the two oracle-coached setups are almost as accurate as the random
forest, clearly outperforming the induced tree. Regarding AUC, the differences are larger,
and there is a clear ordering; RF, IX, X and I. When comparing model sizes, it must be
noted that most trees are very compact, often containing fewer than 10 nodes.

In order to determine any statistically significant differences, we performed Friedman
tests (Friedman, 1937), followed by Bergmann-Hommel’s dynamic procedure (Bergmann
and Hommel, 1988) to establish all pairwise differences at o = 0.05. From this analysis, we
see that for accuracy, I is significantly worse than all other setups. For AUC, the random
forest had a significantly higher AUC than IX, which in turn significantly outperformed I
and X. Regarding model sizes, all differences are significant. From this analysis, it is obvious
that oracle coaching will produce stronger trees, compared to if they are induced directly
from the data.

Turning to the conformal predictors, Table 2 below shows the error rates. From these
results, where the empirical error rates are very close to the significance levels, it is obvious
that IX and X produce valid conformal predictors.

Table 2: Empirical error rates - two-class data sets

e=0.2 e=0.1 e =0.05 e =0.01
I IX X I IX X I IX X I IX X
colic .205 .206 .208 | .107 .106 .106 | .054 .051 .055 | .009 .010 .013
creditA 203 .202 .204 | .104 .107 .105 | .052 .058 .051 | .012 .009 .010
diabetes .205 .203 .201 | .103 .097 .101 | .052 .048 .050 | .012 .010 .009
german 205 202 .198 | .105 .097 .097 | .057 .049 .049 | .011 .012 .012
haberman | .198 .195 .187 | .107 .102 .092 | .049 .054 .042 | .011 .009 .008
heartC 205 .208 .211 | .098 .102 .093 | .054 .050 .043 | .009 .011 .009
heartH 192 0194 189 | .093 .095 .095 | .045 .048 .049 | .010 .010 .009
heartS 188 1184 .196 | .096 .094 .087 | .049 .044 .041 | .009 .008 .009
hepati 196 188 186 | .088 .085 .094 | .041 .046 .045 | .006 .013 .007
iono 204 208 .199 | .110 .104 .102 | .050 .056 .050 | .010 .012 .009
jed042 196 0196 .200 | .099 .096 .091 | .057 .045 .046 | .009 .009 .008
jed243 185 188 .199 | .087 .096 .094 | .047 .050 .044 | .011 .014 .006
kel .201  .203 .204 | .103 .101 .102 | .050 .052 .052 | .010 .010 .011
kec2 198 198 .201 | .099 .101 .095 | .043 .052 .047 | .009 .011 .010
ke3 .206  .203 .208 | .106 .100 .099 | .054 .052 .046 | .010 .011 .011
liver 206 212 .196 | .103 .112 .099 | .051 .059 .050 | .010 .012 .012
pc4 197 0199 199 | .099 .099 .100 | .051 .049 .047 | .010 .009 .011
sonar 205 195 186 | .096 .076 .085 | .052 .044 .042 | .013 .009 .013
spect 199 200 .203 | .094 .090 .090 | .041 .047 .048 | .009 .010 .010
spectf 186 .193  .191 | .090 .093 .087 | .045 .051 .047 | .007 .010 .007
transfusion | .197 .204 .204 | .106 .097 .103 | .055 .049 .049 | .012 .009 .008
ttt 205 .199 .202 | .103 .103 .096 | .052 .053 .049 | .011 .010 .009
wbc 203 .207 .219 | .104 .106 .111 | .055 .050 .049 | .007 .012 .008
vote 216 .212  .209 | .112 .106 .102 | .055 .050 .052 | .014 .012 .009
Mean .200 .200 .200|.101 .099 .097|.050 .050 .048 |.010 .011 .010

Investigating the efficiency, Table 3 below shows AvgC. While the differences are rather
small in absolute numbers, there is a clear ordering for all significance levels except € = 0.01,
i.e., IX is the most efficient followed by X. Statistical tests show that for the significance
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levels € € {0.01,0.05,0.1}, IX obtained a significantly lower AvgC than I and X. For e = 0.2,
IX and X were significantly more efficient than I.

