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Abstract

This paper describes conformal predictive systems that are universally consistent in the
sense of being consistent under any data-generating distribution, assuming that the obser-
vations are produced independently in the IID fashion. Being conformal, these predictive
systems satisfy a natural property of small-sample validity, namely they are automatically
calibrated in probability.
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1. Introduction

Predictive distributions are probability distributions for future labels satisfying a natural
property of validity. They were introduced independently by Schweder and Hjort (2016,
Chapter 12), and Shen et al. (2018), who also gave several examples of predictive distri-
butions in parametric statistics. Earlier, related notions had been studied extensively by
Tilmann Gneiting with co-authors and their predecessors (see, e.g., the review Gneiting
and Katzfuss 2014). First nonparametric predictive distributions were constructed in the
conference version of Vovk et al. (2019) based on the method of conformal prediction (see,
e.g., Vovk et al. 2005, 2009; Lei et al. 2013; Lei and Wasserman 2014). The nonparametric
statistical model used in Vovk et al. (2019) is the one that is standard in machine learning:
the observations are produced independently from the same probability measure; we will
refer to it as the IID model in this paper. To make the notion of predictive distributions
applicable in the nonparametric context, Vovk et al. (2019) slightly generalize it allowing
randomization; unless the amount of training data is very small, randomization affects the
predictive distribution very little, but it simplifies definitions.

This paper follows Vovk et al. (2019, 2018) in studying randomized predictive distri-
butions under the IID model. Namely, we construct randomized predictive distributions
that, in addition to the small-sample property of validity that is satisfied automatically,
satisfy an asymptotic property of universal consistency; informally, the true conditional
distribution of the label and the randomized predictive distribution for it computed from
the corresponding object and training data of size n approach each other as n — oco. (The
procedures studied in Vovk et al. 2019, 2018 were based on the Least Squares method and
its modifications, and thus far from universally consistent)

Our approach is in the spirit of Gneiting et al.’s (2007) paradigm (which they trace back
to Murphy and Winkler 1987) of mazimizing the sharpness of the predictive distributions
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subject to calibration. We, however, refer to calibration as validity, sharpness as efficiency,
and include a validity requirement in the definition of predictive distributions (following
Shen et al. 2018).

We are mostly interested in results about the existence (and in explicit constructions) of
randomized predictive distributions that satisfy two appealing properties: the small-sample
property of validity and the asymptotic property of universal consistency. However, if we
do not insist on the former, randomization becomes superfluous (Theorem 23).

As in Vovk et al. (2019, 2018), our main technical tool will be conformal prediction. Be-
fore those papers, conformal prediction was typically applied for computing prediction sets.
Conformal predictors are guaranteed to satisfy a property of validity, namely the correct
coverage probability, and a remaining desideratum is their efficiency, namely the smallness
of their prediction sets. Asymptotically efficient conformal predictors were constructed by
Lei et al. (2013) in the unsupervised setting and Lei and Wasserman (2014) in the super-
vised setting (namely, for regression). This paper can be considered another step in this
direction, where the notion of efficiency is formalized as universal consistency.

For convenience, in this paper we will refer to procedures producing randomized pre-
dictive distributions as randomized predictive systems; in particular, conformal predictive
systems are procedures producing conformal predictive distributions, i.e., randomized pre-
dictive systems obtained by applying the method of conformal prediction.

The main result of this paper (Theorem 28) is that there exists a universally consistent
conformal predictive system, in the sense that it produces predictive distributions that are
consistent under any probability distribution for one observation. The notion of consistency
is used in an unusual situation here, and our formalization is based on Belyaev’s (Belyaev,
1995; Belyaev and Sjostedt—de Luna, 2000; Sjostedt—de Luna, 2005) notion of weakly ap-
proaching sequences of distributions. The construction of a universally consistent conformal
predictive system adapts standard arguments for universal consistency in classification and
regression (Stone, 1977; Devroye et al., 1996; Gyorfi et al., 2002).

The importance of universal consistency is demonstrated in Vovk and Bendtsen (2018,
Section 5); namely, applying the expected utility maximization principle to the predictive
distributions produced by a universally consistent predictive system leads, under natural
conditions, to asymptotically optimal decisions.

We start in Section 2 from defining randomized predictive systems, which are required
to satisfy the small-sample property of validity under the IID model. The next section,
Section 3, defines conformal predictive systems, which are a subclass of randomized pre-
dictive systems. The main result of the paper, Theorem 28 stated in Section 9, requires a
slight generalization of conformal predictive systems (for which we retain the same name).
Section 4 introduces another subclass of randomized predictive systems, which is wider
than the subclass of conformal predictive systems of Section 3; the elements of this wider
subclass are called Mondrian predictive systems. A simple version of Theorem 28 given
in Section 5 (Theorem 21) states the existence of Mondrian predictive systems that are
universally consistent. An example of a universally consistent Mondrian predictive system
is given in Section 6, and Section 7 is devoted to a short proof that this predictive system
is indeed universally consistent. Section 8 gives an even shorter proof of the existence of a
universally consistent probability forecasting system (Theorem 23), which is deterministic
and not required to satisfy any small-sample properties of validity. Theorem 28 stated in
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Section 9 asserts the existence of universally consistent conformal predictive systems. An
example of such a conformal predictive system is given in Section 10, and it is shown in
Section 11 to be universally consistent. One advantage of Theorem 28 over the result of
Section 5 (Theorem 21) is that, as compared with Mondrian predictive systems, confor-
mal predictive systems enjoy a stronger small-sample property of validity (see Remarks 9
and 20). In conclusion, Section 12 lists some natural directions of further research.

