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Abstract

Course selection can be challenging for students of Liberal Arts programs. In particular,
due to the highly personalized curricula of these students, it is often difficult to assess
whether or not a particular course is too advanced given their academic background. To
assist students of the liberal arts program of the University College Maastricht, Morsomme
and Vazquez (2019) developed a course recommender system that suggests courses whose
content matches the student’s academic interests, and issues warnings for courses that it
deems too advanced.

To issue warnings, the system produces point predictions for the grades that a stu-
dent will receive in the courses that she/he is considering for the following term. Point
predictions are estimated with regression models specific to each course which take into
account the academic performance of the student along with the knowledge that she/he
has acquired in previous courses. A warning is issued if the predicted grade is a fail.

In this paper, we complement the system’s point predictions for grades with prediction
intervals constructed using the conformal prediction framework (Vovk et al., 2005). We
use the Inductive Confidence Machine (ICM) (Papadopoulos et al., 2002) with normalized
nonconformity scores to construct prediction intervals that are tailored to each student.
We find that the prediction intervals constructed with the ICM are valid and that their
widths are related to the accuracy of the underlying regression model.

Keywords: Conformal Prediction, Recommender System, Course Grade Prediction, Lasso,
Education

1. Introduction

Liberal Arts programs are often characterized by their open curriculum which allows student
to tailor their own study program to their academic objectives (Surpatean et al., 2012;
Morsomme and Vazquez, 2019). These highly personalized curricula make it difficult for
students, academic advisors and course coordinators to assess whether the courses that a
student considers taking the following term are too advanced given her/his current academic
background or whether she/he has acquired the necessary skills, perhaps through an unusual
combination of courses. To alleviate this problem, Morsomme and Vazquez (2019) developed
the Liberal Arts Recommender System (LARS) which suggests to students courses whose
content matches their academic interests. In addition, LARS helps student identify courses
that are too advanced for them. To accomplish that, the system issues point predictions for
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future grade based on the past academic performance of the student and the skills she/he
has acquired in previous courses. Currently, a warning is issued when the predicted grade
is a fail.

In this paper, we present an application of conformal prediction (Vovk et al., 2005) to
complement the current point estimates for future grades of LARS with prediction intervals.
For students, the advantage of prediction intervals over point predictions is clear: their
information position is greatly improved, thereby enabling them to make better-informed
course selection. Although we could approach the task of informing students about their
likely performance in future courses as a classification problem with pass and fail as the two
possible outcomes, we prefer to approach it as a regression problem since being predicted
a low passing grade or a bordeline failing grade is more informative to the student than
simply a pass or a fail. We are aware of the possibility for students to use the system to
maximize their GPA and, if need be, could easily reformulate the problem as a classification
one. To avoid the computational costs of transductive conformal prediction, we opt for the
lighter Inductive Confidence Machine (ICM) (Papadopoulos et al., 2002). Furthermore, in
order to provide prediction intervals that are tailored to each student, we use a normalized
nonconformity measure (Papadopoulos et al., 2011).

Section 2 presents previous research on grade prediction. Section 3 introduces the data
and Section 4 briefly describes the existing LARS. Section 5 presents the conformal pre-
diction framework in which we construct the prediction intervals. Section 6 presents the
setting and results of the experiment and Section 7 concludes.

2. Related Work

The task of predicting students’ course grades has recently received a lot of attention (Poly-
zou and Karypis, 2016; Houbraken et al., 2017). Common approaches to this problem
are regression, classification, and collaborative-filtering approaches. The first two employ
general information (secondary education, age, sex etc.), past performance, temporal el-
ements, and contextual information of the students (Bydžovská, 2016). They train a
regression/classification model on historical data which is latter used for predicting stu-
dents’ course grades. The collaborative-filtering approaches require only past course grades
for future prediction in contrast with the previous two approaches (Sweeney et al., 2015;
Houbraken et al., 2017). They are divided into nearest-neighbor approaches (Bydžovská,
2015) and matrix-factorization approaches (Polyzou and Karypis, 2016). The nearest-
neighbor approaches first identify neighbors of a student in terms of study performance
and then predict the course grades for this student by aggregating the course grades of the
neighbors. The matrix factorization approaches first decompose the student-course data
into student and course matrices and then predict student course grades using the product
of these matrices.

