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Abstract

As the volume of data increase rapidly, most traditional machine learning algorithms be-
come computationally prohibitive. Furthermore, the available data can be so big that
a single machine’s memory can easily be overflown. We propose Coreset-Based Confor-
mal Prediction, a strategy for dealing with big data by applying conformal predictors to
a weighted summary of data - namely the coreset. We compare our approach against
standalone inductive conformal predictors over three large competition-grade datasets to
demonstrate that our coreset-based strategy may not only significantly improve the learning
speed, but also retains predictions validity and the predictors’ efficiency.
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1. Introduction

When facing a learning problem, it is highly desirable that the learner receives data that
accurately represent some underlying process we want to learn about. Furthermore, such
an ideal scenario is more likely to occur as there is more data available to the learner.
However, the blessing of large-scale data availability comes with severe computational con-
straints: firstly, the computing power available might be easily overshadowed by the volume
of information at hand; secondly, the data may quickly overflow the local storage.

We are interested in studying this trade-off in the context of Conformal Prediction, where
our learner outputs valid fine-grained prediction sets with tight bounds on the number of
prediction errors (Gammerman and Vovk (2007)). Conformal Predictors (CPs) are known to
be computationally intensive, even in their inductive version. Thus, scaling these algorithms
to the big data setting is an active research area.

In this work we give an alternative solution for analysing massive datasets using Confor-
mal Predictors: we propose the use of coresets, a data-summarising framework, to produce
a small weighted set of data that provably correctly approximates the original big data
(Phillips (2016)). After we obtain a coreset, we can safely discard the original dataset and
proceed to compute Conformal Predictors over the weighted data summary, dramatically
reducing storage and computational overheads. We call this strategy Coreset-Based Confor-
mal Prediction (CBCP) and we shall investigate its application to the problem of classifying
labeled objects using Logistic Regression.
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The contributions of our work can be summarised as follows:

e Coreset-based Conformal Prediction. We bring the idea of coresets to Conformal
Prediction. Our strategy provides, as we shall see in Section 4, an interesting boost
to Conformal Predictors’ computational efficiency.

e Empirical analysis. We provide detailed empirical evaluation of our strategy. Par-
ticularly, we evaluate the extent to which using coresets affects validity and efficiency
of Conformal Predictors. We show in our study that when Conformal Predictors are
computed over coresets, their validity and efficiency are retained i.e. CPs over the
coreset and CPs over the full data give virtually the same number of prediction errors
and the same efficiency scores.

The paper is organised according to the following structure. In Section 2 we briefly
discuss the Logistic Regression learning problem and Conformal Prediction. Section 3 is
devoted to coresets: their definition, construction and properties. We present our experi-
mental results and discussions in Section 4. Section 5 overviews some related work. Finally,
we summarise our work and outline future research directions in Section 6.

2. Binary logistic regression and Conformal Prediction

This section overviews the logistic regression problem as well as the concepts involved in
Conformal Prediction (i.e. transductive Conformal Prediction and inductive Conformal
Prediction). Notice that a logistic regression model will be used as the underlying predictor
for Conformal Prediction.

2.1. The learning problem

We are interested in the problem of binary classification using Logistic Regression (LR),
which is a well-known instance of a generalised linear model. We choose to work with the
binary version because the problem exposition is simplified and generally it is straightfor-
ward to extend the binary results to multi-class results by procedures like “one-against-all”
or “one-against-one” (Milgram et al. (2006)).
Formally, we are given a dataset D := {(xn, yn)}_;, where x,, € R? is a feature vector
and y, € {—1,1} is its corresponding label. For LR, the likelihood of observation y,,, given

some parameter § € R is Diogistic(Yn = 1|n;0) :=1/(1 4+ exp(—xy, - §)) and

1 _exp(—w,-0) 1
AT op(tn 0) ~ (Lt exp(—an-0)) ~ (1 exp(an 0)

plogistic(yn = _1’.’En; 9) =1

Therefore we can set progistic(Yn|Tn:0) = 1/(1 + exp(—ynzy, - 0)) for any y, and finally
define the log-likelihood function LLx(6|D) as specified in Shalev-Shwartz and Ben-David
(2014):

N
LLN(QIID Z In plogzstzc(yn‘xm - Z ln(l + eXp(_ynxn : 6)) (1)

n=1
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which is the objective function for the LR problem. The optimal parameter 0 can be
estimated by maximising LLy(0|D). In other words, we want to minimise Ly (0|D) :=
25:1 In(1+exp(—ynzy -0)) over all § € R, Namely, the optimisation problem is defined
as:

arg min Ly (6|D). (2)
fERA+1
Our work relies on the assumption that we have redundancy in data and hence not all
points in the dataset are equally important from the learning perspective. That is, there are
points in D that contribute more to Equation 2. This observation constitutes the base for
our approach: we will identify those important points for the LR problem, assign weights
to them and discard the rest of the points. To such subset of the data we call a coreset,
and we will carefully explain its properties in Section 3.