Remark 1 There is a widely studied sister notion to predictive distributions with a similar
small-sample guarantee of validity, namely confidence distributions: see, e.g., Xie and Singh
(2013). Both confidence and predictive distributions go back to Fisher’s fiducial inference.
Whereas, under the nonparametric IID model of this paper, there are no confidence distri-
butions, Vovk et al. (2019, 2018) and this paper argue that there is a meaningful theory of
predictive distributions even under the IID model.

2. Randomized predictive distributions

In this section we give some basic definitions partly following Shen et al. (2018) and Vovk
et al. (2019). Let X be a measurable space, which we will call the object space. The
observation space is defined to be Z := X x R; its element z = (x,y), where z € X and
y € R, is interpreted as an observation consisting of an object x € X and its label y € R.
Our task is, given training data consisting of observations z; = (z;, i), i = 1,...,n, and a
new (test) object x,41 € X, to predict the corresponding label y,,+1; the pair (241, Ynt1)
will be referred to as the test observation. We will be interested in procedures whose output
is independent of the ordering of the training data (z1, ..., z,); therefore, the training data
can also be interpreted as a multiset rather than a sequence.
Let U be the uniform probability measure on the interval [0, 1].

Definition 2 A measurable function Q : U2 (Z" ! x[0,1]) — [0, 1] is called a randomized
predictive system if it satisfies the following requirements:

R1 i For each n, each training data sequence (z1,...,2,) € Z", and each test object
ZTny1 € X, the function Q(z1, ..., 2n, (Tnt1,y),7) is monotonically increasing in
both y and 7 (i.e., monotonically increasing in y for each 7 and monotonically
increasing in 7 for each y).

ii For each n, each training data sequence (z1,...,z2,) € Z", and each test object
Tnt+1 € X7
lim Q(z1,...,2n, (Tnt1,¥),0) =0, (1)
Yy—+—00
llm Q(Zl, ey Zmy (mn—‘,—l; y)7 1) - 1
y*}OO

R2 For each n, the distribution of @), as function of random training observations z; ~
P,..., z, ~ P, a random test observation z,y+; ~ P, and a random number 7 ~ U,
all assumed independent, is uniform:

Va € [0,1] : P(Q(z1, ..., 2n, 2nt1,7) < @) = a. (2)
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The function Q(z1,. .., zn, (Tnt1,+),T) is the predictive distribution (function) output by Q
for given training data zi, ..., z,, test object x 41, and 7 € [0, 1].

Requirement R1 says, essentially, that, as a function of y, ) is a distribution function,
apart from a slack caused by the dependence on the random number 7. The size of the
slack is

Q(z1,- -y 2n, (Tnt1,9), 1) — Q(21, .. -, 2n, (Tny1,7),0) (3)

(remember that @ is monotonically increasing in 7 € [0, 1], according to requirement R1(i)).
In typical applications the slack will be small unless there is very little training data; see
Remark 12 for details.

Requirement R2 says, informally, that the predictive distributions agree with the data-
generating mechanism. It has a long history in the theory and practice of forecasting. The
review by Gneiting and Katzfuss (2014) refers to it as probabilistic calibration and describes
it as critical in forecasting; Gneiting and Katzfuss (2014, Section 2.2.3) review the relevant
literature.

Remark 3 Requirements R1 and R2 are the analogues (introduced in Schweder and Hjort
2016, Chapter 12, and Shen et al. 2018) of similar requirements in the theory of confidence
distributions: see, e.g., Xie and Singh (2013, Definition 1), or Schweder and Hjort (2016,
Chapter 3).

Definition 4 Let us say that a randomized predictive system @ is consistent for a proba-
bility measure P on Z if, for any bounded continuous function f: R — R,

/ fAQn —Ep(f | 50s1) = 0 (n— o0) (4)

in probability, where:

e (O, is the predictive distribution @, : y — Q(z1,...,2zn, (Tnt1,y),7) output by Q
as its forecast for the label y, 41 corresponding to the test object x,11 based on the
training data (z1,..., 2z,), where z; = (x4, ¥;);

e Ep(f | xp41) is the conditional expectation of f(y) given x = x,4; under (z,y) ~ P;
o 2; = (zj,y;)) ~P,i=1,...,n+1, and 7 ~ U, are assumed all independent.

It is clear that the notion of consistency given in Definition 4 does not depend on the
choice of the version of the conditional expectation Ep(f | -) in (4). The integral in (4)
is not quite standard since we did not require (), to be exactly a distribution function,
so we understand [ fdQ@, as [ fdQ, with the measure Q,, on R defined by Q,((u,v]) :=
Qn(v+) — Qpn(u+) for any interval (u,v] of this form in R.

Definition 5 A randomized predictive system @ is universally consistent if it is consistent
for any probability measure P on Z.

As already mentioned in Section 1, Definition 5 is based on Belyaev’s (see, e.g., Belyaev
and Sjostedt—de Luna 2000). Our goal is construction of universally consistent randomized
predictive systems.
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3. Conformal predictive distributions

A way of producing randomized predictive distributions under the IID model has been
proposed in Vovk et al. (2019). This section reviews a basic version, and Section 9 introduces
a simple extension.