Although the progress in predicting students’ course grades is significant, no research
has been performed on the problem of estimating the confidence in this type of prediction.
As stated above, we propose to employ conformal prediction for this problem. Our choice
is justified by the fact that other approaches for reliable prediction such as version spaces
(Smirnov et al., 2004), meta approaches (Smirnov et al., 2006; Smirnov and Kaptein, 2006),
ROC-isometric approaches (Vanderlooy et al., 2006) are inapplicable for regression tasks.
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3. Data for LARS

Morsomme and Vazquez (2019) employed two sets of data to develop LARS: student data
and course data.

The student data consisted of anonymized course enrollment information. It included
the transcripts of the 2,526 students of the liberal arts program between 2008 and 2019
with a total of 79,245 course enrollments. Table 1 presents an example of the student data.
Each row contains an anonymized student ID, a course ID, a year and semester, and the
obtained grade. Grade are numerical values comprised between 0 and 10, with 5.5 being
the passing grade. The 2,195 course enrollments with a missing grade, which indicates that
the student either dropped the course or failed the attendance requirement, were removed.
Although removing these instances violates the exchangeability assumption, the fraction of
observations removed is relatively small, meaning that the validity of our results should be
preserved.

The course data consisted of a corpus of the 490 course descriptions present in the 2018-
2019 course catalogues of five departments of Maastricht University: European Studies,
University College Maastricht, University College Venlo, Psychology and Science Program.
These catalogues contain a one-page description of each course on offer. Table 2 presents
a sample of this textual data for the course HUM3034 World History in the tidy format
with one row per document-term (Wickham et al., 2014). The data was processed following
common procedures (Meyer et al., 2008): individual terms were tokenized, stemmed with
the Hunspell dictionary and common stop words were removed, as well as numbers between
1 and 1,000 and terms occurring less than 3 times in the corpus.

Table 1: Example of student data

Student ID Course ID Academic Year Period Grade

44940 CAP3000 2009-2010 4 8.8
37490 SSC2037 2009-2010 4 8.4
71216 HUM1003 2010-2011 4 6.8
44212 SSC2049 2010-2011 2 8.4
85930 SSC2043 2011-2012 1 4.3

14492 COR1004 2012-2013 2 8.5
34750 HUM2049 2013-2014 5 6.0
32316 SSC1001 2013-2014 1 8.5
22092 SCI1009 2014-2015 1 6.4
19512 COR1004 2016-2017 5 7.0

4. LARS

4.1. Overview

LARS is composed of two pillars: course suggestions and warning issuance (see Figure 1).
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Table 2: Example of course data for the course HUM3034 World History

Course ID Course Title Department Term

HUM3034 World History UCM understand
HUM3034 World History UCM major
HUM3034 World History UCM issue
HUM3034 World History UCM episode
HUM3034 World History UCM shape

HUM3034 World History UCM history
HUM3034 World History UCM mankind
HUM3034 World History UCM focus
HUM3034 World History UCM theme
HUM3034 World History UCM topic

In pillar 1 Course Suggestion, a topic model of the courses is fitted to the course data
using the Latent Dirichlet Allocation model (Blei et al., 2003). A topic model represents a
topic as a mixture of words and a document as a mixture of topics. The key words selected
by the student are then mapped to the vocabulary of the topic model to represent her/his
academic interests. Finally, the system matches the student’s academic interests to the
content of the courses as represented by the topic model to identify courses of interest to
the student.

In pillar 2 Warning Issuance, a model of each student is first created which contains
information about the academic performance of the student (derived from the student data)
and the expertise in specific topics (derived from the topic model) that she/he has acquired
in previous courses. A regression model for point prediction of the grades that takes the
student model as input is then fitted separately to each course’s data. LARS uses these
models to predict the grade that the student will obtain in the courses that she/he is
considering for the following term and issues a warning when the predicted grade is a fail.