2.2. Conformal Predictors

We now complete our problem definition by introducing the learning framework we are
interested in studying. We first define Conformal Prediction in the transductive setting;
then we expand the definitions to the inductive scenario.

Conformal Predictors (Vovk et al. (2005)) are learning algorithms that evaluate con-
formity. In essence, CPs compute, for a given object we want to classify, prediction sets
containing a p-value for each possible label the object can have. The p-values provide a
powerful reliability measure that quantifies the likelihood that we find an object with a
given label under the assumption that all objects are randomly and independently drawn
from the same probability distribution (IID assumption).

We use in this subsection a more compact notation for representing feature vectors and
labels: we define z; = (z;,y;) to be the i-th example of some sequence ZV composed of N
examples.

Let N be any natural number, a non-conformity measure A assigns to every sequence
(21, 22,...,2n) of N examples a sequence (o, g, ...,an) of N real-valued nonconformity
scores which is equivariant with respect to permutations (Balasubramanian et al. (2014)).
We define the Conformal Predictor, determined by the nonconformity measure A, as in
Vovk et al. (2016):

(21, z22...2n, ) == {y : p¥ > €}, (3)
where for each label y € Y i.e. Y = {—1,1} in our case, the p-value pY is defined by
{i=1,2.N +1:a! > a%,,}|

Y = pY = 4
p pY(21,22...2N, T) N+ 1 (4)

Finally, we define the sequence of non-conformity scores:
(of,af,..,a ) = A(z1, 22, ..., 2N, 2) (5)

where z = (z,y).

The CP framework uses existing machine learning algorithms, which are commonly
referred as simple predictors, as subroutines. In fact, simple predictors constitute the un-
derlying algorithm for defining A. See Vovk et al. (2005) for a rich list of algorithms and
strategies for computing nonconformity measures.



CORESET-BASED CONFORMAL PREDICTION

The way we compute the prediction set in Equation (3) might change depending on the
nature of the problem at hand. Let x4 be the feature vector of an example that we just
obtained from a sequence of examples. For our classification problem, we compute Equation
(4) for each pair (xn+1,y) y € Y and filter the |Y| p-values using Equation (3). We then
repeat the same procedure for each new example.

2.2.1. INDUCTIVE CONFORMAL PREDICTORS

By inspecting the above definitions of Conformal Predictors, it is not hard to see that these
algorithms are designed for the online setting. In fact, they enjoy stronger validity when
run in a purely online fashion. Intuitively, as the training sequence gets larger, they make
better predictions since they have more “experience” available. This advantage does not
come for free, though: as mentioned previously, the whole framework has to be recomputed
from scratch for each new example. Clearly, these transductive algorithms soon become
computationally prohibitive, which makes them ill-suited for relatively large data.

Inductive Conformal Predictors (ICPs) (Vovk (2012)) are inductive variants of Confor-
mal Predictors designed to extend the applicability of their transductive counterparts by
first, easing the computational overhead; and second, relaxing the pure-online constraint.
The price we pay for ICPs is weakened validity and decreased efficiency i.e. larger and hence
less informative prediction sets. For a detailed explanation on the distinction between the
notions of transductive and inductive learning, we refer the reader to Vapnik’s work (Vapnik
(1998)).

To compute inductive Conformal Predictors, we need to split the training set (z1, 22, ..., 2N)
into two parts:

e (z1,29,...,2m), the proper training set of size m < N;;

® (Zm+1,2m+2, ..., 2N), the calibration set of size N —m.

Generally, we would expect to have a big training set and a considerably smaller cal-
ibration set. We now need to adapt the definitions given in Section 2.2 to the inductive
setting: we define the nonconformity measure as A : Z™ x Z — R and re-write Definition
(4) as:

_ Hi=m+1m+2,.,N+1:a/> O‘?JJVHH
N-m+1
with the corresponding non-conformity scores:

(6)

pY:

a; = A(21,22, ey Zm, Zi )yt =m+1,m+2,...,N;
y
OJN+1 = ./4(21, 22y eeny By ZN+1).

The intuition behind inductive Conformal Predictors is that they measure how well a
new example conforms to the training set with respect to the calibration set.

From the above definitions, we can see why ICPs save a great deal of computing time:
they only compute the NCM for each example in the calibration set once. Then, for each
new example, they only need to compute one NCM score in order to compare it to the
current pool of scores. Hence, ICPs are better-suited for large-scale learning problems
compared to CPs. We shall see, however, that our coreset-based strategy can drastically
improve the computing time achieved by ICPs.
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3. Coreset-Based Conformal Predictors

Having discussed the background concepts of transductive and inductive CP, we are now
in a good position to present our coreset-based approach to improve the computing time of
the latter. We present first the intuition and motivation behind summarising data. Then
we present the specific techniques we use in our strategy: coresets.