Table 3: Efficiency AvgC - two-class data sets

e=0.2 e=0.1 e = 0.05 e =0.01
I X X I X X I X X I IX X
colic 093 092 093|124 123 123|162 1.61 158|192 193 191
creditA 091 0.89 089 | 1.12 1.08 1.08 | 138 1.32 134|185 1.86 1.85
diabetes 1.13 1.11 1.12 | 146 1.44 1.451|1.69 169 1.71 | 192 193 1.94
german 1.30 1.28 1.28 | 1.64 162 1.62 | 1.82 1.80 1.81 | 1.97 1.96 1.96
haberman 1.23 125 127|156 155 1.61 | 1.78 1.76 1.81 | 1.96 196 1.97
heartC 1.13 1.00 1.02 | 147 1.34 1.41 | 171 165 1.70 | 195 193 1.94
heartH 1.08 1.02 1.02 | 144 136 139|170 162 1.66 | 1.93 1.92 1.93
heartS 1.20 1.05 1.05|1.52 140 1.41 | 174 168 1.68 | 1.95 194 1.94
hepati 1.08 1.02 1.04 | 149 1.41 1.41 | 174 169 171|196 195 1.93
iono 0.88 0.84 0.8 | 1.06 0.98 099|137 1.19 124|184 1.76 1.81
jed042 1.26 1.23 1.22 | 1.57 157 1.59 | 1.76 1.77 1.78 | 1.96 1.95 1.95
jed243 143 137 1.36 | 1.71 1.66 1.67 | 1.85 1.82 184|196 195 1.97
kel 1.15 1.15 1.14 | 1.53 1.51 1.53 | 1.77 1.75 1.76 | 1.95 1.95 1.95
kc2 1.05 1.04 1.05| 133 135 137|162 163 1.66 | 1.92 1.92 1.93
ke3 091 090 090|119 1.18 1.21 (154 1.52 1.58|1.90 1.90 1.91
liver 142 133 136 | 1.70 165 1.66 | 1.85 1.82 1.83 | 1.97 1.96 1.96
pcd 0.88 0.87 088 | 1.06 1.04 104|123 129 138|144 1.55 1.74
sonar 1.34 122 1.24|165 1.61 1.61 | 1.81 1.78 1.79|1.96 195 1.95
spect 090 090 090|119 1.19 119|160 1.57 159|191 191 1.92
spectf 1.09 1.06 1.08 | 1.39 141 150|164 164 1.72| 193 1.93 1.95
transfusion 1.13 1.12 1.12 | 1.40 1.42 1.42|1.65 1.67 168 | 1.93 193 1.94
ttt 0.85 0.83 0.84|1.02 096 1.00| 1.15 1.07 1.16 | 1.38 1.33 1.46
wbc 0.85 0.83 083099 094 094|124 1.12 121|182 1.76 1.81
vote 0.90 0.89 090 | 1.12 1.12 1.14 | 1.37 1.37 1.47 | 1.75 1.71 1.87
Mean 1.08 1.05 1.05|1.37 1.33 1.35|1.61 1.58 1.61|1.88 1.87 1.90
Mean rank | 2.83 1.42 1.75|2.46 1.29 2.25|2.33 1.29 2.38|2.21 1.46 2.33

Table 4 below shows the OneC results. As expected, these are very similar to AvgC.
For two-class problems, the only difference between the two metrics is that AvgC rewards
the ability to exclude labels, even if it results in empty label sets. Statistical testing shows
that IX is significantly more efficient than I and X, for all e-values but 0.2, where there are
no significant differences.
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Table 4: Efficiency OneC - two-class data sets

e=0.2 e=0.1 e = 0.05 e =0.01
I X X I X X I X X I X X
colic 922 921 918 | .761 .769 .766 | .380 .392 .421 | .076 .073 .090
creditA 914 892 .889 | .876 .925 917 | .622 .680 .660 | .155 .141 .148
diabetes .866 .887 .880 | .544 .560 .546 | .312 .313 .285 | .076 .066 .056
german 698 719 .717 | .355 .384 .384 | .182 .202 .191 | .035 .039 .039
haberman 775 752 733 | 441 449 .386 | .222 236 .187 | .040 .045 .033
heartC 858 .927 913 | .531 .663 .591 | .292 .347 .301 | .051 .070 .060
heartH 904 .927 936 | .559 .640 .605 | .295 .379 .335 | .069 .078 .067
heartS 796 910 913 | 477 599 591 | .257 .318 .316 | .048 .060 .064
hepati 906 .923 .921 | .514 591 587 | .256 .314 .292 | .043 .054 .070
iono 883 .840 .858 | .917 .958 951 | .634 .803 .761 | .160 .235 .194
jed042 744 .T71 776 | 434 434 411 | 241  .230 .217 | .042 .047 .046
jed243 575 .625  .639 | .293 343 .325 | .149 .180 .162 | .040 .052 .029
kel 854 .855 .864 | .472 .486 .471 | .229 .248 .240 | .046 .050 .047
kc2 920 934 928 | .670 .651 .629 | .378 .371 .339 | .081 .081 .073
ke3 908 .899 .904 | .806 .816 .788 | .462 .480 .417 | .096 .098 .085
liver 585 .673  .638 | .300 .350 .335 | .149 .179 .172 | .028 .038 .036
pcd .880 .871 .876 | .935 .962 .958 | .770 .711 .618 | .564 .445 .264
sonar 665 .785 .755 | .348 .393 .391 | .189 .222 .211 | .042 .050 .047
spect 897 .898 .895 | .804 .800 .801 | .403 .433 .411 | .086 .088 .079
spectf 899 920 .899 | .607 .593 .501 | .357 .357 .276 | .073 .069 .052
transfusion .864 .874 .876 | .603 578 .584 | .354 .329 .317 | .070 .066 .059
ttt 846 .829 .844 | .947 931 .948 | .847 .927 .838 | .625 .673 .543
wbc .854 .832 .825 | .954 .942 942 | .754 .873 .778 | .177 .243 .195
vote 897 .890 .897 | .877 .881 .859 | .632 .631 .532 | .255 .289 .129
Mean .830 .848 .846 | .626 .654 .636 |.390 .423 .387|.124 .131 .104
Mean rank | 2.21 1.83 1.96 | 2.33 1.40 2.27|2.33 1.29 2.38|2.21 1.46 2.33