4.2. Pillar 1: Course Suggestion

4.2.1. Topic Model of the Courses

Morsomme and Vazquez (2019) fitted a topic model to the course data using the Latent
Dirichlet Allocation generative model (Blei et al., 2003) and the Gibbs sampling algorithm
(Phan et al., 2008). The LDA conceptualizes topics as a probability distribution over the
vocabulary of the corpus, and document as a set of words, each drawn from a probability
distribution over topics specific to that document. The term Dirichlet comes from the
fact that the word distribution βt of topic t is generated from a Dirichlet distribution
βt ∼ Dirichlet(δ) and the topic distribution θd for document d is also generated from a
Dirichlet distribution θd ∼ Dirichlet(α) where δ and α act as hyper-parameters determining
how concentrated the distributions of words in topics and the distributions of topics in
documents are.
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Figure 1: Original LARS (black) and our contribution (red)

The authors of LARS followed Phan et al. (2008) who use a Gibbs sampler to learn the
distributions β and θ of each topic and document, and Griffiths and Steyvers (2004) who
select the number of topics yielding the best model with respect to the log-likelihood. The
selected topic model contains 65 topics (see Figure 2), and consists of a term distribution
for each topic indicating the importance of each term of the corpus in the topic and a
topic distribution for each course indicating the importance of each topic in the course.
Figure 3 shows the main topics of the core course COR1004 Political Philosophy, and
Figure 4 presents the terms that characterize topic 4 and topic 19, the main two topics of
that course. We can see that the topics are easy to interpret and that the content of the
course, that is, its topic distribution, corresponds to what we would expect from a course
on political philosophy.

4.2.2. Model of a Student’s Academic Interests

Morsomme and Vazquez (2019) employed the topic model to estimate the academic interests
of a student from the key words that she/he enters into the system. The student’s academic
interest AIt in topic t simply corresponds to the sum of the selected key words’ importance
in topic t as determined by the topic model, that is,

AIt =
∑
i∈I∗

βt,i, for t = 1, · · · , n,

where I∗ is the set of key words selected by the student, βt,i corresponds to the importance
of term i in topic t and n is the number of topics present in the model (in this case n = 65).
The vector AI = (AI1, · · · , AIn)T therefore represents the academic interests of the student.
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Figure 2: Maximum likelihood model selection: the model with 65 topics is selected.

Figure 3: Topic distribution in the course COR1004 Political Philosophy.

Figure 4: Word distribution in the main two topics of COR1004 Political Philosophy. Topic
4 corresponds to international politics and Topic 19 to philosophy.
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4.2.3. Course Matching and Suggestion

LARS uses the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) to identify
the courses whose content best matches the academic interests of the student. Letting P
and Q be two discrete probability distributions defined on the same probability space, the
KL divergence between P and Q is defined as

DKL (P ||Q) = −
∑
x∈X

P (x) log

(
Q(x)

P (x)

)
and measures how different the probability distribution P is from the reference probability
distribution Q. LARS suggests to the students the n courses whose topic distribution θ has

the smallest KL divergence to her/his normalized academic interests AI∗ =
AI

|AI|
.

4.3. Pillar 2: Warning Issuance

4.3.1. Student Model

The student model consists of two elements: academic performance and topic-specific exper-
tise. Academic performance corresponds to the student’s general GPA (grade point average)
as well as her/his GPA in humanities, natural sciences, social sciences, skills and projects.
These are derived from the students’ transcripts in a straightforward way. Topic-specific
expertise corresponds to the amount of knowledge that the student has acquired in previous
courses in each of the 65 topics present in the topic model. Morsomme and Vazquez (2019)
posited that, when students take a course, they acquire knowledge about its content and
that the amount of knowledge that they acquire is proportional to the obtained grade and
the number of educational credits of the course; that is, they assume that students who
obtain 10/10 in a course acquire all the knowledge related to its content while those who
obtain 5/10 only acquire half of it, and that a student learns twice as much in a course with
5 educational credits as she/he does in a course with 2.5 credits (provided she/he obtained
the same grade). The content of a course is determined by its topic distribution in the topic
model, the grades are retrieved from the student’s transcript and the number of educational
credits is retrieved from the course catalogue. Furthermore, the authors assume that the
knowledge acquired in different courses simply accumulates over time. Hence, if a student
has taken n courses and gi corresponds to her/his grade in course i, for i = 1, · · · , n, then
her/his expertise expt in topic t corresponds to