Definition 6 A conformity measure is a measurable function A : US®,;Z"! — R that is
invariant with respect to permutations of the training observations: for any n, any sequence

(21,-..,2n) € Z", any zp41 € Z, and any permutation w of {1,...,n},
A(Zlv <o 2ny ZTL+1) =A (z7r(1)7 < 2r(n)s ZTL+1) .

The standard interpretation of a conformity measure A is that the value A(z1,..., zp,
Zn+1) measures how well the new observation z,;; conforms to the comparison data
(#1,...,2n). In the context of this paper, and conformal predictive distributions in ge-
neral, A(z1,...,2n, Znt1), where 2,11 = (Tny1, Ynt1), measures how large the label y,11 is,
in view of the corresponding object x,,+1 and comparison data 21, ..., 2.

Definition 7 The conformal transducer corresponding to a conformity measure A is defi-
ned as

1 .
Q(Zla"'vznv(xn+lay)77—) = m‘{lz 177n+1 | Oé/ < agLJrl}l
T
n+1

{i=1,....n+1|a! =02 }|, (5)

where n € {1,2,...}, (21,...,2,) € Z" is training data, x,+1; € X is a test object, and for

each y € R the corresponding conformity scores o are defined by
af == A(z1,. .0, 2im1, Zit 1y - - -5 Zny (1, Y), 20),s i=1,...,n, (6)
OJZ+1 = A(Zl, <oy 20, (xn-‘rlv y))

A function is a conformal transducer if it is the conformal transducer corresponding to some
conformity measure.

The usual interpretation of (5) is as a randomized p-value obtained when testing the
IID model for the training data extended by adding the test object z,11 combined with a
postulated label y (cf. Remark 13 at the end of this section).

Definition 8 A conformal predictive system is a function that is both a conformal
transducer and a randomized predictive system. If ) is a conformal predictive system,
Q(z1,. .., 2n, (Tny1,-), 7) are the corresponding conformal predictive distributions (or, more
fully, conformal predictive distribution functions).

Remark 9 Requirement R2 in the previous section is sometimes referred to as the fre-
quentist validity of predictive or confidence distributions (see, e.g., Xie and Singh 2013 and
Shen et al. 2018). It can be argued that there is no need to appeal to frequencies in these
and similar cases (see, e.g., Shafer 2017). However, the property of validity enjoyed by con-
formal predictive systems is truly frequentist: for them R2 (see (2)) can be strengthened to
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say that the random numbers Q(z1, ..., Zn, Zn+1,Tn), n = 1,2, ..., are distributed uniformly
in [0, 1] and independently, provided z, ~ P and 7, ~ U, n = 1,2,..., are all independent
(Vovk et al., 2005, Theorem 8.1). In combination with the law of large numbers this implies,
e.g., that for € € (0,1) the frequency of the event

€ €
Q(Zla .. ‘7Zn?zn+177-n) S |:§7 1-— §:|

(i.e., the frequency of the central (1—e¢)-prediction interval covering the true label) converges
to 1 — € as n — oo. Notice that this frequentist conclusion depends on the independence of
Q(z1, ..., 2n, Znt1, T) for different n; R2 alone is not sufficient.

For a natural class of conformity measures the corresponding conformal transducers are
automatically conformal predictive systems.

Definition 10 A conformity measure A is monotonic if A(z1,...,2zp41) is:
e monotonically increasing in y,41,
Ynt+1 < y';z—&—l = A(z1,- s 20y (Tnt1, Yn1)) < A(215 -+, 20, (Tng1, y;-&-l));
e monotonically decreasing in ¥,
Y1 < y'l = A((1,Y1), 22y - -+ Zny Znt1) = 141((331,(%),227 ey Zny Zntl)
(which is equivalent to being monotonically decreasing in y; for any i = 2,...,n).
Let A,, be the restriction of A to Z"t1.

Lemma 11 Suppose a monotonic conformity measure A satisfies the following three con-
ditions:

e for all n, all training data sequences (z1,...,z2y,), and all test objects xp1,
ir;fA(zl, ooy Zns (Tng1,y)) = inf Ay, (7)
sup A(z1, .- 2n, (Tnt1,y)) = sup Ay; (8)
y
e for each n, the inf, in (7) is either attained for all (z1,...,%,) and xp41 or not
attained for all (z1,...,2,) and Tpy1;
e for each n, the sup, in (8) is either attained for all (21,...,2n) and Ty41 or not
attained for all (z1,...,2,) and Tpy1.

Then the conformal transducer corresponding to A is a randomized predictive system.

As usual, the two inf in (7) are allowed to take value —oo, and the two sup in (8)
are allowed to take value co. The conditions of Lemma 11 will be satisfied if (7) and (8)
hold with inf A,, and sup A,, replaced by —oo and oo, respectively; we will usually use this
simplified version of the lemma (except for the proof of our main result, where we will need
a [0, 1]-valued conformity measure).
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Remark 12 The degree to which a randomized predictive system is affected by random-
ness, for given training data (z1,...,z2,), test object z,4+1, and postulated label y, is (3).
As already mentioned, in interesting cases this difference will be small. For example, in the
most interesting cases considered in Vovk et al. (2019, 2018) the difference (3) is 1/(n + 1)
except for at most n values of y. A randomized predictive system can be universally con-
sistent only if the difference (3) is small with high probability.

Proof of Lemma 11 We need to check requirements R1 and R2. R2 is the standard
property of validity for conformal transducers (see, e.g., Vovk et al. 2005, Theorem 8.1).
The intuition behind the proof of this property is given in Remark 13 at the end of this
section.