Looking at the OneAcc results in Table 5 below, it is reassuring to see that they are
generally substantially higher than the accuracy of the models in Table 1. This means
that we can trust the singleton predictions from the conformal predictors more than an
arbitrary prediction from the tree. Comparing the setups, we see that IX, despite having
the highest proportion of singleton instances, as seen by the OneC results in Table 4, also
has the highest OneAcc. Here, the statistical tests show that for € € {0.1,0.2} IX and X
had a significantly higher OneAcc than I. When e = 0.05, the only statistically significant
difference was between IX and I, and for e = 0.01, there were no significant differences.
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Table 5: OneAcc - two-class data sets

e=0.2 e=0.1 e = 0.05 e =0.01
I X X I X X I X X I X X
colic .858 .861 .856 | .861 .863 .863 | .859 .869 .870 | .878 .858 .857
creditA 872 .894 895 | .882 .884 .886 | .917 .915 .922 | .925 .936 .932
diabetes 764 773 774 | 810 .827 816 | .832 .845 .823 | .845 .849 .836
german 707 719 724 | 705 .747 .747 | .689 .759 .741 | .692 .690 .699
haberman 745 741 745 | 758 772 762 | 778 771 .775 | .732 .802 .742
heartC 769 .818 .803 | .815 .846 .843 | .814 .855 .857 | .824 .839 .856
heartH 796 .820 .821 | .833 .852 .843 | .846 .874 .852 | .861 .873 .872
heartS 765 .817 .805 | .800 .844 .853 | .811 .860 .870 | .806 .863 .855
hepati 792 .826 .818 | .828 .856 .840 | .841 .854 .845 | .866 .759 .898
iono 902 .943 933 | .892 .924 .926 | .921 .935 .934 | .939 .950 .951
jed042 737 745 743 | .T73 779 778 | 765 .805 .789 | .781 .805 .823
jed243 679 699 .689 | .702 .720 .709 | .688 .723 .727 | .724 .735 .779
kel 764 763 .764 | .783 .792 .783 | .783 .788 .785 | .793 .792 .770
kc2 799  .801 .797 | .852 .845 .849 | .885 .860 .860 | .883 .863 .866
ke3 872 .886 .876 | .871 .877 .876 | .882 .892 .891 | .898 .890 .874
liver .647 .685 .692 | .657 .680 .705 | .656 .673 .706 | .635 .695 .672
pcd 912 920 915 | .894 .897 .896 | .934 .931 .923 | .982 .980 .958
sonar 692 752 .754 | .723 806 .784 | .723 .803 .800 | .693 .819 .7T11
spect .893 .891 .890 | .888 .891 .891 | .898 .892 .884 | .898 .885 .872
spectf 798  .803 .801 | .851 .844 .827 | .874 .858 .829 | .907 .852 .856
transfusion 773768 771 | .824 .833 .824 | .844 851 .847 | .832 .867 .865
ttt 936  .967 .946 | .910 .947 927 | .940 .946 .943 | .983 .985 .984
wbc 934 954 946 | .920 .948 .943 | .928 .947 .943 | .959 .950 .957
vote 870 .885 .882 | .874 .881 .882 | .914 .920 .902 | .945 .959 .928
Mean .803 .822 .818|.821 .840 .836 |.834 .851 .847 |.845 .854 .851
Mean rank | 2.58 1.54 1.88 |2.75 1.38 1.88|2.46 1.58 1.96 | 2.17 1.79 2.04

Summarizing the two-class experiment, the two oracle-coached setups were shown to be
valid, and more efficient than the standard choice of inducing a tree using training data only.
In particular the IX setup, i.e., combining oracle data with standard training data, was the
most successful, significantly outperforming I regarding efficiency, and also obtaining the
highest OneAcc. While IX also produced the largest trees, it must be noted that these trees
in general were small enough to be considered comprehensible.

4.2. Experiment 2

When considering multi-class problems, the glass data set is used in Figure 2 to compare
both induction (I) vs indanation (IX) as well as the performance of margin and hinge as
nonconformity measures. The trees induced using I have identical conditions for hinge (a)
and margin (b), since they have been defined from the same underlying trees, the only
differences are the predictions in the leaves. The same holds for IX in (c¢) and (d). In a
comparison between I and IX, IX results in more accurate trees (I: 59.8% vs IX: 65.4%),
smaller leaves on average and much more instances being predicted as singleton predictions,
regardless of nonconformity measure. This clearly demonstrates the benefit of utilizing
oracle data.