3.1. Summarising data

Data summarising has been of great interest in machine learning in the last decades. As
we previously mentioned, having more data means access to more information from which,
hopefully, we will get a better understanding of an underlying truth. We know that learn-
ing becomes harder as data grows; this is because many machine learning algorithms use
computationally expensive numerical solvers to optimise an underlying objective function.
Given that not all data points in a dataset are equally relevant to this optimisation problem,
substantial research effort has been put in identifying the portion of data that is more im-
portant from the optimisation point of view. The set constructed with the more important
portion of data can be interpreted as a summary of the original dataset since it contains
sufficient information to provide a (provably) good solution for the optimisation problem.
It is common to refer to a summary as a “compression” of the original data (Feldman et al.
(2013)), to emphasise the fact that the portion of important points is small compared to
the original full data.

Under this paradigm, the computation is divided in two intuitive steps: first, the data
is reduced by creating a very small summary whose size has little or no dependency on the
original data size; second, the learning algorithm, that remains unchanged, is applied to
the summary only, reducing the computing cost in the learning process substantially. The
challenge thus resides in balancing the trade-off between the size of the resulting summary
and the information we lose in the compression process. We refer to such trade-off as the
compression trade-off and we will study it in the context of coresets.

3.2. Coresets

Coresets are a powerful algorithmic framework that has been used to analyse big and com-
plex data. In essence, coresets help in quantifying the aforementioned compression trade-off
for a specific optimisation problem of interest. A coreset is a small weighted set of data i.e.
a summary, such that the solution found in the summary is provably correct with respect
to the solution found in the full data. Ideally, a coreset should be significantly smaller than
the original dataset. Furthermore, state-of-the-art coreset results involve coresets whose
sizes are independent of the original data size (Braverman et al. (2016)).

Most machine learning problems involve defining an optimisation problem to estimate
model parameters or to describe other aspects of data. Thus, for a given learning problem,
a coreset can be constructed in order to reduce the volume of data. Then we can proceed
to learn using the coreset only, discarding the rest of the data, and we will be guaranteed
to obtain approzimately the same result (Feldman et al. (2013)).
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3.2.1. CORESET DESIGN

Any algorithm that constructs a coreset for some dataset, can only provide provably correct
guarantees for one specific learning problem. Hence, the way we design a coreset construc-
tion algorithm entirely depends on the problem we are interested in learning. However, we
can still define coresets in the following problem-agnostic fashion.

Definition 1 (A-coreset): Let function f be the objective function of some learning problem
and D the input data. We call C a A-coreset for D if the following inequality holds:

[f(D) = F(C)] < Alf(D)| (7)

where A > 0. Inequality (7) is commonly referred as the coreset guarantee; and we
say that if such guarantee can be obtained by approximating the original dataset D with a
weighted set C w.r.t. function f, then C is called an A-coreset for D.

Notice that A establishes a bound for the solution quality found in the coreset. That
is, A defines how far a solution found in the coreset can be from a solution found in the
original dataset.

There are three general quantities that need to be bounded when designing a coreset
algorithm for a optimisation problem: 1) the size M of the coreset; 2) the error tolerance
A i.e. maximum amount of discrepancy between solutions found in the full data and
in the coreset; 3) the running time of the algorithm i.e. if constructing the coreset is
computationally comparable to solving the problem using the full data, then there is no
point in computing a coreset.

Designing a coreset algorithm for a learning problem thus is usually a very challenging
task. Furthermore, not every problem allows a practical coreset construction (Munteanu
et al. (2018)). Fortunately, there exists a computationally efficient randomised strategy to
construct coresets for the LR problem and we will describe it in the next subsections.

3.2.2. CORESETS VIA IMPORTANCE SAMPLING

A naive randomised approach to construct coresets is by doing uniform sampling. We
can simply assign probability 1/N to each point in D and then sample according to this
distribution. The problem with this oversimplified approach is that we have to sample a
very large number of points to ensure relatively low error (Bachem et al. (2017)). This
happens because different points make different contributions to the objective function at
hand and hence we can easily leave important points out of the coreset if we do not sample
sufficiently large coresets. This is why a more sophisticated sampling scheme is desirable.

The most effective randomised approach for constructing coresets is by doing non-
uniform sampling, namely importance sampling (Feldman and Langberg (2011)). In this
approach, rather than just assigning equal probability to all our input data points, we first
compute an importance score that tells us “how redundant” a data point is for our learning
problem. This score is called the sensitivity of the point, and is the central quantity for
constructing coresets non-uniformly. Once we computed the sensitivity for each input point,
we sample M points according to the sensitivities. The final step is to compute the weights
for the sampled points, which are generally inverse-proportional to the sensitivity scores,
and return the M weighted points.
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When constructing coresets using importance sampling, defining and computing the
sensitivity is very challenging because (i) computing the exact sensitivity is not computa-
tionally tractable, that is, we need to define lower and upper bounds for it and prove that
using these bounds yields to small coresets; (ii) the bounds should be efficiently computable.
On this front, it is worth mentioning that coresets algorithm need to inspect each input
point at least once. Hence, by “efficiently computable” we mean linear time.

