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Abstract

We investigate the use of inductive conformal prediction (ICP) for the task of multi-label
text classification and present preliminary experimental results for a subset of the origi-
nal Reuters-21578 data-set. Our underlying classification model is a deep neural network
configuration which consists of a trainable embedding layer, a convolutional layer and two
dense feed-forward layers, arranged sequentially, with sigmoid outputs representing the in-
dividual unique labels of the selected subset. Following the power-set approach, we assign
nonconformity scores to label-sets from which the corresponding p-values and prediction-
sets are determined and we experiment with a number of different versions of a nonconfor-
mity measure. Our results indicate a good performance for the underlying model which is
carried on to the ICP without any significant accuracy loss and with the added benefits of
prediction-specific confidence information. Prediction-sets are tight enough to be practi-
cally useful even though the multi-label subset contains tens of thousands of possible label
combinations and empirical error-rates confirm that our outputs are well-calibrated.

Keywords: conformal prediction, inductive conformal prediction, text classification, multi-
label classification, deep neural networks, convolutional neural networks, confidence mea-
sures, Reuters-21578
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1. Introduction

The task of automatic text classification is of increasing importance as the number of
electronically produced and distributed texts grows, which creates a need for more efficient
information storage and retrieval processes. Specifically, the problem requires that a system
automatically assigns a text, e.g. a document, to a set of one or more topics, i.e. categories
or classes. In practice we are dealing with either a binary scenario, where the text belongs
to one of two categories; a multi-class scenario, where the text belongs to one out of many
categories; or a multi-label scenario, where the text belongs to one or more categories out
of a set of possible categories. Of particular interest is the last case, which frequently
corresponds to real-world requirements and which is often more challenging and resource
demanding than its binary and multi-class counterparts.

A first challenge involves formulating the problem in such a way that it allows for
the training of the underlying machine-learning classification model and produces results
that are meaningful in a multi-label setup. Approaches are grouped into two broad cat-
egories: problem transformation methods and algorithm adaptation methods, as outlined
by Tsoumakas and Katakis (2007). In problem transformation methods the multi-label
problem is reformulated, usually as a binary classification problem, e.g. (Gonçalves and
Quaresma, 2003), or as a multi-class classification problem using all relevant category com-
binations, i.e. power-set approach, e.g. (Boutell et al., 2004). In the case of algorithm
adaptation, solutions involve the modification of the underlying model in ways that allow
it to handle multi-label outputs, e.g. neural networks in (Zhang and Zhou, 2006).

Much emphasis has also been put on the development of various feature selection and
transformation methods, as it is necessary to quantify the various textual attributes that
allow for the partitioning of texts into the various categories; to select the most relevant
and information-rich out of the total number of attributes; and to properly prepare them as
classification model inputs. However, much of current research has been oriented towards
the use of artificial neural networks (ANN) that generally require minimal effort for manual
feature engineering and have been shown to outperform traditional approaches such as
decision trees and support vector machines (SVM).

The use of ANN models has also led to the development of more sophisticated and
automated feature engineering techniques, some of which are themselves formulated as
supervised learning tasks, e.g. word embedding models, and which have been shown to
capture complex syntactic and semantic structures thus creating good quality features for
the underlying classifiers, as in (Lilleberg et al., 2015). Classification performances are also
conditioned on the quality of post-processing, as model outputs are usually probabilistic
and additional analysis and expert decision-making is necessary to produce final, discrete
predictions.

A significant limitation of many classification methods is that they do not provide any
indication of the likelihood of their predictions being correct, and even in cases where they
do provide probabilistic predictions their outputs can be misleading, as shown e.g. by Mel-
luish et al. (2001), Papadopoulos (2013) and Lambrou et al. (2015). Conformal prediction
(CP) aims to address this issue by supplementing conventional classification predictions
with reliable confidence measures which are guaranteed under the assumption of data ex-
changeability, (Shafer and Vovk, 2007). This confidence information can be of particular
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importance when dealing with classification tasks of low error tolerance, but can also be
of use in a wider range of applications such as text-classification and, in general, in tasks
where we are looking to pre-define specific confidence levels within which to operate. Various
attempts to address issues regarding the computational efficiency of CP have been made,
such as Inductive conformal prediction (ICP) which also operates under the exchangeability
assumption and provides the same guarantees as CP but with reduced computational load.