13



INTERPRETABLE AND SPECIALIZED CONFORMAL PREDICTORS

x4 <1.78 x4<1.78
| x3<2.785 | x3<2.785
| | v={2, 4, 5} {10/2} Iy =A{2, 4, 5} {10/2}
| x3>=2.785 | x3>=2.785
| | x7<8.385 | | x7<8.385
[Ty ={2, 3} {14/4} [ 1 vy ={2} {14/5}
| | x7>=8.385 | | x7>=8.385
| | | x2<13.4 | | | x2<13.4
[ | | | xl<1.51819 | | | | xl1<1.51819
[0 vy=A1. 2} {5/0} 1 | | | v = {1} {5/1}
[ | | x1>=1.51819 | ] | | x1>=1.51819
bbby =A1. 2} {4/1} [ | | | oy ={1.2} {4/1}
[ 1 x2>=134 | | | x2>=134
[y = A1, 3} {11/1} | ] | | y=A{1,2.38, 4,5, 6} {11/1}
T-1>:1.7 x 78
\

8 .78
y = {4, 6} {10/3} y = {2. 4. 6} {10/0}

(a) Induction with Hinge (b) Induction with Margin
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| x7<8.325 | x7<8.325
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(¢) Indanation with Hinge (d) Indanation with Margin

Figure 2: Induction with Hinge (a) and Margin (b) as well as Indanation with Hinge (c)
and Margin (d) for the glass data set

When considering the different nonconformity measures, we can see that hinge results
in smaller leaves on average (AvgC for I: 2.2 (a) and 2.5 (b) vs IX: 1.4 (c¢) and 2.2 (d)) but
most often in fewer instances being predicted as singleton predictions (OneC for I: 0.0%
(a) and 35.5% (b) vs IX: 65.6% (c) and 61.7% (d)). These differences are most clearly
demonstrated when comparing the results for I using hinge (a) and margin (b), where hinge
results in no leaves (and no instances) being predicted as a singleton prediction. Instead,
all leaves predict two or three classes. For I with hinge (a), the tie determining whether a
class label should be included or not occurred between two leaves rather than in a particular
leaf, accounting for the absence of bold class labels in that tree. For I with margin (b), on
the other hand, the leaf with the ties have three different classes that are included for some
test instances but not for all. So for any particular test instance falling into that leaf, the
number of predicted classes may range from three to six.

Turning to the evaluation over multiple data sets, Table 6 below shows the performance
of the underlying trees. While these results are generally consistent with the results from
the two-class experiment, it may be noted that IX here outperforms X on accuracy, and
that the trees are substantially larger. The bigger models must be expected, simply because
more leaves are necessary just to be able to make predictions of all possible labels. From the
statistical testing, we see that for accuracy, I is significantly less accurate than all three other
setups. In addition, the random forest is significantly more accurate than X. Regarding the
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ranking ability, IX and RF obtained significantly higher AUC than I and X. For model sizes,
IX trees were significantly larger than trees produced by I and X.

Table 6: Predictive performance and tree sizes for multiclass data sets

Accuracy AUC Size

RF I IX X RF I IX X 1 IX X
balance 838 773 810 .812 | 940 .848 .896 .893 | 279 554  39.2
cars 965 936 958 950 | 997 .985 .989 986 | 46.8 65.5 53.4
cmc b27 524 525 528 | 711 .699 .698 .695 | 40.5 192.3 109.0
cool 940 938 937 937 | 994 980 .984 978 | 12.0  20.1 11.9
glass 696 .590 .670 .651 | .891 .772 .799 .774 | 11.3 21.5 13.9
heat 980 976 981 .980 | .998 .994 .996 .992 | 28.7 320 27.6
image 971 939 966 .960 | 999 .989 .995 .992 | 45.1 69.5 43.2
iris 906 .626 908 910 | 985 .782 .945 943 | 3.2 6.0 5.7
steel 757 692 733 727 | 928 870 .882 .866 | 93.2 1424 95.9
tae 397 358 397 .396 | 576 .523 .b43 548 | 2.2 17.3 134
user 897 .864 .888 .885 | .984 .954 .957 .949 | 18.6 21.2 15.6
wave 853 .757 811 .816 | .967 .904 .923 910 | 126.2 165.0 96.7
vehicle 734 661 717 .710 | .920 .854 .889 .875 | 43.1 74.9  49.2
whole .693 .685 .709 .708 | .496 .491 .492 495 6.2 3.9 2.2
wine 942 825 908 915 | .995 .875 .946 .950 | 5.3 8.7 7.8
wineR 632 553 .608 .599 | .802 .711 .730 .717 | 45.2 153.5 78.9
wineW 663 535 .634 563 | .844 709 .748 .709 |523.1 &850.5 103.0
vowel 891 .641 839 .798 | .569 .886 .949 944 | 89.6 150.0 98.5
yeast 591 .b38  .B81 683 | 571 772 788 .TTT | 47.1 1269 78.7
Mean 783 .706 .767 .759|.851 .821 .850 .842| 63.9 114.5 49.6
Mean Rank 1.37 3.89 2.16 2.58 |1.32 3.53 2.11 3.05| 1.42 2.95 1.63

Investigating the error rates of all setups in the top part of Table 7, presented at the end
of the paper, shows that all setups are empirically valid. In the bottom part of the same
table, OneAcc results are presented. Again it must be noted that OneAccs generally are
higher than the corresponding accuracies from the underlying trees. Comparing the setups,
two patterns emerge; first of all, setups utilizing hinge as the nonconformity generally
have higher OneAccs. Second, the oracle-coached setups, in particular IX, again clearly
outperforms I.