expt =
n∑
i=1

giθi,tci (1)

where θi,t corresponds to the importance of topic t in course i as determined by the topic
model and ci to the number of educational credits of course i. Table 3 and Figure 5 present
a toy example of the contribution of three individual courses toward a student’s expertise
in five topics. For simplicity, each course corresponds to 1 educational credits. Table 3(a)
and Table 3(b) respectively show the topic distribution in each course as estimated by
some topic model and the grades obtained by the student which are retrieved from her/his
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transcript. Table 3(c) uses Equation (1) to estimate the contribution of each course toward
the student’s topic expertise. Figure 5 offers a graphical illustration of Table 3(c).

Table 3: Toy example of the contribution of individual courses toward a student’s topic
expertise.

(a) Topic distribution θ

Course Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Course 1 0.0 0.7 0.2 0.1 0.0
Course 2 0.2 0.2 0.2 0.2 0.2
Course 3 0.0 0.4 0.2 0.1 0.2

(b) Transcript

Course Grade

Course 1 6/10
Course 2 9/10
Course 3 2/10

(c) Course contribution toward a student’s topic expertise

Course Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Course 1 0.00 0.42 0.12 0.06 0.00
Course 2 0.18 0.18 0.18 0.18 0.18
Course 3 0.00 0.08 0.04 0.02 0.04

Total 0.18 0.68 0.34 0.26 0.22

Figure 5: Toy example of the contribution of individual courses toward a student’s topic
expertise.
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4.3.2. Point Prediction for Grade and Warning Issuance

To issue warnings, LARS produces point estimates for future grades. To accomplish this,
it uses regression models. LARS separately fits a sparse linear regression model for grade
prediction to each of the 132 courses currently offered at the University College Maastricht
with at least 20 student enrollments since 2008. The input to the models consists of the 71
variables present in the student model: 6 GPAs (1 general and 5 discipline-specific) and the
level of expertise in the 65 topics of the topic model. The regression models output a point
estimate for the grade. Note that each model is trained only on the data of the students
enrolled in the associated course. Since the number of predictors is relatively large, the
models are regularized with the Lasso penalty (Tibshirani, 1996) and the value of the Lasso
tuning parameter λ is chosen via cross-validation (CV). Figure 6 shows the distribution of
the CV mean absolute error (mae) for the 132 prediction models. The model for the course
PRO2004 Academic Debate has the smallest prediction error (0.38 grade point) and the
model for SCI3006 Mathematical Modelling the largest (1.80 grade point). The mean CV
mae weighted by the number of students enrolled in the course is 0.78, the median is 0.78
and the standard deviation is 0.28.

Figure 6: Distribution of cross-validation error

In practice, the student selects the courses that she/he is considering for the following
term and the system uses the regression models of these courses to provide point predictions
for the future grades. A warning is issued when a predicted grade is a fail.

We desire the following three requirements for pillar 2 Warning Issuance of LARS:
accuracy, sparsity and transparency of the regression models for grade prediction. First,
the grade predictions must be accurate so that students base their course selection on sound
information. Second, we want the regression models to be sparse so that we can identify
which topics are important to master in order to perform well in a given course. Such
information would be extremely useful to course coordinators and curriculum managers
alike. Third, in order to be transparent, grade predictions must be accompanied by an
indication of their own accuracy. The first two requirements are fulfilled by the Lasso
model (Tibshirani, 1996), but the third requirement is not satisfied by LARS’s current
point predictions for future grades. To fulfill the requirement for transparency, we propose
to complement the existing point predictions of the system with prediction intervals. In the
following section, we use the conformal prediction framework to build prediction intervals
for future grades that are tailored to each student.