The current work investigates the use of ICP as post-processing on a multi-label text
classification model, realized by a deep convolutional neural network (CNN) which operates
with an additional trainable embedding layer. The proposed approach is evaluated on a sub-
set of the Reuters news-wire corpus (Lewis et al., 2004) and results are compared against
the performance of the underlying model as well as against the theoretical guarantees of CP.
We also experiment on the use of different nonconformity measures and show their effects
on performances, particularly in the prediction-set mode. To the best of our knowledge,
a similar evaluation of ICP on a well established multi-label text classification benchmark
data-set does not exist, nor does the combination of ICP with a similar ANN configuration.

We are motivated from challenges faced in a business setting where the task of auto-
matic text classification involves dealing with document categories of varying importance
and urgency and therefore the provision of confidence information is vital for limiting the
possibility of errors. Specifically, high confidence outputs can be handled automatically,
whereas uncertain cases are identified and directed for manual classification.

The paper is structured as follows: Section 2 outlines related work on text categorization,
Section 3 discusses CP and ICP and Section 4 describes our proposed approach including
preprocessing steps and ANN model architecture. In Section 5 we detail our experimental
set-up and present the final results, detailing performances for the forced-prediction and
prediction-set modes of ICP.

2. Text Classification

Various algorithms have been implemented for the task of text categorization, for the single-
and multi-label cases. More traditional approaches include decision trees, support vector
machines (SVM) (e.g. Joachims (1998)) and Naive Bayes methods (e.g. Sang-Bum Kim
et al. (2006)), which are usually trained on textual information that has been appropriately
transformed into features, utilizing preprocessing techniques such as vector-space models
and word-frequency models. The importance of feature selection is illustrated by the wealth
of relevant methods developed for feeding the learning algorithm with handcrafted features
and by the attempts to quantify feature “usefulness” through the development of various
metrics, (Forman et al., 2003).

Recently however, there has been a shift towards the use of ANN and deep ANN ar-
chitectures, that generally require less effort in terms of manual feature preparation (Nam
et al., 2014). Their performance is exemplified in image classification tasks, e.g. (Krizhevsky
et al., 2012), but deep ANN configurations have been shown to outperform traditional mod-
els in natural-language-processing (NLP) tasks as well, including classification tasks as in
(Moraes et al., 2013).

Modern ANN-based NLP approaches can also be used as preprocessing for the creation
of good quality features for the underlying classification models, e.g. word2vec models
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in (Lilleberg et al., 2015). In Kim (2014) the author experimented with convolutional
neural networks in the area of sentence classification and used pre-trained word embeddings
(Mikolov et al., 2013) which were then compared to randomly initialized vectors. Broadly
speaking, in all but a few cases, it has been shown that the usage of pre-trained word
embeddings is beneficial even if they are kept static and perform better than randomly-
initialized ones.

In Conneau et al. (2016), authors try to learn a high-level hierarchical representation
of a sentence and at the same time operate on a low level representation of the texts, i.e.
the characters. Contrary to Kim’s approach, the proposed architecture is much deeper. A
long short-term memory (LSTM) method is presented by Johnson and Zhang (2016), where
authors use a sophisticated region embedding. Their results indicate that embeddings of
text regions, which can convey complex concepts, are more useful than embeddings of single
words in isolation. Peng et al. (2018) propose a graph-CNN based deep learning model to
first convert texts to graph-of-words, and then use graph convolution operations to convolve
the word graph and improve a large-scale hierarchical text classification success rate.

In this paper, we transform texts to numerical inputs and substitute the need for
word2vec representations by placing a trainable embedding layer on-top of our deep net.
The specifics are outlined in Section 4.