One last observation is that results obtained by using importance sampling come in a
PAC-like flavour !: we have a tuple of error parameters, (A,d), where A is the already
defined error tolerance and § is the probability of failure i.e. § € (0,1) and it tells us the
chances that after running a randomised coreset algorithm we do not obtain a coreset.

3.2.3. CORESET FOR LOGISTIC REGRESSION

Having discussed, in general terms, the importance sampling approach for constructing
coresets, we now present a state-of-the-art importance sampling algorithm to construct a
coreset for the LR problem.

We defined LR in Section 2.1 as the problem we are interested in learning. Therefore,
an importance-sampling coreset algorithm will have to identify important points for the
log-likelihood function defined in Equation (2). Concretely, the job of such coreset algo-
rithm is to construct a weighted set C := {(wm, Tm, Jm)}M_;, with M < N, such that
the weighted log-likelihood function /jN(GlC) = Z%:l WinIN Progistic(Un|Tm; 0) satisfies the
coreset guarantee:

[Ln(01D) — Ln(91C)] < A[Ln(9]D)] (8)

for all § € R4*1,

We use the recent coreset construction method proposed by Huggins et al. (Huggins
et al. (2016)), to which we refer as One-Shot Coreset Algorithm For Logistic Regression
(OSCA-LR). This coreset construction is guaranteed to produce a A-coreset of size M with
probability 1 — § for Logistic Regression. See Algorithm 1 for a description and referenced
work for the proof.

OSCA-LR uses importance sampling to select data points with huge contribution to
the log-likelihood function (2). This is encapsulated in the procedure Sensitivity() in
Algorithm 1.

Remark:

Notice that the theoretical description of coreset algorithms, such as the one presented
for OSCA-LR in Algorithm 1, requires the error tuple (A, ¢) as parameters in order to
compute the corresponding coreset size M. In practice, however, one does not interact
with coreset algorithms via the error parameters; since we already know the number points
we can afford to maintain as a coreset i.e. given memory, storage, time constraints, etc,
we give the number M of desired points to our coreset algorithm and we get a M-sized
coreset in return. Thus, we never explicitly set the error parameters as these values are
mostly of theoretical interest. We refer the reader to Braverman et al. (2016) for a detailed
explanation on the relationship between the errors tuple and the size of the coreset.

1. PAC: Provably Approximately Correct
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Algorithm 1: The OSCA-LR algorithm: a coreset algorithm for Logistic Regression, as

proposed by Huggins et al. D is the number of features in data D and c is a constant.
Input: Data D, k-clustering Q with |Q| = k, radius R > 0, coreset error A > 0, failure

parameter § € (0, 1)
Output: A-coreset C with probability 1 —§
forn=1,2,...,N do

‘ my, <— Sensitivity (N, Q, R) ; // Compute the sensitivity of each point
end

mpy < %7 27]:[:1 My,

M + [S[(D + 1)log my + log(3)]] ; // Compute coreset size
forn=1,2,...,N do

‘ Pn = NT%IN ; // compute importance weight for each point
end

(K1, K2, ..., Kn) ~ Multi (M, (pn)_)) ; // sample coreset points
forn=1,2,.... N do

‘ Wy, pfij ; // calculate the weight for each coreset point
end
C + {(wn, T, yn)|wy, > 0}

return C

We mentioned in the previous subsection that the sensitivity has to be bounded in order
to be computable. OSCA-LR uses a k-clustering of the input data to obtain such a bound.
The algorithm also needs a parameter R to compute the sensitivity. The R parameter is a
real-valued quantity that bounds the parameter space, R*1, to an euclidean ball of radius
R. We remind the reader that the coreset guarantee in Formula (8) should hold for all
parameters § € R4, However, Huggins et al. showed that a bounded parameter space is
needed in to prevent the sensitivity from blowing out to infinity. The proofs and technical
details on how/why this clustering-based bound captures points importance for LR can be
found in Huggins et al. (2016).

The k-clustering bound brings an intuitive interpretation for the sensitivity: points
that are bunched together are redundant while points that are far from other points have
more influence over the LR objective function (Reddi et al. (2016), Huggins et al. (2016)).
Hence, points far from the centres Q are assigned high sensitivity scores while close points
will get low scores. After computing the sensitivities, the algorithm defines the non-uniform
distribution based on these values. Ideally, we want to sample sensitive points as often as
possible and put them in the coreset. We sample M points i.e. using the Multi() procedure,
we compute their weights, and finally return all the points with non-zero weights. It is worth
mentioning that due to its randomised nature, OSCA-LR produces different coresets at each
run.

We can see in Figure 1 a single run of OSCA-LR over a toy dataset; we synthetically
generated a small amount of points to show how the LR coreset construction works. We
can see how the clustering of the data is used to define the sensitivity. Then, we sample
according to the sensitivity distribution, compute the weights and obtain a coreset. The
only thing left to do in this case is to run a LR solver over the coloured points in plot (d).
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Figure 1: A step-by-step run of OSCA-LR over a simple 2-dimensional synthetic dataset;
(a) shows an illustrative synthetic 2-dimensional data for which a logistic regression coreset
is computed using OSCA-LR; the data has 100 points; (b) displays a k-clustering of the
data to be used by the coreset algorithm to compute the sensitivities, with £ = 3 (c) shows
the sensitivity distribution for our small dataset; the brighter the colour, the more sensitive
the point is;the radius was set to R = 2.5 (d) shows the obtained coreset, with the coreset
size being 9 points; the colours here indicate the weights of points: the brighter the colour,
the “heavier” the point is.