5. Regression with Prediction Interval

Let X be a space given by n input variables Xj (j ∈ {1, 2, . . . , n}) and Y be an output
real-value variable. Any i-th instance in the labeled space (X×Y ) is given as a tuple (xi, yi)
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where xi belongs to X, xij is the value for the input variable Xj for the instance xi, and yi
is the value for the output variable Y . We assume the existence of an unknown probability
distribution P over X × Y . A data set D is a multi-set of m instances (xi, yi) ∈ (X × Y )
drawn from the probability distribution P under the randomness assumption. Given an
unlabeled test instance xm+1 ∈ X, the regression task is to find an estimate ŷm+1 ∈ R of
the value of the variable Y for the instance xm+1 according to the probability distribution
P . A prediction interval Γε for the test instance xm+1 is defined as the set {y ∈ R|p(y) > ε}
that contains the true value of the output variable Y for xm+1 with probability of at least
1− ε, where ε is a given significance level.

5.1. Underlying Algorithm: Lasso Regression

Lasso is a parametric method for regression that allows regularization and variable selection
(Tibshirani, 1996). The method estimates the coefficients of the final regression model by
minimizing:

m∑
i=1

(yi − β0 −
n∑
j=1

βjxij)
2 + λ

n∑
j=1

|βj |,

i.e., by minimizing the residual sum of the squares
∑m

i=1(yi − β0 −
∑n

j=1 βjxij)
2 and the

Lasso penalty λ
∑n

j=1|βj |.
The Lasso method shrinks the coefficient estimates β̂j toward 0. This reduces the

variance of the model and thereby helps preserve its prediction accuracy. Furthermore, in
contrast to the ridge regression penalty, the absolute-value constraint of Lasso encourages
some of the coefficient estimates to be exactly zero and hence the regression model to be
sparse. This facilitates the interpretation of the obtained models.

5.2. Conformal Prediction and the Inductive Conformal Machine

The conformal prediction framework was proposed by Vovk et al. (2005). It allows the
construction of prediction intervals for regression tasks in the presence of finite data sets
generated under the exchangeability assumption (which is weaker than the randomness as-
sumption). In general, conformal predictors are conservatively valid; that is, the probability
that any prediction interval Γε does not contain the true value is not greater than ε.

The conformal prediction framework assumes a nonconformity function A. The function
outputs a nonconformity score αk ∈ R+∪{+∞} for any instance (xk, yk) that indicates how
unusual that instance is for the data set D ∪ {(xm+1, ym+1)}. For the regression setting,
a popular choice for the nonconformity score αk of an instance (xk, yk) is the residual
|yk− ŷk|, where ŷk is the estimation for the variable Y for the instance xk provided by some
underlying regression model based on the data set D∪{(xm+1, ym+1)} (Papadopoulos et al.,
2002; Papadopoulos, 2015). In this paper we employ a normalized nonconformity score for
the instance (xk, yk) corresponding to

αk =
|yk − ŷk|

β + exp(µk)
(2)
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where µk is the prediction of the value ln|yk − ŷk| from a second regression model and
represents the difficulty of predicting the instance’s label (Papadopoulos et al., 2011), and
β is a constant balancing the absolute error against the estimated difficulty. The intuition
behind equation Equation (2) is that by taking into account the difficulty of each instance,
we obtain prediction regions that are tailored to each observations: given a significance
level, instances that are difficult to predict (large µ) will have a wider prediction region
than those that are easier to predict.