3. Conformal Prediction

This section discusses the concept and application of CP in the context of classification and
multi-label classification problems and outlines the use of inductive-CP (ICP), which aims
to address the computational inefficiencies of classical CP, referred to as transductive-CP
(TCP).

The objective in a typical classification problem is to correctly predict the category to
which a new, unseen example belongs. This is achieved by training a classification model
on a set of known examples, i.e. training instances, of the form {z1, ..., zn} where each
zi ∈ Z is a pair (xi, yi), which consists of a set of attributes xi ∈ Rd and a corresponding
category yi ∈ {Y1, ..., Yc}. A new example xn+1 is then assigned to a classification yn+1,
which is singled out from the full set of possible classifications {Y1, ..., Yc}, usually based on
post-processing of the resulting probabilistic (or non-probabilistic) model outputs.

In the CP framework, and provided that the assumption of exchangeability holds for
Z, the objective is to produce a prediction-set Γεn+1 ⊆ {Y1, ..., Yc} that will contain the
true category of the example xn+1 with a probability 1 − ε, for a pre-defined significance
level ε (Vovk et al., 2005b). This is achieved by first assuming all possible classifications
Yj ∈ {Y1, ..., Yc} for xn+1 and then determining the likelihood that each of the extended
sets:

{(x1, y1), ..., (xn, yn), (xn+1, Yj)}, (1)

consists of exchangeable samples. Since (xn+1, Yj) is the only artificial pair, we are, in effect,
assessing the likelihood of Yj being the true category of xn+1. This likelihood is quantified
by first mapping each pair (xi, yi) in (1) to a numerical score using a nonconformity measure
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A:

α
Yj
i = A({(x1, y1), . . . , (xn, yn), (xn+1, Yj)}, (xi, yi)), i = 1, . . . , n, (2a)

α
Yj
n+1 = A({(x1, y1), . . . , (xn, yn), (xn+1, Yj)}, (xn+1, Yj)). (2b)

The score α
Yj
i , called the nonconformity score of instance i, indicates how nonconforming, or

strange, it is for zi to belong in (1). In effect the nonconformity measure is based on a con-
ventional machine learning algorithm, called the underlying algorithm of the corresponding
CP and measures the degree of disagreement between the actual label yi and the prediction
ŷi of the underlying algorithm, after being trained on (1). Our choice of nonconformity
measure is discussed in Section 4.3.

The nonconformity score α
Yj
n+1 is then compared to the nonconformity scores of all other

examples to find out how unusual (xn+1, Yj) is according to the nonconformity measure used.
This comparison is performed with the function

p(Yj) =
|{i = 1, . . . , n : α

Yj
i ≥ α

Yj
n+1}|+ 1

n+ 1
, (3)

the output of which is called the p-value of Yj . An important property of (3) is that
∀δ ∈ [0, 1] and for all probability distributions P on Z,

Pn+1{((x1, y1), . . . , (xn, yn), (xn+1, yn+1)) : p(yn+1) ≤ δ} ≤ δ; (4)

a proof can be found in (Vovk et al., 2005a). According to this property, if p(Yj) is under
some very low threshold, say 0.05, this means that Yj is highly unlikely as the probability
of such an event is at most 5% if (1) is exchangeable. Therefore we can reject it and have
at most δ chance of being wrong.

Once the p-values of all possible classifications have been produced, CP can provide two
kinds of outputs:

• Forced-prediction, where the highest p-value classification is predicted and accom-
panied by a confidence score equal to one minus the second highest p-value and a
credibility score equal to the p-value of the predicted classification (i.e. the highest
p-value).

• Prediction-set, where given a predefined confidence level 1 − δ, the prediction set
{Yj : p(Yj) > δ} is generated.