Notice that to compute the coreset, we only need the example’s feature vector x. The label
y is only used in the learning phase 2.

2. Coreset points retain the same labelling.
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Important final observations regarding the OSCA-LR algorithm: 1) the inverse relation
between the sensitivity and the weight of a point i.e. highly sensitive points are low-weighted
and vice versa. This is intuitive if we consider the fact that we are using clustering to
compute the sensitivity: highly sensitive points are representing few points from the original
dataset as they were far from other points. This can be observed in plots (c¢) and (d) of
Figure 1; 2) the compression trade-off between the size of the coreset M and the coreset
error A: smaller coresets can potentially incur in greater error while a larger coreset can be
more accurate at the cost of sacrificing more storage and computing time; 3) the polynomial
dependency of the coreset size on the mean sensitivity m: as the parameter space expands,
the mean sensitivity grows, which in turn enlarges the coreset size. Hence, it is clearer now
why the parameter space has to be bounded to a ball of radius R i.e. unbounded parameter
space means infinite sensitivity, which implies infinite coreset size. Again, if we go back one
more time to Figure 1, we computed the sensitivities in plot (c) fixing the radius to R = 2.5.
If we re-run the algorithm with a higher value for R, say R = 5, then we would see that the
great majority, if not all the points, would turn into a very bright colour. Hence, when the
sensitivities are too high, we virtually degenerate into uniform sampling; 4) OSCA-LR can
compute all the sensitivity scores in O(Nk) time; we previously mentioned that coresets
algorithm cannot do better than linear time as they need to examine each data point at
least once. Therefore, OSCA-LR is a quiet efficient coreset algorithm and, as the size of
data gets very large, its gains in running time become quite useful.

3.3. Our strategy

We conclude this section with a concise description of how we use the importance-sampling
algorithm OSCA-LR to solve a large-scale LR problem with conformal predictors.

Our approach consists in using coresets as a pre-processing step for Conformal Predictors
in order to efficiently solve LR. Hence, we divide the computational tasks in two main steps:

1. compress the input data: we compute a coreset for our data using the OSCA-LR
algorithm. Since OSCA-LR needs a k-clustering of the data, we run the K-Means++
algorithm to obtain the k centres.

2. learn from the coreset: after we compress the data, we only keep the small coreset
and proceed to solve a weighted instance of LR using inductive conformal predictors.
To train the icp model i.e. to define the NCM A from Section 2.2.1, we use the state-
of-the-art LIBLINEAR solver (Fan et al. (2008)), which has been extensively used to
train large-scale linear classification problems.

We refer to the above strategy as Coreset-Based Conformal Predictors (CBCPs). Hence,
CBCPs learn over compressed data and, as we will see in the next section, this brings an
interesting computing-time boost to CPs with negligible validity /efficiency degradation.

4. Experimental results

Having outlined our approach, this section presents our experimental results. We test
CBCPs against standalone CPs on real-world datasets. As previously mentioned, we apply

10
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our strategy to the inductive version of CPs since these are the more computationally
efficient CPs. In order to remind the reader of this decision, we call our algorithms Inductive
Coreset-Based Conformal Predictors (ICBCPs).

With our experiments we answer the following research questions:

e How do ICBCPs perform computationally when compared to ICPs? We
will show that ICBCPs outperform ICPs when dealing with large datasets.

e Are validity and efficiency retained with ICBCPs? We will demonstrate that
the efficiency of ICBCPs, in the Conformal Prediction sense, does not exhibit any
meaningful change when compared to ICPs. Regarding validity, we will see that in
some cases the number of ICBCPs errors is even less than the number of ICP errors,
which is an interesting result.

4.1. Experiment description

We evaluated ICBCPs using the datasets detailed in Table 1. All the datasets are pub-
lic and can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvm/. The
Covertype dataset (Blackard and Dean (1999)) contains cartographic features and the la-
bels correspond to different forest cover types; KDD-CUP 2010 (Stamper et al. (2010)) is
a massive dataset generated for an educational data mining competition; finally, based on
20000 messages taken from 20 newsgroups, News-20 was generated in Keerthi and DeCoste
(2005) for experiments that needed both high data size and dimensionality.

Mind that due to time and hardware constraints, we had to reduce the number of
dimensions of the KDD-CUP 2010 and News20 datasets. Since our focus resides entirely
in measuring computing time and CP properties, not in improving prediction accuracy, we
solved this issue by simply taking the first 2,000 features for KDD-CUP and the first 50,000
features for News-20.