The second statement of R1(i) is that (5) is monotonically increasing in 7; this follows
from (5) being a linear function of 7 with a nonnegative slope (the slope is in fact always
positive as i = n + 1 is allowed).

The first statement of R1(i) is that (5) is monotonically increasing in y. We can rewrite
(5) as

1 n+1
Q(Zl, <oy Ry (xn-f—la y)a T) = n+1 Z; (1{a?<az+1} + Tl{a?:az+1}> ) (9)
1=

where 1;py stands for the indicator function of a property E, and it suffices to prove
that each addend in (9) is monotonically increasing in y; we will assume ¢ < n (the case
i = n+1is trivial). This follows from « being monotonically decreasing in y and o
being monotonically increasing in y, and therefore,

Lat<al ) T THar=al, 1)

taking all or some of the values 0, 7, 1 in this order as y increases.

For concreteness, we will prove only the first statement of R1(ii), (1). Fix an n. First
let us assume that the inf, in (7) is attained for all (z1,...,2,) and x,41. We will have
of | = inf A, for sufficiently small y, and plugging 7 := 0 into (5) will give 0, as required.
It remains to consider the case where the inf, in (7) is not attained for any (z1,...,2,) and
Tp41. Since minj—i ., a? > inf A, we will have, for sufficiently small y,

Y

Yy . 0 .
Qpp < min o < min oy,

i=1,...,n i=1,...,n

and so plugging 7 := 0 into (5) will again give 0. [ |

Remark 13 The proof of Lemma 11 refers to Vovk et al. (2005) for a complete proof
of R2. However, the intuition behind the proof is easy to explain. Setting 7 := 1 and
assuming that there are no ties among the conformity scores, the right-hand side of (5)
evaluated at y := y,41 is the rank of the last observation (z,41,yn+1) in the augmented
training data (z1,. .., zn, (Tnt1,Yns1)). Under the IID model (and the weaker assumption
of the exchangeability of all the n + 1 observations), the rank is uniformly distributed in
the set {1,...,n + 1}. Dividing by n + 1 and making 7 ~ U leads to (5) (evaluated at
Y := Yn+1) being uniformly distributed in [0, 1] (even if some conformity scores are tied).
This makes (5) a bona fide randomized p-value for testing the IID model.
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4. Mondrian predictive distributions

First we simplify our task by allowing Mondrian predictive distributions, which are more
general than conformal predictive distributions but enjoy the same property of validity R2.

Definition 14 A tazonomy k is an equivariant measurable function that assigns to each
sequence (z1,...,%n, 2nt1) € Z"H, for each n € {1,2,...}, an equivalence relation ~ on
{1,...,n+1}.

The requirement that x be equivariant will be spelled out in Definition 15. The idea
behind a taxonomy is to determine the comparison class for computing the p-value (5);
instead of using all available data we will only use the observations that are equivalent to
the test observation (intuitively, similar to it in some respect, with the aim of making the
p-value more relevant).

The notation (i ~ j | z1,...,2n+1), Where i,7 € {1,...,n+1}, means that i is equivalent
to j under the equivalence relation assigned by k to (z1,...,2n,4+1) (Where k is always clear
from the context and not reflected in our notation). The measurability of x means that, for
all n, i, and j, the set {(z1,...,2n+1) | (i ~J | 21,...,2n41)} is measurable.

Definition 15 A permutation 7 of {1,...,n + 1} respects an equivalence relation ~ if
(i) ~iforalli =1,...,n+1. The requirement that a Mondrian taxonomy & be equivariant
means that, for each n, each (21,...,2,41) € Z"*!, and each permutation 7 of {1,...,n+1}
respecting the equivalence relation assigned by « to (21, ..., 2n+1), we have

(i~gl2, s 2ne1) = (@) ~7(5) | 2r(1)s -+ Zr(ns1))- (10)

Remark 16 The notion of taxonomy used in this paper is introduced in Vovk and Petej
(2014) under the name of Venn taxonomies and subsumes Mondrian taxonomies as defined
in Vovk et al. (2005, Section 4.5), Venn taxonomies as defined in Vovk et al. (2005, Section
6.3), and n-taxonomies as defined in Balasubramanian et al. (2014, Section 2.2). A narrower
notion of taxonomy requires that (10) hold for all permutations = of {1,...,n + 1}; the
taxonomy of Section 6 belongs to this narrower class.

Definition 17 Define
k(215 znm) =i e{l,on+1 [ (I ~g ] 21,0 2001)}

to be the equivalence class of j. The Mondrian transducer corresponding to a taxonomy k
and a conformity measure A is

Q(Zlv <oy Rny (ﬂj’n+1,y),’7')

_ {iern+1]z,... 20 (Tnt1,9) | ! < ¥ 4}
[k(n+1| 21, 2n, (Tnt1,Y))]
+T‘{Z S /{(TL‘f’l | zl:"'azn7(xn+17y)) ‘ Oé? = O‘ZHH’ (11)

lk(n+1]21,...,2n, (Tnt1,9))]
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where n € {1,2,...}, (21,...,2,) € Z" is training data, x,+1 € X is a test object, and for
each y € Y the corresponding conformity scores o and « ,, are still defined by (6). A

function is a Mondrian transducer if it is the Mondrian transducer corresponding to some
taxonomy and conformity measure. A Mondrian predictive system is a function that is both
a Mondrian transducer and a randomized predictive system, as defined in Section 2.