In the first case, confidence is an indication of how likely the prediction is of being correct
compared to all other possible classifications, whereas credibility indicates how suitable the
training set is for the particular instance. Specifically, a very low credibility value indicates
that the particular instance does not seem to belong to any of the possible classifications. In
the second case, the produced prediction-sets will not contain the true label of the instance
with at most δ probability.
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3.1. Inductive Conformal Prediction

Suppose we want to apply CP to a set of k instances with c possible classifications. In
the original transductive setting this is achieved by re-training the underlying classification
model k × c times, i.e. per instance and for each possible classification, in order to obtain
the necessary p-values. This process can become computationally inefficient and often
prohibitive, particularly for large data-sets and for resource-demanding underlying models
(such as deep ANNs).

An alternative to the above is inductive conformal prediction (ICP), first proposed by
Papadopoulos et al. (2002a) and Papadopoulos et al. (2002b) for regression and classification
tasks, respectively. In the ICP setting, the underlying model is trained only once thus
generating a single general “rule” which is then applied on each test instance.

Specifically, the training data-set is first split into two components, the proper-training
set {z1, . . . , zq} and the calibration set {zq+1, . . . , zn}. The underlying model is trained on
the proper-training set and the resulting model is used for calculating the nonconformity
scores of the calibration instances as:

αi = A({(x1, y1), . . . , (xq, yq)}, (xi, yi)), i = q + 1, . . . , n. (5)

The trained model and the calibration set’s nonconformity scores form the general “rule”
of the ICP. Then, the nonconformity score for each assumed class Yj of every test instance
xn+m is calculated in the same way:

α
Yj
n+m = A({(x1, y1), . . . , (xq, yq)}, (xn+m, Yj)), (6)

and is used together with the nonconformity scores of the calibration instances to cal-
culate the p-value:

p(Yj) =
|{i = q + 1, . . . , n : αi ≥ α

Yj
n+m}|+ 1

n− q + 1
. (7)

3.2. CP for Multi-label Classification

In multi-label classification problems, the true class may be a combination of various single-
classes, e.g. a news-wire might be labeled under both politics and oil-price, at the same
time. In such a setting, we need to consider a number of different class combinations, with
a maximum limit set by the total number of all possible class combinations.

Different versions of CP have been proposed for handling multi-label classification prob-
lems through the use of problem reformulations. These include the following approaches:
power-set (Papadopoulos, 2014), binary-relevance (Lambrou and Papadopoulos, 2016) and
instance reproduction (Wang et al., 2015), and are similar in principle to the problem trans-
formation methods used when dealing with conventional classification models which also
cannot handle multi-label problems, e.g. SVM.

In this work we use the power-set approach, in which each possible label-set Ψm ∈
P({Y1, . . . , Yc}) is treated as a candidate classification and is assigned a p-value. However,
as the number of possible classifications in the particular case is extremely large, we consider
only label combinations up to the maximum observed label cardinality of the corpus, as
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detailed in Section 5.2. For the rest of this paper we denote this reduced set of label-sets
as {Ψ1, . . . ,Ψg}.

4. The Proposed Approach

4.1. Text Preprocessing

We use a three-stage preprocessing pipeline to transform the raw news-wire texts and their
corresponding class-labels to proper training/test inputs and targets that can be fed to our
ANN configuration and that can also be used for calculating the ICP-related variables. We
firstly create a bag-of-words (i.e. vocabulary) using the N most frequent words from our
training examples (Section 4.1.1). Then, all texts are transformed to numerical vectors
where numbers correspond to vocabulary words (Section 4.1.2) and finally, targets are
transformed to multi-hot representations (Section 4.1.3).

4.1.1. Vocabulary Creation

Vocabulary creation is based on all training instances, i.e. proper training + calibration.
Digits and punctuation are removed as well as words with length smaller than a predefined
minimum limit, WLmin. The frequency of the remaining words in the training corpus is
determined, sorted in a descending order and the first N words are selected. Each word is
then given a unique identification number, Wid, which corresponds to its vocabulary index.
The experimental results presented in this paper were calculated with WLmin = 3 and
N = 20000.