We conducted our experiments as follows: we fix 5 algorithms for testing, 4 of which
are ICBCPs using different coreset sizes and the remaining one is the standalone ICP.
Concretely, our algorithms are ICBCPq 19, ICBCPq 59, ICBCPg, ICBCP5y and ICP,
where ICBCP ¢ means that we set the coreset size M to be g percent of the (proper)
training set size N. Notice that this means we construct our coresets using M, the size of
the desired coreset, as a parameter i.e. we do not specify the tuple (A,d), as discussed in
Section 3.2.3. For each dataset in Table 1 and for each of the above algorithms, we do the
following computations:

1. shuffle all the data: some datasets, like Covertype and News20, are packed in only
one big file. For these datasets, we fully shuffled the data. However, competition
datasets like KDD-CUP 2010 specify in different files the portion of the data to use
for training and testing, respectively. For this case, we shuffled only the training data,
i.e. we did not mix training and testing examples.

2. split the data: we split the samples as described in Section 2.2.1, that is, we split it
into the proper training set, which will be used to train a model, the calibration set,
which will be used to calibrate this model, and the test set for testing this model.
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3. compute a model: here is where ICP differs from the other algorithms. For ICP
we proceed as usual: we train a LR model over the proper training set and use the
obtained model to assign nonconformity scores to the calibration set examples. For
ICBCPs, however, we cluster the proper training set using the K-Means++ algorithm.
We used a value of k = 4 for K-Means++ and a radius of R = 1 for OSCA-LR, for
all our ICBCPs algorithms. Next, we feed the OSCA-LR algorithm with the proper
training set and its clustering to obtain a coreset. Finally, we use the coreset to solve
the LR problem with non-uniform weights.

4. make predictions and evaluate performance: we finally make the prediction for
the test instances and apply our performance metrics, described in Section 4.2.

Table 1: The 3 datasets used in our experiments are Covertype, News20 and KDD-CUP
2010. For all them, we used 60% of the data for the proper training set, 15% for the
calibration set and 25% for the test set.

Dataset Examples Features
News20 19,996 1,355,191
Covertype 581,012 54

KDD-CUP 2010 8,918,054 20,216,830

We computed the above procedure 20 times for each of the algorithms. Regarding
the hardware, our experiments were performed on a single desktop PC running Ubuntu-
Linux operating system, equipped with an Intel(R) Xeon(R) CPU E3-1225 v5 @ 3.30GHz
processor and 32 Gigabytes of RAM.

Lastly, for coresets, we adapted to our needs the OSCA-LR algorithm implemented and
shared by its authors 2. For Conformal Prediction, we used the Nonconformist library*. All
our programs were written using the Python programming language.

4.2. Evaluation criteria

To evaluate our results, we set out the following criteria, which are most relevant in both
the coreset and Conformal Prediction domains.

e Computing time: our main criterion is the time, in seconds, that is needed for each
of the five algorithms to compute prediction sets for each instance in the test set. We
do not take into account the data splitting time nor the time needed to compute our
metrics and store the results. Even though the coreset algorithm OSCA-LR assumes
that the clustering of the data is given as an input, this assumption is non-realistic.
Hence, for the coreset-based predictors, we measure the clustering time and the proper
coreset, construction time.

3. https://bitbucket.org/jhhuggins/Ircoresets/src/master - last accessed in 5/2019
4. https://github.com/donlnz/nonconformist - last accessed in 5/2019
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e Validity: we measure the validity of each of the considered algorithms. That is, we
count the number of prediction errors made by all five algorithms, in the conformal-
prediction sense.

e Efficiency: we apply four efficiency measures from Vovk et al. (2016); namely, the
average prediction size, the p-values mean, the rate of singleton prediction and the
rate of empty predictions.

4.3. Computing time performance

We now present our results measuring the computing time of our five algorithms. Notice
that the small size of the coresets was intended to verify if we can still maintain the same
efficiency and validity of ICP. This will be examined in the next subsection.

Again, the computing time was measured as described in Section 4.2 and the experiment
was conducted as detailed in Section 4.1.

Figure 2 illustrates the significant benefit of ICBCP, which consistently outrun standard
ICP, across all three datasets. In particular, we observed nearly 5 times faster running time
for the KDD-CUP 2010 dataset, and 2 times faster for the News20 dataset. It is worth
pointing out that larger coreset size does not always result in longer running time, as the
non-deterministic clustering convergence time may vary depending on the structure of the
dataset.

Interestingly, using only a very small fraction of the proper training samples, like 0.1%
or 0.5%, ICBCPs not necessarily reduce the prediction accuracy of ICP. In fact, we will
complete our results exposition in the next subsection by showing that validity and efficiency
might even improve with coresets.

4.4. Efficiency and validity of predictions

We showed that coreset-based conformal prediction can be a major improvement in terms of
computing time for inductive conformal prediction. We now examine in detail how validity
and efficiency behave under the presence of compressed data.

Once more, we followed the same experiment procedure described previously.