The detailed efficiency results are presented in Table 8, at the end of the paper, while
Figures 3 and 4 below, show the results from statistical testing of AvgC and OneC results,
respectively. In the graphs, setups not obtaining significantly different efficiencies are con-
nected. Here it must be noted that the tests will be rather weak since we evaluate all-in-all
six setups using only 19 data sets. With this in mind, we use o = 0.1. While there are
some minor variations between different e-values, there are two important results: (i) The
oracle-coached setups, in particular IX, are most often significantly more efficient than I
and (ii) for AvgC, the nonconformity function based on the hinge error clearly outperforms
the margin-based, while the opposite is true for OneC.
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Figure 4: Efficiency (OneC): Significance tests with o = 0.1.
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5. Concluding remarks

In this paper, it has been shown how oracle coaching can be used for producing interpretable
and accurate underlying models for conformal predictors, tailored for a specific test set.
Specifically, two different setups making it possible to utilize knowledge about test set
input vectors, without sacrificing the validity guarantees provided by conformal prediction,
were suggested and evaluated.

The results from an extensive investigation using both two-class and multi-class data
sets clearly show that the utilization of oracle-coached underlying models will produce sig-
nificantly more efficient conformal predictors, compared to standard induction. In addition,
it was demonstrated that for multi-class problems, a nonconformity function based on the
hinge error lead to the rejection of the most labels, while a margin-based nonconformity
function produced the most singleton predictions. This confirmed the results from a previ-
ous study with neural networks as underlying models.

The overall result of combining oracle coaching with conformal prediction is a very
informative model; a standard decision tree, optimized for the test set at hand, and with
valid label sets instead of single classes in the leaves.
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Table 7: Empirical error rates and OneAcc - multiclass data sets

e=0.2 e=0.1 € =0.05 e =0.01

Error rate Hinge Margin Hinge Margin Hinge Margin Hinge Margin

I IX X I IX X I IX X I IX X I IX X I IX X I X X I IX X
balance 201 .195 .190 .202 .196 .192|.099 .099 .096 .098 .101 .094|.050 .046 .049 .050 .050 .048]|.008 .008 .008 .007 .009 .009
cars 195 .197 202 .195 .197 .201|.094 .095 .099 .093 .095 .099|.045 .049 .048 .045 .048 .048|.009 .009 .008 .010 .009 .008
cme .201 .195 .200 .199 .197 .201|.095 .100 .102 .100 .099 .103|.049 .050 .051 .049 .049 .052|.010 .011 .009 .010 .010 .010
cool 192197 197 189 .193 .196|.097 .100 .096 .099 .099 .097|.050 .051 .051 .048 .051 .049]|.010 .012 .009 .010 .012 .010
glass .190 .199 .200 .186 .198 .199|.094 .093 .098 .086 .101 .101|.050 .048 .046 .042 .047 .050|.008 .014 .010 .007 .011 .011
heat .203 .208 .208 .206 .208 .205|.098 .102 .105 .102 .103 .105|.051 .049 .049 .052 .049 .049|.009 .011 .010 .010 .010 .011
image 201 .199 .202 .201 .201 .202|.102 .100 .101 .102 .099 .101{.052 .050 .050 .051 .050 .049|.009 .010 .010 .009 .010 .011
iris 197 0198 209 .193 .183 .191|.097 .105 .107 .104 .099 .094|.055 .052 .057 .057 .057 .051|.009 .011 .007 .010 .013 .011
steel 192,199 .201 .197 .198 .200|.097 .104 .103 .097 .102 .103|.048 .051 .049 .049 .054 .052|.011 .010 .010 .010 .011 .011
tae 182 .202 .193 179 .195 .189|.089 .108 .091 .086 .103 .095|.049 .048 .040 .037 .058 .046|.011 .007 .011 .007 .007 .007
user 197 0192 192 192 192 .186|.102 .095 .096 .098 .095 .098|.056 .053 .047 .057 .053 .044|.013 .010 .009 .015 .010 .011
wave 199 0198 194 .198 .197 .195|.097 .099 .097 .098 .097 .097|.051 .049 .050 .051 .051 .050|.010 .010 .009 .010 .010 .009
vehicle 203 .201 .202 .203 .204 .203|.102 .096 .101 .100 .095 .098|.048 .046 .048 .048 .044 .048]|.008 .009 .009 .009 .008 .009
whole 191 0199 .192 196 .190 .189|.095 .101 .090 .098 .098 .094|.051 .051 .042 .052 .049 .050|.010 .012 .009 .012 .009 .010
wine 201 .217 206 .199 .220 .208|.101 .107 .099 .102 .108 .104|.057 .052 .048 .052 .058 .048]|.014 .013 .010 .010 .013 .008
wineR 203 .199 .204 .202 .201 .202|.099 .096 .101 .100 .098 .100|.048 .049 .049 .051 .049 .051|.009 .009 .009 .010 .011 .010
wineW .200 .196 .196 .197 .196 .197|.101 .097 .097 .100 .098 .096|.051 .050 .050 .051 .047 .047|.009 .010 .010 .009 .008 .008
vowel 204 .191 .202 .199 .192 .198|.096 .096 .097 .098 .095 .097|.048 .048 .047 .049 .045 .046|.010 .011 .011 .011 .009 .009
yeast .202 .198 .200 .200 .203 .201|.100 .101 .098 .098 .100 .099|.052 .049 .050 .048 .051 .050|.009 .010 .009 .011 .010 .009
Mean .197 .199 .199 .196 .198 .198|.098 .100 .099 .098 .099 .099|.051 .050 .048 .049 .051 .049|.010 .010 .009 .010 .010 .010
OneAcc Hinge Margin Hinge Margin Hinge Margin Hinge Margin