4.1.2. Texts-to-Vectors

All instances in the training and test sets are transformed into word-vectors, by substitut-
ing each instance-word by its corresponding Wid. Words not found in the vocabulary are
replaced by a reserved identification number, i.e. max(Wid) + 1. Furthermore, in order to
produce word-vectors of consistent sizes, we limit the total number of words per instance
to WVmax. Instances with fewer words are padded to the desired size using a reserved
identification number, i.e. max(Wid) + 2. Instances with more words than the predefined
limit are simply cut to fit WVmax. For the purposes of this study WVmax was set to 200.

4.1.3. Targets-to-Multi-Hot

In order to produce valid targets for the ANN architecture, the label-set of each training/test
instance is transformed into a multi-hot representation. Specifically, we associate each
instance (xi, ψi), where ψi ⊆ {Y1, . . . , Yc}, with a 1D binary label-vector < t1i , . . . , t

c
i >,

where tji = 1 iff Yj ∈ ψi and tji = 0 otherwise. An example is shown in Figure 1.

Figure 1: Multi-hot representation for the label-set {Y3, Y8}

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

7



A Deep Neural Network Conformal Predictor for Multi-label Text Classification

4.2. ANN Configuration and Training

In this work, we utilize a deep ANN configuration proposed by Lenc and Král (2016) and
inspired by the work of Kim (2014), which is depicted in Figure 2. Neural networks uti-
lized in the NLP domain often rely on word embeddings that are trained on very large
corpora Mikolov et al. (2013). It was proved that such embeddings are very useful espe-
cially in the case of short texts Kim (2014). However, for longer texts, better results were
achieved using embeddings initialized randomly and trained jointly with the classification
network Lenc and Král (2016). We thus used randomly initialized embeddings.

Figure 2: Architecture of the utilized network

Network inputs consist of word sequences of texts, represented by vocabulary indices,
as described in Section 4.1. Inputs are fed to a trainable embedding layer with randomly
initialized weights, which transforms them to multi-dimensional word vectors.

The embedding outputs form 2-D representations of texts which are then fed to a convo-
lutional layer. The convolutional layer comprises of NC filters of size K × 1, where NC and
K were set to 40 and 16, respectively. The number and size of filters were chosen according
to Lenc and Král (2016) where it was proved that further increasing of these values doesn’t
bring any significant improvement. Next is a max-pooling layer which includes a dropout
option, at a rate of 0.2. The max-pooling layer reduces dimensionality and prepares the
outputs for a sequence of two fully-connected layers, the first one with 256 output neu-
rons and a dropout of 0.2 and the final one with output neurons that match the number
of single-class labels (i.e. 20 for our experiments). All layers except the output one use
rectified linear unit (ReLU) non-linearity.
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We use sigmoid activation for outputs and the results are thresholded with a probability
threshold rthr = 0.5 (which is however only applied in the standalone mode, i.e. when CP is
used the threshold is removed so as not to alter the nonconformity scores). We use binary
cross-entropy (de Boer et al., 2005) as a loss function, and Adam (Kingma and Ba, 2014)
as an optimizer. For all experiments, models were trained for a duration of 30 epochs.

4.3. Nonconformity Measures

We compute nonconformity scores for all calibration-set instances and then for each test-set
instance and for each possible label-set, as described in Section 3. We experiment with four
different nonconformity measures, all of which are derived from:

ai =
c∑
j=1

|tji − o
j
i |
φ + λ

∑
1≤j<r≤c

tji t
r
iµj,r, (8)

where c is the total number of single-class labels, tji is 1 if j is a true label of instance
i and 0 otherwise, o is the probabilistic output of the underlying model for instance i and
label j. Parameter φ is used for controlling the sensitivity of the nonconformity measure,
since larger φ values will result in smaller |tji − o

j
i | for smaller prediction errors. The second

part of (8) penalizes label-sets which include label-pairs that have never been observed in
the proper-training set, where µj,r is 1 if labels Yj and Yr have not been observed together
and 0 otherwise. Based on (8) we construct four different versions of the nonconformity
measure:

(a) with φ = 1 and λ = 0

(b) with φ = 1 and λ = 1

(c) with φ = 2 and λ = 1

(d) with φ = 4 and λ = 1

5. Experiments and Results

We conduct experiments on a subset of the Reuters news-wire benchmark data-set, described
in Section 5.1. Raw texts are first partitioned into the appropriate training and test sets
and the preprocessing steps outlined in Section 4.1 are applied. The underlying ANN model
(Section 4.2) is trained once per experiment on the proper-training set and then deployed
accordingly on the calibration and test sets. Nonconformity measures are calculated once
per experiment on the calibration instances and multi-label target p-values once per test
instance, per experiment, for all possible target combinations up to the maximum observed
multi-label cardinality, as defined in Section 5.2.

Performances are calculated using a number of different evaluation metrics (Section 5.3)
and are summarized in Section 5.4. In particular, we present results for the forced-prediction
(Section 5.4.1) and prediction-set (Section 5.4.2) modes and include results for the quality
of p-values and the empirical validity of our conformal predictor.
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5.1. Data-sets Used

Multiple versions of the original Reuters news-wire benchmark data-set exist. For the
purposes of this study we use our own subset which is however based on the ModApte
(R90) split, as retrieved directly from Python’s Natural-Language-Toolkit (NLTK) library
(Bird et al., 2009). This version consists of 10788 examples, 7769 for training and 3019 for
testing, associated with a total of 90 classes, where each class is represented at least once
in the training and in the test sets.

However, the proposed multi-label ICP algorithm requires the evaluation of nonconfor-
mity measures on class label-sets, i.e. label combinations. The total number of all possible
label combinations for R90 is 290, which is computationally prohibitive for our hardware
setup. We therefore reduce the total number of classes and produce a new mode of the
NLTK-version, which consists of the 20 most populous classes and a total number of 9266
texts (6701 for training and 2565 for testing). We refer to this as R20.

Finally, and as outlined in Section 3, ICP requires that the training set is further split
into the proper-training and calibration sets. The ratio has been set to 0.7 - 0.3, i.e. 70%
for proper-training and 30% for calibration, or 4691 and 2010 instances, respectively.

5.2. Label-sets Used

We further reduce computational requirements by evaluating nonconformity measures for
label combinations which are subsets of all possible combinations, but only up to the max-
imum observed label cardinality, as determined from the complete subset (i.e. training +
test sets). For R20, the maximum number of labels for a single instance was found to be
5 and we therefore discard all label-sets with more than 5 labels. This results in a total
number of 21699 possible label-sets.

5.3. Evaluation Metrics

We group evaluation metrics into two categories. The first relates to the performance of the
forced-prediction mode which enables the comparison of ICP with the underlying model,
while the second category concerns prediction-sets and the quality of p-values.

In all cases, ψi ⊆ {Y1, . . . , Yc} corresponds to the true label-set and ψ̂i to the predicted

label-set for test instance i ∈ {1, . . . , k}, while < t1i , . . . , t
c
i > and < t̂1i , . . . , t̂

c
i > are the

multi-hot representations of ψi and ψ̂i respectively.

Forced-prediction results are evaluated using six different metrics:

• Classification accuracy (CA) is computed for the complete set of test instances and
averaged over their total number. For each instance, a correct prediction is given if
and only if the true multi-label target has been fully matched by the highest p-value
prediction, i.e.

CA =
1

k

k∑
i=1

I(ψi = ψ̂i), (9)
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where I is 1 if the condition is true and 0 otherwise. Accuracy is therefore strict and
rewards only absolutely-correct predictions and not partially-correct predictions.