Notice that the denominator in (11) is always positive. The Mondrian p-value (11)
differs from the original p-value (5) in that it uses only the equivalence class of the test
observation (with a postulated label) as comparison class. See Vovk et al. (2005, Fig. 4.3),
for the origin of the attribute “Mondrian”.

Lemma 18 If a taxonomy does not depend on the labels and a conformity measure is
monotonic and satisfies the three conditions of Lemma 11, the corresponding Mondrian
transducer will be a randomized (and, therefore, Mondrian) predictive system.

Proof As in Lemma 11, the conformity scores (defined by (6)) o are monotonically

increasing in y when ¢ = n + 1 and monotonically decreasing in y when ¢ = 1,...,n. Since
the equivalence class of n+1 in (11) does not depend on y, the value of (11) is monotonically
increasing in y: it suffices to replace (9) by

1
"%(n + 1 ‘ Zlu s 7ZTL7 (x’l’l-f'l) y))’
> (atcoty) + Thiar=at, ) )

t€r(n+1|21,..,2n,(Tn+1,Y))

Q(zla <y 2my (xn—Flvy)aT) =

in the argument of Lemma 11. In combination with the obvious monotonicity in 7, this
proves R1(i). RI1(ii) is demonstrated as in Lemma 11. The proof of R2 is standard and
valid for any taxonomy (see, e.g., Vovk et al. 2005, Section 8.7); the intuition behind it is
given in Remark 19 below. |

The properties listed in Lemma 18 will be satisfied by the conformity measure and
taxonomy defined in Section 6 to prove Theorem 21, a weaker form of the main result of
this paper.

Remark 19 Remark 13 can be easily adapted to Mondrian predictive systems. For 7 :=1
and assuming no ties among the conformity scores, the right-hand side of (11) at y := yp,+1 is
the rank of the last observation (2,41, yn+1) in its equivalence class divided by the size of the
equivalence class. Let us introduce another notion of equivalence: sequences (21, ..., znt1)
and (2],...,2},,1) in Z""! are equivalent if

(zia s Z;H-l) = (Zw(l)v s 7Z7r(n+1))

for some permutation m of {1,...,n + 1} that respects the equivalence relation assigned
by k to (z1,...,2n+1); this is indeed an equivalence relation since x is equivariant. The
stochastic mechanism generating the augmented training data (the IID model) can be re-
presented as generating an equivalence class (which is always finite) and then generating the
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actual sequence of observations in Z"*! from the uniform probability distribution on the
equivalence class. Already the second step ensures that the rank is distributed uniformly
in the set of its possible values, which leads to (11) being uniformly distributed in [0, 1],
provided y := yn4+1 and 7 ~ U.

Remark 20 One advantage of conformal predictive systems over Mondrian predictive
systems is that the former satisfy a stronger version of R2, as explained in Remark 9.

5. Universally consistent Mondrian predictive systems and probability
forecasting systems

Our results (Theorems 21, 23, and 28) will assume that the object space X is standard
Borel (see, e.g., Kechris 1995, Definition 12.5); the class of standard Borel spaces is very
wide and contains, e.g., all Euclidean spaces R%. In this section we start from an easy result
(Theorem 21) and its adaptation to deterministic forecasting (Theorem 23).

Theorem 21 If the object space X is standard Borel, there exists a universally consistent
Mondrian predictive system.

In Section 6 we will construct a Mondrian predictive system that will be shown in
Section 7 to be universally consistent.

Belyaev’s generalization of weak convergence can also be applied in the situation where
we do not insist on small-sample validity; for completeness, we will state a simple corollary
of the proof of Theorem 21 covering this case (Theorem 23 below).

Definition 22 A probability forecasting system is a measurable function Q : U, Z" ! —
[0, 1] such that:

e for each n, each training data sequence (z1,..., 2z,) € Z", and each test object x,+1 €
X, Q(z1,- .., 2n, (Tnt+1,y)) is monotonically increasing in y;
e for each n, each training data sequence (z1,..., z,) € Z", and each test object x,+1 €

X, we have

lim Q(zl’ %) (l‘nJrl? y)) = 07

y——00
lim Q(zl) <y RNy (.’L‘n+1, y)) = ]-a
Y—00
e for each n, each training data sequence (z1,...,2,) € Z", and each test object z,41 €
X, the function Q(z1,. .., zn, (Tnt+1,-)) is right-continuous (and therefore, a bona fide

distribution function).

A probability forecasting system @ is universally consistent if, for any probability measure
P on Z and any bounded continuous function f : R — R, (4) holds in probability, where
Qn:y— Q(z1,-..,2n, (Tnt1,Y)), assuming z, ~ P are independent.

Theorem 23 If the object space X is standard Borel, there exists a universally consistent
probability forecasting system.

Theorem 23 will be proved in Section 8.

10
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6. Histogram Mondrian predictive systems

Remember that the measurable space X is assumed to be standard Borel. Since every
standard Borel space is isomorphic to R or a countable set with discrete o-algebra (combine
Theorems 13.6 and 15.6 in Kechris 1995), X is isomorphic to a Borel subset of R. Therefore,
we can set, without loss of generality, X := R, which we will do.