I IX X I IX X I IX X I IX X I IX X I IX X I X X I IX X
balance .801 .830 .830 .796 .829 .830|.867 .891 .898 .858 .878 .884|.896 .922 .919 .888 .913 .915|.957 .943 .947 .958 .954 .929
cars 976 .983 .979 977 .985 .980|.955 .974 .967 .954 .974 .967|.953 .963 .956 .953 .963 .956|.991 .990 .992 .989 .990 .991
cme .689 .672 .657 .643 .644 .636|.828 .768 .720 .734 .716 .699|.905 .835 .779 .819 .784 .743|.972 .931 .906 .946 .914 .899
cool 973 980 .968 .974 .978 .968|.961 .966 .956 .960 .967 .955|.950 .949 .949 .950 .949 .952|.989 .986 .992 .991 .987 .992
glass .695 .730 .714 .680 .715 .691|.743 .770 .728 .732 .724 .694|.811 .727 .630 .847 .814 .754
heat 1990 .994 986 .991 .993 .986|.987 .990 .984 .988 .991 .984|.984 .988 .983 .984 .988 .982|.990 .989 .989 .989 .990 .987
image 977 990 .983 977 .990 .983|.961 .982 975 .962 .982 .975|.953 .974 .967 .952 .974 .967|.990 .990 .988 .988 .988 .987
iris 727 924 921 728 .925 .926|.821 .927 .929 .803 .927 .931|.887 .935 .933 .851 .932 .936|.976 .973 .975 .938 .964 .968
steel 787 784 776 .764 .775 .765|.875 .856 .837 .835 .836 .815(.925 .925 .920 .885 .879 .873|.959 .979 .980 .960 .966 .975
tae 476 345 419 .534 .390 .395|.500 .344 .403 .563 .340 .429|.500 .313 .467 .667 .333 .500|1.000 1.000 .000
user .901 .915 .908 .900 .917 .910|.899 .909 .906 .899 .909 .904|.929 .932 .931 .930 .934 .929|.945 .975 .931 .956 .964 .964
wave 783 .819 .827 .784 .819 .827|.854 .868 .865 .851 .868 .865|.888 .904 .889 .886 .901 .889|.922 .930 .927 .919 .935 .921
vehicle 758 775 770 741 765 .759|.835 .854 .838 .819 .845 .829|.884 .903 .887 .872 .895 .880|.959 .945 .977 .933 .946 .943
whole 719 713 720 710 715 .726|.711 .671 .694 .675 .690 .702|.722 .660 .810 .735 .695 .692|.769 .667 1.000 .727 .000
wine .827 919 .930 .829 .922 .925|.848 .921 .925 .841 .919 .924|.847 .933 .945 .865 .926 .938|.886 .928 .947 .895 .933 .953
wineR .650 .665 .659 .643 .661 .658|.719 .714 .687 .699 .696 .697|.799 .729 .737 .735 .717 .725|.667 .875 777 788 .681
wineW .634 .682 .607 .622 .668 .605|.674 .711 .650 .657 .689 .631|.702 .724 .668 .683 .712 .658|.792 .707 770 748 712
vowel .760 .859 .820 .726 .862 .819|.820 .888 .877 .774 .883 .858|.851 .897 .913 .806 .891 .886|.955 .934 .896 .862 .928 .926
yeast .684 .685 .672 .648 .664 .657|.727 .717 .705 .703 .710 .682|.750 .748 .766 .750 .737 .684 1.000 .855 .857 .769
Mean 779 .803 .797 .772 .801 .792|.820 .827 .818 .806 .818 .812|.849 .840 .845 .845 .839 .835|.925 .926 .963 .909 .825 .912
Mean Rank|4.11 2.21 3.32 5.05 2.68 3.63|3.42 2.11 3.53 4.63 3.11 4.21(3.63 2.63 3.21 4.08 3.32 4.13|2.87 3.24 3.37 4.00 3.45 4.08
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Table 8: Efficiency - multiclass data sets