To assess the validity of ICBCP, we take a closer look at the error rates across all 100
confidence levels, averaged over 20 runs with all test samples. Figure 3 suggests that our
approach retained full validity for all confidence levels, with the majority of the error rates
around the perfect diagonal calibration line, subjected to statistical fluctuations.

To gain deeper insight into the effect of ICBCP, we inspect the number of empty pre-
diction sets, and the number of single prediction set. In essence, the higher the significance
level, the more empty prediction sets we have (see Figure 4).

5. Related work on coresets

The technique of coresets was born in the field of computational geometry as a system-
atic approach for approximating the optimal solution for shape-fitting problems such as the
Minimum Enclosing Ball (MEB) Agarwal and Sharathkumar (2010) Badoiu and Clarkson
(2003) Badoiu and Clarkson (2008) Munteanu et al. (2014) and Directional Width (DW)
Agarwal et al. (2004) Chan (2006). In machine learning, coresets were mainly studied in the
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Figure 2: Comparison of the computing time between ICBCP and ICP on 3 datasets. The
central line in each box indicates the median. The bottom and top of the box indicate
the 25" and 75! percentiles respectively. The small circles denote the outliers. ICBCP
consistently outruns ICP on all three datasets. Different coreset sizes does not seem to
meaningfully impact on the computing time of ICBCP.

context of unsupervised learning Feldman et al. (2013) Har-Peled and Mazumdar (2004)
Bachem et al. (2017) Zhang et al. (2017) Ackermann et al. (2012) to devise fast approxi-
mation and streaming algorithms for computationally-intractable problems e.g. clustering.

There were significantly less incursions in the supervised-learning area. Reddi et al.
Reddi et al. (2015) explored coresets for the problem of Empirical Risk Minimisation, cen-
tral in statistical learning theory. Specifically, for the Logistic and Hinge loss functions, they
proposed an iterative gradient-based coreset algorithm by exploiting the following observa-
tion: at each iteration of the optimisation process, only a small set of points are important
i.e. those that contribute the most to the objective function. Thus, they showed that the
problem can be solved over this compact set of points, obtaining a provable good solution.
One interesting observation made by Reddi et al. is that the process of computing the
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Table 2: The performance of ICP and ICBCP on the Covertype dataset, averaged over 20
runs, with 145,253 test samples. icbcp-0.1%, icbep-0.5%, icbep-1% and icbep-5% denote
the size of the coresets corresponding to 0.1%, 0.5%, 1% and 5% of the original dataset size,
respectively. Lower prediction size and lower error rate are generally desirable. Overall, our
ICBCP closely matches ICP across all criteria.

(a) 99% confidence level, e = 0.01

Algorithm Average Mean Single Empty Error rate
prediction size p-values prediction (%) prediction (%)
icp 1.916 0.558 0.028 0.028 0.0299
icbep-0.1% 1.936 0.517 0.025 0.0197 0.0303
icbep-0.5% 1.944 0.536 0.021 0.0177 0.0299
icbep-1% 1.942 0.54 0.019 0.019 0.03
icbep-5% 1.929 0.553 0.018 0.026 0.0299
(b) 95% confidence level, € = 0.05
Algorithm Average Mean Single Empty Error rate
prediction size p-values prediction (%) prediction (%)
icp 1.876 0.557 0.042 0.041 0.0499
icbep-0.1% 1.893 0.555 0.023 0.042 0.0499
icbep-0.5% 1.883 0.557 0.037 0.04 0.05
icbep-1% 1.883 0.558 0.035 0.041 0.05
icbep-5% 1.878 0.558 0.042 0.04 0.0499
(¢) 70% confidence level, € = 0.3
Algorithm Average Mean Single Empty Error rate
prediction size p-values prediction (%) prediction (%)
icp 1.473 0.558 0.268 0.1297 0.3
icbep-0.1% 1.423 0.517 0.212 0.182 0.3
icbep-0.5% 1.455 0.536 0.183 0.181 0.299
icbep-1% 1.454 0.54 0.19 0.178 0.3
icbep-5% 1.469 0.553 0.256 0.138 0.3

well-known gradient descent algorithm can be seen as an instantiation of their framework
where the coreset consists in the gradients computed at each iteration

Huggins et al. (Huggins et al. (2016)) proposed a coreset algorithm assuming very
similar supervised-learning settings but from a Bayesian perspective i.e. Bayesian Logistic
Regression. They proved that, by approximating (up to a multiplicative factor) the log-
likelihood of the observations using a weighted subset of the data, one can obtain a coreset
with high probability.

The work of Huggins et al. was our main motivation for using coresets as a pre-processing
step for conformal prediction due to their good results with computationally expensive
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Table 3: The performance of ICP and ICBCP on the KDD-CUP 2010 dataset, averaged
over 20 runs, with 510,302 test samples. Lower prediction size and lower error rate are
generally desirable. Overall, our ICBCP closely matches ICP across all criteria.