Definition 24 Fix a monotonically decreasing sequence h,, of powers of 2 such that h,, — 0
and nhy, — oo as n — 0o. Let P,, be the partition of X into the intervals [khy, (k + 1)hy,),
where k are integers. We will use the notation P,(z) for the interval (cell) of P, that
includes z € X. Let A be the conformity measure defined by A(z1,...,2n, Zn+1) = Yn+1,
where y,, 11 is the label in z,1. This conformity measure will be called the trivial conformity
measure. The taxonomy under which (i ~ j | z1,...,2p41) is defined to mean x; € Py (z;)
is called the histogram taxonomy.

Lemma 25 The trivial conformity measure is monotonic and satisfies all other conditions
of Lemma 11. Therefore, the Mondrian transducer corresponding to it and the histogram
taxonomy is a randomized predictive system.

Proof The infimum on the left-hand side of (7) is always —oo and never attained, and the
supremum on the left-hand side of (8) is always co and never attained. By definition, the
histogram taxonomy does not depend on the labels. It remains to apply Lemma 18. |

Definition 26 The Mondrian predictive system corresponding to the trivial conformity
measure and histogram taxonomy is called the histogram Mondrian predictive system.

The histogram Mondrian predictive system will be denoted @ in the next section, where
we will see that it is universally consistent.

7. Proof of Theorem 21

Let us fix a probability measure P on Z; our goal is to prove the convergence (4) in probabi-
lity. We fix a version of the conditional expectation Ep(f | ), z € X, and use it throughout
the rest of this paper. We can split (4) into two tasks:

Ep(f | Pu(nt1)) — Ep(f | ng1) = 0, (12)
/ FAQn — Ep(f | Pa(ni1)) — 0, (13)

where Ep(f | Pn(xn+1)) is the conditional expectation of f(y) given x € P, (xn41) under
(z,y) ~ P.

The convergence (12) follows by Paul Lévy’s martingale convergence theorem (Shiryaev,
2019, Theorem 7.4.3). Paul Lévy’s theorem is applicable since, by our assumption, the
partitions P, are nested (as h, are powers of 2) and, therefore, the random variables
Ep(f | Fn) form a martingale, where F, is the o-algebra on X x R generated by P,.
This theorem implies Ep(f | Pn(x)) — Ep(f | ) — 0 P-almost surely and, therefore, in

11
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probability when (z,y) ~ P. The last convergence is clearly equivalent to (12) (in P°°-
probability).
It remains to prove (13). Let € > 0; we will show that

\ [ $9Qu=Ep(f | Palani))| < ¢ (14)

with high probability for large enough n. By Devroye et al. (1996, the proof of Theorem 6.2),
the number N of observations z; = (z;,y;) among 21, ..., 2, such that z; € Py (x,+1) tends
to infinity in probability. Therefore, it suffices to prove that (14) holds with high conditional
probability given N > K for large enough K. Moreover, it suffices to prove that, for large
enough K, (14) holds with high conditional probability given x1, ..., z,4+1 such that at least
K of objects x; among 1, ..., x, belong to P,(x,+1). (The remaining randomness is in the
labels.) Let I C {1,...,n} be the indices of those objects; remember that our notation for
|I| is N. By the law of large numbers, the probability (over the random labels) of

%Zf(%) — Ep(f ’ Pn(xn—&-l)) < 6/2 <15)

el

can be made arbitrarily high by increasing K. It remains to notice that
1
/fdQn: M;f(yz)v (16)
(2

this follows from Q,, (in the notation of Section 2) being concentrated at the points y;, i € I,
and assigning weight a;/(N + 1) to each such y;, where q; is its multiplicity in the multiset
{yi | i € I} (our use of the same notation for sets and multisets is always counterbalanced
by using unambiguous descriptors). Interestingly, [ fdQ, in (16) does not depend on the
random number 7.

8. Proof of Theorem 23

Define a probability forecasting system ) by the requirement that
Qn() = Q(zh ) (xn—l-la ))

be the distribution function of the empirical probability measure of the multiset {y; | i € I},
in the notation of the previous section. In other words, the probability measure correspon-
ding to @, is concentrated on the set {y; | i € I} and assigns the weight a;/N to each
element y; of this set, where a; is its multiplicity in the multiset {y; | ¢ € I}. (This is
very similar to Q,, at the end of the previous section.) If I = (), let Q,(-) be the distribu-
tion function of the probability measure concentrated at 0. We still have (15) with high
probability, and we have (16) with N in place of N + 1.

9. Universally consistent conformal predictive systems

In this section we will introduce a clearly innocuous extension of conformal predictive sys-
tems allowing further randomization. In particular, the extension will not affect the small-
sample property of validity, R2 (or its stronger version given in Remark 9).

First we extend the notion of a conformity measure.

12
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Definition 27 A randomized conformity measure is a measurable function A : U (Z x
[0,1])""! — R that is invariant with respect to permutations of extended training observati-
ons: for any n, any sequence (21, ..., z,11) € Z""! any sequence (61,...,0,41) € [0, 1]}
and any permutation w of {1,...,n},

A((21,601), -+, (2, 0n), (2041, 0n41)) = A ((2r(1), 0r(1)) s - - -+ (Zr(n) s Oxn))> (g 1y Ongn)) -

This is essentially Definition 6 of Section 3, except that each observation is extended
by adding a number (later it will be generated randomly from U) that can be used for
tie-breaking. We can still use the same definition, given by the right-hand side of (5), of
the conformal transducer corresponding to a randomized conformity measure A, except for
replacing each observation in (6) by an extended observation:

O[:u'/ = A((Zlv 91)) SRR (Zi*b 91',1), (Z’iJrl’ 0i+1), SRR (Zna en)a (xn+1a Y, 0n+1)7 (Zi? 01))a

1=1,...,n,

O[Z+1 = A((Zl, 91)7 ey (va 971)7 ($TL+17 Y, 0n+1))'

Notice that our new definition of conformal transducers is a special case of the old
definition, in which the original observation space Z is replaced by the extended observation
space Z x [0,1]. An extended observation (z,6) = (z,y, #) will be interpreted to consist of
an extended object (x,0) and a label y. The main difference from the old framework is that
now we are only interested in the probability measures on Z x [0, 1] that are the product of
a probability measure P on Z and the uniform probability measure U on [0, 1].