INTERPRETABLE AND SPECIALIZED CONFORMAL PREDICTORS

e=0.2 e=0.1 € =0.05 e =0.01

AvgC Hinge Margin Hinge Margin Hinge Margin Hinge Margin

I IX X I IX X I IX X I IX X I IX X I IX X I IX X I X X
balance 1.12 1.00 1.00 1.10 1.00 1.00{1.75 1.50 1.52 1.72 1.45 1.48|2.23 1.97 1.97 2.20 1.91 1.94|2.84 2.77 2.77 2.84 2.72 2.73
cars 0.82 0.82 0.81 0.82 0.82 0.82(0.95 0.93 0.93 0.95 0.93 0.93]1.07 0.99 1.01 1.12 1.00 1.02|1.45 1.45 1.67 1.65 1.60 1.76
cme 1.83 1.88 1.87 1.86 1.91 1.91|2.28 2.30 2.32 2.29 2.32 2.34|2.55 2.56 2.60 2.56 2.57 2.60|2.81 2.84 2.91 2.82 2.83 2.89
cool 0.83 0.82 0.83 0.83 0.82 0.83|0.94 0.93 0.95 0.94 0.93 0.95[1.05 1.03 1.07 1.06 1.04 1.07|1.55 1.46 1.68 1.55 1.49 1.68
glass 2.29 2.08 2.24 2.75 2.43 2.62|3.44 3.50 3.66 4.08 3.83 4.09|4.29 4.29 4.52 4.68 4.65 4.79|5.39 5.31 543 5.56 5.49 5.56
heat 0.81 0.80 0.80 0.80 0.80 0.81(0.91 0.91 0.91 0.91 0.91 0.91]0.97 0.96 0.97 0.96 0.96 0.97|1.27 1.20 1.40 1.33 1.22 1.43
image 0.82 0.81 0.81 0.82 0.81 0.81(0.94 0.92 0.92 0.93 0.92 0.92]1.05 0.98 0.99 1.09 0.98 0.99|2.41 1.78 2.22 2.78 1.95 2.48
iris 1.39 091 0.90 1.40 094 0.92|1.75 1.14 1.13 1.81 1.16 1.15|2.09 1.46 1.44 2.14 1.47 1.45|2.52 2.18 2.17 2.59 2.27 2.29
steel 145 1.25 1.35 1.86 1.65 1.83|2.47 2.23 2.92 3.37 3.19 3.55|3.69 3.45 4.18 4.41 4.14 4.64|5.44 5.35 5.89 5.67 5.58 5.74
tae 2.41 2.38 2.36 2.41 2.38 2.38|2.70 2.69 2.69 2.71 2.69 2.69|2.83 2.86 2.85 2.86 2.85 2.85(2.97 2.97 2.96 2.97 2.97 2.97
user 0.89 0.88 0.89 0.90 0.88 0.89|1.16 1.11 1.11 1.23 1.16 1.17|1.69 1.75 2.27 1.79 1.86 2.48|3.62 3.73 4.52 3.70 3.70 4.31
wave 1.09 0.98 0.98 1.09 0.98 0.98|1.38 1.28 1.39 1.54 1.40 1.51|1.69 1.61 1.92 2.01 1.85 2.06|2.55 2.45 2.70 2.74 2.66 2.78
vehicle 1.40 1.25 1.33 1.53 1.36 1.44(1.98 1.80 1.92 2.23 2.06 2.14[2.62 2.30 2.49 2.84 2.60 2.73|3.50 3.39 3.53 3.62 3.53 3.65
whole 1.55 1.52 1.62 1.56 1.54 1.63|2.16 2.16 2.27 2.20 2.16 2.26|2.56 2.56 2.63 2.58 2.57 2.63|2.92 2.91 2.92 2.91 2.92 2.92
wine 0.99 0.85 0.85 1.00 0.85 0.86|1.68 1.01 1.04 1.72 1.02 1.03|2.25 1.43 1.41 2.29 1.45 1.46|2.81 2.39 2.34 2.83 2.43 2.45
wineR 1.74 2.10 2.13 2.36 2.76 2.86(2.40 3.14 3.12 3.57 4.04 3.93|3.19 3.91 3.86 4.46 4.71 4.62|4.88 5.06 5.40 5.38 5.47 5.46
wineW 2.18 2.25 1.95 3.42 3.26 3.40|3.54 3.98 2.88 4.81 4.88 4.70|4.49 5.00 3.96 5.65 5.83 5.38|6.08 6.28 5.67 6.61 6.72 6.40
vowel 2.21 0.95 1.01 3.68 0.94 1.03|5.30 2.03 2.10 6.56 2.91 4.03|7.34 5.10 5.20 8.26 6.60 6.88|9.95 9.32 9.23 10.17 9.68 9.61
yeast 2.06 2.41 2.98 3.86 4.25 4.48|3.39 4.24 5.01 5.83 6.10 6.30|5.38 5.96 6.54 7.15 7.28 7.58|8.39 8.27 9.07 9.05 9.04 9.32
Mean 1.47 1.37 1.41 1.79 1.60 1.66(2.17 1.99 2.04 2.60 2.32 2.43(2.79 2.64 2.73 3.17 2.96 3.06|3.86 3.74 3.92 4.04 3.91 4.02
Mean Rank|3.84 2.03 2.63 5.21 3.08 4.21|3.47 1.82 3.18 4.89 3.11 4.53|2.89 2.00 3.34 4.84 3.21 4.71|2.84 2.00 3.74 4.50 3.26 4.66
OneC Hinge Margin Hinge Margin Hinge Margin Hinge Margin