Once the nonconformity score of each instance in the data set D ∪ {(xm+1, ym+1)}
has been computed, the p-value pm+1 of the output value ym+1 for the instance xm+1

corresponds to the proportion of instances in D ∪ {(xm+1, ym+1)} whose nonconformity
score is greater than or equal to that of the instance (xm+1, ym+1); i.e.

pm+1 =
#{i = 1, ...,m|αi ≥ αm+1}

m+ 1
. (3)

Depending on the validation procedure for estimating the nonconformity scores, there
exist two approaches to generate valid conformal predictors. First, the transductive confor-
mal predictors (TCP) proposed by Saunders et al. (1999) uses leave-one-out cross-validation
and is computationally expensive. To reduce the computational burden, the inductive con-
formal machine (ICM) was proposed by Papadopoulos et al. (2002). It employs the hold-out
method: the data D is partitioned into a proper training set Dt of size p and a calibration
set Dc of size q (D = Dt ∪Dc and m = p+ q). The proper training set Dt is used to learn
the nonconformity function A. The function is learned by training two regression models:
the underlying model and the error model. The underlying model estimates the values yk
which we need to estimate the residuals |yk − ŷk|. The error model estimates the accuracy
µk = ln|yk − ŷk| of the underlying model (see Equation (2)). The use of the natural loga-
rithm and exponent prevents the estimated residuals – and hence the nonconformity scores
– to be negative. The regression models are then applied to the instances of the calibration
set Dc to compute their nonconformity scores α.

Once the nonconformity scores have been computed for the instances of the calibration
set Dc, the p-value pm+1 for the output value ym+1 for the instance xm+1 corresponds to
the proportion of instances in Dc whose nonconformity score is greater than or equal to
that of the instance (xm+1, ym+1); i.e.

pm+1 =
#{i = p+ 1, ...,m|αi ≥ αm+1}

m− p+ 1
. (4)

The nonconformity scores of the calibration instances can be used for constructing a
prediction interval for the test instance xm+1. To accomplish this, the nonconformity scores
are sorted in increasing order of magnitude: α(1), α(2), . . . , α(q). The prediction interval for
the test instance xm+1 is constructed as:

(ŷm+1 − α(s), ŷm+1 + α(s)) (5)

where ŷm+1 is the value of the variable Y for the instance xm+1 estimated by the underlying
regression model trained on the proper training set Dt, s = bε(|q| + 1)c, and ε is a given
significance level (Papadopoulos et al., 2011). We note that the construction of prediction
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intervals is model-independent: prediction intervals can be constructed for any type of
regression model.

6. Experiments

6.1. Settings

We separately build a regression model for grade prediction for each of the 132 courses
currently offered at the University College Maastricht with more than 20 student enrollments
since 2008. To build these models, we use an ICM with normalized nonconformity scores.
For each model, the data consists of the models of the students enrolled in the associated
course. A student model data consists of the 6 GPAs (1 general and 5 discipline-specific)
of a student along with her/his level of expertise in the 65 topics of the topic model at the
beginning of the course (see Section 4.3.1).

We choose the underlying model to be a lasso-penalized linear regression model because
it fulfills the requirements for accuracy and sparsity. We also choose the error model to be
a lasso regression. First, the data are split into a training set (90% of the data) and a test
set (90% of the data), and the training set is further split into a proper training set (67% of
the training set) and a callibration set (33% of the training set). We then fit the underlying
model on the proper training set to estimate the course grades, and we fit the error model
on the proper training set to estimate the difficulty of each instance. Note that both models
learn the lasso tuning parameter λ with an internal 10-fold cross-validation on the proper
training set. Next, we apply the obtained underlying and error models on the callibration
set and generate nonconformity scores using Equation (2) with β set to 2. Finally, using
Equations (4) and (5), we construct prediction intervals for each instance of the test set
at several significance levels and evaluate their validity and tightness. We report the final
results for an external 10-fold cross-validation.

6.2. Results

We present the results for six courses selected prior to the analysis which cover a wide range
of sample size and of cross-validation mean absolute error (CV mae) for the underlying
model (see Table 4). SSC3044 Culture, Politics and Society in Contemporary Asia and
SSC3038 Contemporary Sociological Theory have a small CV mae (≤ 0.4 point grade),
while SCI2010 Introduction to Game Theory and SCI2018 Calculus have a large CV mae
(≥ 1.4). Since they are mandatory, the courses COR1004 Political Philosophy and COR1002
Philosophy of Science have a large sample size (n ≥ 1900), while SSC3044 Culture, Politics
and Society in Contemporary Asia and SCI2018 Calculus have much fewer observations
(n ≤ 200). Figure 7 presents the grade distribution within each course.