(a) 99% confidence level, e = 0.01

Algorithm Average Mean Single Empty Error rate
prediction size p-values prediction (%) prediction (%)
icp 1.523 0.307 0.477 0 0.033
icbep-0.1% 1.741 0.333 0.259 0 0.033
icbep-0.5% 1.674 0.321 0.326 0 0.028
icbep-1% 1.609 0.313 0.391 0 0.03
icbep-5% 1.677 0.318 0.323 0 0.026
(b) 95% confidence level, ¢ = 0.05
Algorithm Average Mean Single Empty Error rate
prediction size p-values prediction (%) prediction (%)
icp 1.363 0.307 0.637 0 0.05
icbep-0.1% 1.586 0.333 0.414 0 0.054
icbep-0.5% 1.531 0.321 0.469 0 0.043
icbep-1% 1.467 0.313 0.533 0 0.047
icbep-5% 1.507 0.318 0.493 0 0.043
(¢) 70% confidence level, € = 0.3
Algorithm Average Mean Single Empty Error rate
prediction size p-values prediction (%) prediction (%)
icp 0.755 0.307 0.755 0.245 0.312
icbep-0.1% 0.818 0.333 0.818 0.182 0.296
icbep-0.5% 0.836 0.321 0.821 0.172 0.278
icbep-1% 0.817 0.313 0.811 0.186 0.278
icbep-5% 0.86 0.318 0.79 0.175 0.271

Bayesian-inference algorithms. In a sense, we also indirectly complemented their work by
using their method in the optimisation setting i.e. non-Bayesian, where they did not test
the OSCA-LR algorithm, and of course, by bringing the technique to conformal prediction.

6. Conclusion and future work

Many machine learning algorithms are computationally expensive, making their direct ap-
plications to large-scale datasets difficult or infeasible. In this paper, we have proposed
Coreset-Based Conformal Prediction, a strategy for dealing with large-scale data within the
conformal prediction framework. To the best of our knowledge, our work is the first attempt
to use coresets along with CP. Coreset-based conformal predictors can use a small fraction
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Table 4: The performance of ICP and ICBCP on the News20 dataset, averaged over 20
runs, with 4,999 test samples. icbep-0.1%, icbep-0.5%, icbep-1%, icbep-5% denote the size
of the coresets corresponding to 0.1%, 0.5%, 1% and 5% of the original dataset respectively.
Lower prediction size and lower error rate are generally desirable. Overall, our ICBCP
closely matches ICP across all criteria.

(a) 99% confidence level, e = 0.01

Algorithm Average Mean Single Empty Error rate
prediction size p-values prediction (%) prediction (%)
icp 1.941 0.5 1.00020004e-05 0.029 0.029
icbep-0.1% 1.941 0.5 2.00040008e-05 0.0295 0.0295
icbep-0.5% 1.941 0.5 3.00060012e-05 0.029 0.0293
icbep-1% 1.94 0.5 0 0.0301 0.0301
icbep-5% 1.941 0.5 1.00020004e-05 0.029 0.029
(b) 95% confidence level, € = 0.05
Algorithm Average Mean Single Empty Error rate
prediction size p-values prediction (%) prediction (%)
icp 1.9 0.5 4.00080016e-05 0.0498 0.0499
icbep-0.1% 1.9 0.501 3.00060012e-05 0.0499 0.0499
icbep-0.5% 1.9 0.501 1.00020004e-05 0.049 0.049
icbep-1% 1.9 0.501 2.00040008e-05 0.0498 0.0498
icbep-5% 1.901 0.5 7.00140028e-05 0.049 0.049
(¢) 70% confidence level, € = 0.3
Algorithm Average Mean Single Empty Error rate
prediction size p-values prediction (%) prediction (%)
icp 1.399 0.5 0.00016 0.3 0.3
icbep-0.1% 14 0.501 0.00024 0.2996 0.2997
icbep-0.5% 1.4 0.501 0.00016 0.299 0.2996
icbep-1% 1.407 0.501 0.00016 0.296 0.296
icbep-5% 1.4 0.5 0.00018 0.2997 0.2997

of the original dataset, namely the coreset, and learn using conformal predictors. We have
tested our approach with different coreset sizes over 3 public datasets to demonstrate that
our proposed CBCP may run up to 5 times faster than the ICP on the full dataset, while
achieving the similar prediction accuracy and Conformal Prediction’s validity.

We also observed that once the data is large, the time it takes to build the coreset is
small compared to the time needed to learn over the full dataset.

One of possible future research directions is to extend our approach to the streaming
setting. In particular, coresets proved to be very useful in scenarios where there is limited
storage, no random access to the data and massive amount of incoming information that
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Figure 3: The validity of ICBCP on 3 datasets, averaged over 20 runs. All 100 confidence
levels were assessed to observe that ICBCP produced valid predictions, subject to statistical
fluctuations. In each plot, the straight blue line corresponds to the “perfect” calibration
line.

have to be used for solving some specific problem. It is stimulating to see that both coresets
and conformal predictors have seen their best results in the online model.

Finally, we are also interested in studying CBCP in distributed environments, where the
data is inherently distributed and the participating machines have to collaboratively learn
a model efficiently.
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