• The F1-measure corresponds to the harmonic mean of precision and recall and its
value is in the range [0, 1]. It can be further split into the micro-averaged and macro-
averaged types. Fmicro is averaged over the complete set of test instances, which means
that more frequent labels weight more than infrequent ones. Conversely, Fmacro is first
averaged per label and the results are then averaged over the total number of labels.
Consequently, Fmacro gives equal weights to all labels and it therefore tends to be
lower than Fmicro when poorer performance is observed for the more infrequent ones.
The two are defined as:

Fmicro =
2
∑c

j=1

∑k
i=1 t

j
i
ˆ
tji∑c

j=1

∑k
i=1 t

j
i +

∑c
j=1

∑k
i=1

ˆ
tji

, (10)

Fmacro =
1

c

c∑
j=1

2
∑k

i=1 t
j
i
ˆ
tji∑k

i=1 t
j
i +

∑k
i=1

ˆ
tji

, (11)

• Hamming Loss (HL) is evaluated as a loss function and, in contrast to accuracy and
F1 measures, the objective is minimization. It is given by the symmetric difference
between actual and predicted labels, averaged over the total number of test instances
and it is more suitable than CA for multi-label classification problems as it also
rewards partially-correct predictions. It is defined as:

HL =
1

kc

k∑
i=1

c∑
j=1

tji ⊕
ˆ
tji , (12)

where ⊕ is the xor operator.

• We also evaluate average-confidence (Conf.), which is intended as an overall indication
of how likely predictions are compared to all other possible classifications (Section 3)
and it is defined as:

Conf. =
1

k

k∑
i=1

1− max
Ψ6=arg maxΨ pi(Ψ)

pi(Ψ), (13)

where we compute the average value of all confidence scores (i.e. 1− the second largest
p-value p, over all considered label-sets Ψ) over k number of test instances.

• As discussed in Section 3, credibility indicates how suitable is the training data-set
for each test instance. Here we evaluate an overall model suitability using average-
credibility (Cred.), defined as:
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Cred. =
1

k

k∑
i=1

max
Ψ

pi(Ψ), (14)

where the credibility of example i is the largest p-value p out of all considered label-sets
Ψ.

The quality of the generated p-values and the practical usefulness of the prediction-sets
are evaluated using the following criteria, as proposed in (Vovk et al., 2016):

• The s-criterion (S), i.e. sum criterion, is an efficiency measure given as the average
sum of p-values across all test instances and it is independent of significance level ε.
Small values are preferable. It is defined as:

S =
1

k

k∑
i=1

∑
Ψ

pi(Ψ) (15)

• The of-criterion (OF), i.e. observed-fuzziness criterion, is the same as the s-criterion,
but excluding the p-value of the true label-set. It therefore evaluates the average
prediction-set size for all false predictions. Smaller values are, again, preferable. It is
defined as:

OF =
1

k

k∑
i=1

∑
Ψ 6=ψi

pi(Ψ) (16)

where we sum all p-values p excluding the p-value of the true label-set.

• The n-criterion, i.e. number criterion, which returns the average size of the resulting
predictions-sets:

N =
1

k

k∑
i=1

|Γεi |. (17)

where |Γεi | is the size of the resulting prediction-set for instance i at a significance level
ε.

5.4. Results

We present forced-prediction results in Section 5.4.1 and prediction-set results in Section
5.4.2. Where appropriate, we present results for all four versions of the nonconformity
measure (i.e. a-d), as discussed in Section 4.3.
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5.4.1. Forced Predictions

Forced-prediction results are based on the label-sets with the highest p-value, per test
instance (Section 3) and are shown in Table 1. For comparison purposes, in addition to the
results for nonconformity measures a-d, we also present result for the underlying model (i.e.
without CP), indicated by ∗.

Table 1: Forced Prediction Results

Experiment CA Fmicro Fmacro HL Conf. Cred.

R20∗ 0.892 0.935 0.824 0.007 - -
R20a 0.897 0.932 0.832 0.008 0.919 0.532
R20b 0.897 0.932 0.832 0.008 0.919 0.532
R20c 0.897 0.932 0.832 0.008 0.939 0.533
R20d 0.897 0.932 0.822 0.008 0.948 0.533

In contrast with R20a,b,c,d, the R20∗ model was trained on the full set of training in-
stances, i.e. proper training and calibration sets. Nevertheless, it can be seen that the
results are approximately equal for all metrics among the five experiments presented. This
indicates that no substantial classification performance is sacrificed by the use of CP, which
provides important additional information with each prediction.