Table 5 and Figure 8 present the error rate of the prediction intervals constructed with
the ICM at different significance levels for each course, that is, the proportion of intervals
that do not contain the true grade of the student. We see that the prediction intervals
are conservatively valid up to statistical fluctuations; that is, given a significance level, the
probability that a prediction interval does not contain the true value is not greater than
the significance level.
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Table 4: Selected courses for conformal prediction

Course Sample Size CV mae

SSC3044 136 0.38
SSC3038 272 0.40
COR1004 1998 0.67
COR1002 2067 1.00
SCI2010 417 1.41
SCI2018 198 1.62

Figure 7: Grade distribution in selected courses.
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LARS is intended to be used by students and their academic advisors for choosing the
courses of the following term. In this context, prediction interval must be narrow enough to
improve the information position of the stakeholders. We consider a prediction interval to
be of practical use if it is a at most 2 grade point wide at a significance level of 0.2. Figure 9
shows the distribution of prediction interval width across different significance levels for each
course. The dots correspond to the median of the distributions and the bars to the 10th and
90th percentiles. The width corresponding to 2 grade points is highlighted for reference.
We observe that the widths of the prediction intervals vary across the courses. The ICM
produces relatively narrow intervals for the course COR1004, SSC3038 and SSC3044 which
are less than 2-unit wide (or close to, for COR1004) at a significance level of 0.2. But for the
courses SCI2010 and SCI2018, the intervals become wide very quickly: they are wider than
2 grade points at significance levels as large as 0.5. In fact, the prediction interval width
seems to be associated with the CV mae: courses with a small CV mae, such as SSC3044,
SSC3038 and COR1004, have relatively tight prediction intervals while those with a large
CV mae, such as SCI2010 and SCI2018, have wide intervals.

Table 5: Prediction interval tightness and empirical validity of the ICM.

Course
Median Width Error Rate

0.05 0.1 0.2 0.05 0.1 0.2

COR1002 5.536 4.289 3.247 0.049 0.093 0.195
COR1004 3.877 2.934 2.194 0.049 0.101 0.201
SCI2010 6.746 5.749 4.403 0.060 0.109 0.200
SCI2018 7.651 7.013 5.376 0.029 0.072 0.187
SSC3038 1.845 1.489 1.167 0.067 0.113 0.177

SSC3044 1.707 1.419 1.137 0.066 0.140 0.199

7. Conclusion

In this paper, we complemented the existing LARS’s point predictions for course grades
with prediction intervals constructed using the conformal prediction framework. We used
the ICM with a normalized nonconformity score to construct prediction intervals that are
tailored to each student. The results from a selection of 6 courses covering a wide range
of sample size and CV mae of the underlying model indicate that the prediction intervals
are conservatively valid and that their width seems to be associated with the accuracy of
the underlying model. Out of the 6 selected courses, 3 have prediction intervals generated
by the ICM that are narrow enough to be of practical use and 2 have intervals that are
much too wide to be useful. These results show that the ICM can construct prediction
intervals that are useful for LARS and its pillar 2 for warning issuance, but that further
work is necessary to ensure that all courses have prediction intervals narrow enough to be
of practical use.

To make the intervals tighter, we will consider two approaches in our future research.
First, we will try to improve the performance of the underlying regression model by con-
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Figure 8: Empirical validity of the ICM.

Figure 9: Tightness of prediction interval constructed with the ICM. The dots correspond
to the median width and the bars to the 10th and 90th percentiles.
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sidering methods that tend to be more accurate than Lasso regression, such as random
forests or gradient boosting. Second, we will improve the informational efficiency of the
ICM with bagged models, which make it possible to calibrate on out-of-bag (Carlsson et al.,
2014; Johansson et al., 2014), cross-conformal prediction (Vovk, 2015) or its faster version
(Beganovic and Smirnov, 2018).
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