The definitions of randomized predictive systems and monotonic conformity measures
generalize by replacing objects x; by extended objects (xj,6;). We still have Lemma 11.
Conformal predictive systems are defined literally as before.

Theorem 28 Suppose the object space X is standard Borel. There exists a universally
consistent conformal predictive system.

In Section 10 we will construct a conformal predictive system that will be shown in
Section 11 to be universally consistent. The corresponding randomized conformity measure
will be monotonic and satisfy all the conditions of Lemma 11 (with objects replaced by
extended objects).

10. Histogram conformal predictive systems

In this section we will use the same partitions P, of X = R as in Section 6.

Definition 29 The histogram conformity measure is defined to be the randomized confor-
mity measure A with A((z1,601),...,(2n,0n), (#n+1,0n+1)) defined as a/N, where N is the
number of objects among z1,...,z, that belong to P,(x,+1) and a is essentially the rank
of y,+1 among the labels corresponding to those objects; formally,

a:= ‘{7‘ =1,...,n ’ T € Pn(xn—l-l), (yhel) < (yn+179n+1)}’>

13
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where < refers to the lexicographic order (so that (vi,0;) < (yn+1,0n+1) means that either
Yi < Yn+1 or both y; = yp41 and 0; < O,41). If N =0, set, e.g.,

1 if Yn+1 >0

A 21,01,...72’,9 , (2 1,(9 1)) ‘=
(< ) (20,6, (241, One )) 0 otherwise.

Since the histogram conformity measure is monotonic and satisfies all other conditions
of Lemma 11 (where now both inf and sup are always attained as 0 and 1, respectively), the
corresponding conformal transducer is a conformal predictive system. In the next section
we will show that it is universally consistent.

11. Proof of Theorem 28

The proof in this section is an elaboration of the proof of Theorem 21 in Section 7. The
difference is that now we have a different definition of @,. It suffices to show that (14)
holds with probability at least 1 — e for large enough n, where ¢ > 0 is a given (arbitrarily
small) positive constant. In view of (15), it suffices to prove that

‘ / F4Qu — 2 3 Flw)| < /2 (17)

el

holds with probability at least 1 — €/2 for large enough n. In this section we are using the
notation introduced in Section 7, such as N and [.

On two occasions we will use the following version of Markov’s inequality applicable to
any probability space (2, F,P).

Lemma 30 Let G be a sub-o-algebra of F and E € F be an event. For any positive
constants 01 and Oz, if P(E) > 1 — 6102, then P(E | G) > 1 — 01 with probability at least
1 — d9.

Proof Assuming P(F) > 1 — 6169,

c EP(E|G))  P(E) _ &6
IP’(IP’(E 1) <1 —51) :IP’(IP’(E 1G) > 51) < g P (1512 s,

where E€ is the complement of F and the first inequality in the chain is a special case of
Markov’s. |

Set C' :=sup|f| V 10. Remember that e > 0 is a given positive constant. Let B be so
large that y € [~ B, B] with probability at least 1 —0.001e?/C when (x,y) ~ P. This is the
first corollary of Lemma 30 that we will need:

Lemma 31 For a large enough n, the probability (over the choice of z1,. .., zp, Tnt1) of

the fraction of y;, i € I, satisfying y; € [—B, B] to be more than 1 — 0.02¢/C is at least
1—0.11e.

14
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Proof By Lemma 30 we have
P(P(y € [-B,B] |z € Py(2)) > 1—0.01¢/C) > 1 — 0.1, (18)

where the inner P is over (z,y) ~ P and the outer IP is over 2’ ~ Px, Px being the marginal
distribution of P on the object space X. To obtain the statement of the lemma it suffices
to combine (18) with the law of large numbers. [ ]

Since f is uniformly continuous over [—B, B], there is a partition
—B=yy <yl < <Yp <Ynp1=B
of the interval [—B, B] such that

max f(y)— min f(y) <0.0le (19)
VIS ey YEY; Y54l

for j = 0,1,...,m. Without loss of generality we will assume that y € {y5,...,y,,1} with
probability zero when (z,y) ~ P. We will also assume, without loss of generality, that
m > 10.

Along with the conformal predictive distribution @, we will consider the empirical
distribution function @} of the multiset {y; | i € I} (as defined in Section 8, where it was
denoted @,,); it exists only when N > 0. The next lemma will show that @, is typically
close to Q). Let K be an arbitrarily large positive integer.

Lemma 32 For sufficiently large n, Qn(y;) and Qy,(y;) (both exist and) differ from each
other by at most 1/K + 0.11e/C(m + 1) + 1/n for all 5 = 0,1,...,m + 1 with probability
(over the choice of z1,. .., zn, Tpy1 and random numbers 7,01, ...,0,41) at least 1 — 0.11e.