I IX X I IX X I IX X I IX X I IX X I IX X I IX X I X X
balance .891 .949 .952 915 .948 .957|.512 .670 .637 .587 .749 .724|.275 .425 .407 .346 .503 .488|.026 .039 .040 .034 .084 .081
cars .824 817 .815 .824 .816 .815|.949 .929 .933 .951 .929 .932|.937 .983 .981 .939 .983 .982|.750 .773 .704 .752 .772 .719
cme 320 .382 417 432 485 .496|.142 .195 .199 .244 .292 .273|.086 .116 .094 .145 .173 .156|.056 .042 .015 .070 .066 .032
cool .831 .819 .830 .833 .825 .831|.940 .932 .945 .938 .932 .945|.952 .968 .947 .947 .967 .947|.626 .691 .583 .647 .691 .585
glass .285 .508 .418 .457 .614 .505|.078 .132 .089 .136 .207 .143|.025 .021 .013 .058 .053 .032|.000 .000 .000 .000 .000 .000
heat .805 .798 .804 .802 .798 .806|.914 .907 .910 .909 .905 .909|.963 .962 .968 .963 .962 .968|.825 .876 .768 .813 .872 .764
image .818 .810 .812 .819 .807 .812|.935 .917 .922 .934 .917 .922|.966 .975 .980 .972 .976 .981|.595 .804 .657 .640 .816 .695
iris .599 .837 .830 .600 .839 .840|.354 .833 .839 .397 .833 .843|.183 .689 .697 .259 .685 .703|.082 .249 .236 .097 .239 .232
steel .674 800 .772 .776 .850 .829|.369 .464 .445 .516 .562 .519|.233 .262 .214 .346 .380 .285|.094 .055 .058 .167 .184 .157
tae .028 .175 .139 .038 .223 .174|.012 .042 .041 .021 .064 .046|.005 .011 .010 .008 .014 .008|.001 .001 .000 .000 .001 .000
user .891 .883 .890 .896 .881 .894|.898 .925 .923 .899 .925 .924|.658 .668 .527 .712 .697 .527|.122 .091 .025 .187 .164 .075
wave 914 973 961 .914 974 .963|.632 .731 .699 .645 .729 .706|.401 .478 .377 .428 .501 .405|.027 .060 .021 .064 .091 .052
vehicle .679 .807 .769 .746 .838 .811|.421 .554 .485 .495 .578 .530(.200 .346 .234 .292 .379 .305|.026 .052 .015 .060 .099 .040
whole 512 515 418 .552 .507 .413|.078 .054 .028 .131 .084 .030|.020 .011 .005 .039 .013 .003|.003 .001 .000 .005 .000 .000
wine 944 852 .854 .928 .846 .856|.542 .927 .907 .534 .924 .906|.231 .685 .670 .249 .688 .669|.020 .124 .147 .032 .152 .169
wineR .349 .450 .446 .468 .554 .541|.092 .166 .152 .241 .276 .262|.021 .054 .040 .127 .131 .129|.000 .002 .000 .024 .019 .005
wineW 281 .431 .270 .464 .559 .438|.106 .167 .039 .239 .277 .168|.037 .062 .009 .125 .136 .059|.003 .006 .000 .021 .022 .001
vowel 489 .935 .936 .669 .935 .944|.197 .720 .575 .359 .777 .646|.086 .308 .226 .181 .381 .330|.004 .030 .023 .028 .069 .055
yeast .223 .321 .377 .455 .554 .556|.017 .085 .122 .209 .276 .213|.004 .015 .020 .078 .128 .073|.000 .000 .000 .004 .002 .001
Mean .598 .687 .669 .663 .729 .709|.431 .545 .521 .494 .591 .560|.331 .423 .390 .380 .460 .424|.172 .205 .173 .192 .228 .193
Mean Rank|4.53 3.71 4.11 3.21 3.03 2.42|4.84 3.53 4.00 3.63 2.37 2.63(5.16 3.21 4.39 3.34 1.79 3.11|4.34 3.05 4.87 2.92 1.89 3.92
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