For all experiments, Fmacro is lower than Fmicro which suggests that the classification
model has poorer performance for the less frequent classes. Classification accuracy is high
(≈ 0.9 in all cases), and Hamming loss remains low between 0.007 − 0.008. Conf. is for
all R20a,b,c,d above 0.9 which shows high certainty in the majority of predicted label-sets.
Finally the average credibility is a bit higher than 0.5 (which is the expected average cred-
ibility for the true labels) and shows that the trained model is suitable for classifying the
test instances. It should be noted that this relatively good performance for a multi-label
classification task can be, at least partly, attributed to the fact that the large majority of
the instances belong to a single class (≈ 90%).

5.4.2. Prediction Sets

Results for the S and OF criteria are presented in Table 2. We notice a substantial decrease
for both metrics between R20a and the rest of the experiments, which is explained by the
change of λ (Section 4.3) from 0 to 1. A small decrease for both values is also shown
between R20b and R20c and between R20c and R20d, although it is clear that the increase
in φ (Section 4.3) has much less impact on the two metrics compared to a change in λ.
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Table 2: S & OF Criteria

Experiment S − Criterion OF − Criterion

R20a 18.602 18.082
R20b 12.928 12.409
R20c 12.654 12.134
R20d 12.551 12.031

Figure 3 shows the average prediction-set sizes (i.e. n-criterion), for all four versions of
the nonconformity measure and for significance levels in the range [0.01, 0.2]. Here, apart
from the obvious change due to the parameter λ, we can also observe more clearly the effects
of increasing the sensitivity factor φ, where in each step (between b-d) there are reductions
in the average prediction-set sizes, especially for significance levels > 0.03. Overall the
prediction sets produced by the proposed approach become very tight with R20d providing
prediction sets containing on average ≈ 15 out of the possible 21699 label-sets at the 99%
confidence level, while this is reduced to only ≈ 2 label-sets at the 95% confidence level. In
general for all experiments, the prediction sets stabilize to a size=1 for significance levels
> 0.09.

Figure 3: Average Prediction-Set Size
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We also examine the empirical validity of our conformal predictor by plotting the test-
set error-rate against the significance level in the range [0, 1], presented in Figure 4. It
is shown that, as guaranteed theoretically, the error-rate is always less than or equal to
the significance level (up to statistical fluctuations) and confirms that our data satisfies the
exchangeability assumption, even though no data randomization was used. Additionally,
we show only negligible differences between all R20a,b,c,d in terms of the empirical error rate.
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Figure 4: Empirical Error Rate
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Theoretical

6. Conclusions

We examined the application of the CP framework on a multi-label text classification prob-
lem and assessed its performance on a subset of the Reuters news-wire data-set. Specifically,
the proposed approach follows the inductive version of the CP framework combined with a
deep ANN configuration including an additional trainable embedding layer. Nonconformity
scores are assigned to the possible label-sets in a power-set manner using four versions of a
multi-label nonconformity measure.

Our experimental comparison between the performance of the proposed ICP in the forced
prediction mode and that of its underlying model shows that ICP has a negligible negative
impact on performance for providing important confidence information. Additionally, we
can conclude that our underlying model performs well without the need of computationally
demanding pre-trained word-embeddings.

Furthermore, the prediction sets produced by the proposed approach are well-calibrated
and tight even for high confidence levels (> 0.95), especially with the last set of noncon-
formity measure parameter values (d), even though the number of candidate label-sets was
more than 20k. This shows that the ICP prediction sets can be practically useful.

Our future plans include the evaluation of the proposed approach on non-English text
corpora as well as on data-sets with higher average label-set cardinality. We are also inter-
ested in investigating the use of CP with other deep ANN configurations (such as attention-
based and RNN/LSTM) and to further experiment on the effects of using different noncon-
formity measures.
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