Proof We can choose n so large that N > K with probability at least 1 — 0.01¢2/C(m +
1)(m+2). By Lemma 30, for such n the conditional probability that N > K given z1,...,z,
is at least 1 — 0.1¢/C(m + 1) with probability (over the choice of z1,...,x,) at least 1 —
0.1¢/(m—+2). Moreover, we can choose n so large that the fraction of z;, i = 1,...,n, which
have at least K —1 other z;,i = 1,...,n, in the same cell of P, is at least 1 —0.11¢/C(m+1)
with probability at least 1 —0.11¢/(m+2) (indeed, we can choose n satisfying the condition
in the previous sentence and generate sufficiently many new observations).

Let us fix j € {0,1,...,m + 1}. We will show that, for sufficiently large n, Qn(y;) and
@, (y;) differ from each other by at most 1/K + 0.11¢/C(m + 1) 4+ 1/n with probability at
least 1 —0.11¢/(m+2). We will only consider the case N > 0; we will be able to do so since
the probability that N = 0 tends to 0 as n — oo. The conformity score of the extended test
observation (zy41, y}" ,0n+1) with the postulated label yj is, almost surely, a/N, where a is
the number of observations among (x;,y;), i € I, satisfying y; < (e (We could have written
yi < y; since we assumed earlier that y = y; with probability zero.) If a cell of P,, contains
at least K elements of the multiset {x1,...,z,}, the percentage of elements of this cell with
conformity score less than a/N is, almost surely, between a/N —1/K and a/N + 1/K; this
remains true if “less than” is replaced by “at most”. (It is here that we are using the fact
that our conformity measure is randomized and, therefore, conformity scores are tied with

15
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probability zero.) And at most a fraction of 0.11¢/C(m + 1) of elements of the multiset
{z1,...,2,} are not in such a cell, with probability at least 1 — 0.11e/(m + 2). Therefore,
the overall percentage of elements of the multiset {x1,...,z,} with conformity score less
than a/N is between a/N — 1/K — 0.11¢/C(m + 1) and a/N + 1/K + 0.11¢/C(m + 1),
with probability at least 1 — 0.11¢/(m + 2); this remains true if “less than” is replaced
by “at most”. Comparing this with the definition (5), we can see that Q,(y}) is between
a/N—-1/K—0.11¢/C(m+1)—1/n and a/N+1/K +0.11¢/C(m+1)+1/n, with probability
at least 1 —0.11¢/(m + 2). It remains to notice that Q;,(y;) = a/N almost surely. ]

Now we are ready to complete the proof of the theorem. For sufficiently large n, we can
transform the left-hand side of (17) as follows (as explained later):

1
fdQn — = > f(ui) :‘ fdQn — [ fdQy, (20)
0.5 S s| = raa- |
dQ, — dQ:
< /(_B’B]fQ /(_37 £dQ;,
+C(Qn(=B) +1-Q5(B) + Qu(—B) +1 - Qu(B)) (21)
<D WD) (Qulyi) — Qu(y))) Zf Qn(yir1) — Qnyi))
i=0
€ 2 0.226 2
SZ (W Qn(yf1) — Qi (Wi1) — Qulyi) + Qr ()] +0.2¢ (23)
- e [ 2 0.22¢ 2
§§\f(yi)’<K+C(m+1)+ >+026 (24)
< 20(7?{“) +0.42¢ + 20(”;” < 0.5¢. (25)

Inequality (21) holds always. Inequality (22) holds with probability (over the choice of
21y« Zn, Tnt+1, and random numbers 7 and 61, ..., 6,41) at least 1—0.11e—0.11e = 1—0.22¢
by (19) and Lemmas 31 and 32: the addend 0.02¢ arises by (19) from replacing integrals by
sums, the addend 0.08¢/C' is four times the upper bound on Q (—B), or 1 —Q} (—B), given
by Lemma 31 (the factor of four arises from bounding Q' (—B), 1 —Q}(—B), Q,(—B), and
1—Qn(—B)), and the expression 2/ K +0.22¢/C(m+1)+2/n arises from applying Lemma 32
to reduce bounding @,(—B) and 1 — @,(—B) to bounding Q) (—B) and 1 — Q) (—B),
respectively. Inequality (23) holds for sufficiently large K and n. Inequality (24) holds
with probability at least 1 — 0.11e by Lemma 32, but this probability has already been
accounted for. And finally, the second inequality in (25) holds for sufficiently large K and
n. Therefore, the whole chain (20)—(25) holds with probability at least 1 —0.22¢ > 1 —¢€/2.
This proves (17), which completes the overall proof.

To avoid any ambiguity, this paragraph will summarize the roles of ¢, B, m, K, and
n in this proof. First we fix a positive constant € > 0 (which, however, can be arbitrarily
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small). Next we choose B, sufficiently large for the given €, and after that, a sufficiently
fine partition of [—B, B] of size m. We then choose K, which should be sufficiently large
for the given € and partition. Finally, we choose n, which should be sufficiently large for
the given ¢, partition, and K.

12. Conclusion

This paper constructs a universally consistent Mondrian predictive system and, which is
somewhat more involved, a universally consistent conformal predictive system. There are
many interesting directions of further research. These are the most obvious ones:

e Investigate the best rate at which conformal predictive distributions and the true
conditional distributions can approach each other.

e Replace universal consistency by strong universal consistency (i.e., convergence in
probability by convergence almost surely), perhaps in the online prediction protocol
(as in Remark 9).

e Construct more natural, and perhaps even practically useful, universally consistent
randomized predictive systems.
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